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2
32 Abstract

33

34 A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol

35 products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post-

36 launch values reported by Kahn et al. [2005a], varying with particle type category. Overall,

37 about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired

38 validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where

39 dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical

40 properties amount to categorical values, such as three groupings in size: “small,” “medium,” and

41 “large.” For particle size, ground-based AERONET sun photometer Angstrom Exponents are

42 used to assess statistically the corresponding MISR values, which are interpreted in terms of

43 retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD

44	 spherical data are too limited for statistical validation. V22 distinguishes two or three size bins,

45 depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as

46	 spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity

47 varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or

48 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated

49 by the MISR team for possible implementation in future versions of the product.

50

51 1. Introduction

52

53 Since the launch of the NASA Earth Observing System (EOS) satellites, enormous strides have

54 been made in Aerosol Optical Depth (AOD) remote sensing over land and water [e.g.,

55 Martonchik et al., 2009; Kahn et al., 2005a; Remer et al., 2005; 2008]. The global data sets

56 produced by the Multi-angle Imaging SpectroRadiometer (MISR) and MODerate resolution

57 Imaging Spectroradiometer (MODIS) instruments have contributed to reducing uncertainties in

58 aerosol transport and radiative impact modeling [e.g., Zhang and Christopher, 2003; Kinne et al.,

59 2006; Yu et al., 2006; Kim and Ramanathan, 2008; Chen et al., 2009], leading, for example, to a

60 reduction in the overall climate forcing uncertainty attributed to aerosols [ IPCC, 2007; Haywood

61	 and Schulz, 2007].

62

63 However, significant further reduction in aerosol climate impact assessment depends upon

64 retrieving aerosol type along with AOD. MISR-retrieved aerosol type has been used in a range
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of applications, including particle shape [Kalashnikova and Kahn, 2006; Liu et al., 2007a; b],

66 and combinations of size distribution and single-scattering albedo (SSA) constraints [ Chen et al.,

67 2008], size and shape [Kalashnikova and Kahn, 2008; Dey and Di Girolamo, 2010; Pierce et al.,

68
	

2010], and all three microphysical property constraints [Kahn et al., 2008]. In addition to the

69 intrinsic value of such information for helping determine particle composition and origin, and for

70 mapping aerosol transport, deposition, and evolution, particle type is among the key factors

71
	

determining AOD retrieval accuracy itself [e.g., Kahn, et al., 2007a].

72

73 MISR was launched into a sun-synchronous polar orbit in December 1999, aboard the NASA

74 EOS Terra satellite. Terra crosses the equator on the descending node at about 10:30 AM local

75 time. MISR is unique among the EOS-era satellite instruments in having a combination of high

76 spatial resolution, a wide range of along-track view angles, and high-accuracy radiometric

77
	

calibration and stability [Diner et al., 1998]. Global coverage (to ±82 ˚ latitude) is obtained about

78 once per week.

79

80 MISR measures upwelling short-wave radiance from Earth in four spectral bands centered at

81 446, 558, 672, and 866 nm, at each of nine view angles spread out in the forward and aft

82
	

directions along the flight path, at 70.5 ˚ , 60.0 ˚ , 45.6 ˚ , 26.1 ˚ , and nadir. Over a period of seven

83 minutes, as the spacecraft flies overhead, a 380-km-wide swath of Earth is successively viewed

84 by each of MISR’s nine cameras. As a result, the instrument samples a very large range of

85 scattering angles – between about 60 ˚ and 160 ˚ at mid latitudes, providing information about

86 aerosol microphysical properties. These views also capture air-mass factors ranging from one to

87
	

three, offering sensitivity to optically thin aerosol layers, and allowing aerosol retrieval

88 algorithms to distinguish surface from atmospheric contributions to the top-of-atmosphere

89 (TOA) radiance.

90

91
	

The MISR Standard aerosol retrieval algorithm runs in an operational, fully automatic mode. It

92 reports AOD and aerosol type at 17.6 km resolution, by analyzing data from 16 x 16 pixel

93
	

regions of 1.1 km-resolution, MISR top-of-atmosphere radiances [ Diner et al., 2006; Kahn et al.,

94 2009; Martonchik et al., 2009]. Pre-launch studies predicted that MISR sensitivity to AOD and

95 particle properties would vary with conditions. At least over dark water, for good retrieval

96 conditions and AOD at mid-visible wavelengths larger than about 0.15, MISR was expected to

97
	

distinguish about three-to-five groupings based on particle size, two-to-four groupings in single-

98
	

scattering albedo (SSA), and spherical vs. non-spherical particles [ Kahn et al., 1997; 1998;
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99 2001]. In these studies, we usually modeled good retrieval conditions over water as a uniform,

100 cloud-free scene, with a dark surface having near-surface wind speed around 2.5 m/s; we also

101	 tested a range of conditions to assess the robustness of the results.

102

103 Using a combination of MISR Standard [Martonchik et al., 1998; 2002; 2009] and Research

104	 [Kahn et al., 2001] aerosol retrieval algorithms, several post-launch studies focused on MISR

105	 sensitivity to particle properties as well as AOD, for individual cases when specific aerosol types

106 dominate. These studies, covering desert dust [ Kalashnikova et al., 2005; Kalashnikova and

107 Kahn, 2006; Kahn et al., 2008], biomass burning [ Chen et al., 2008], and cirrus [Pierce et al.,

108 2010] cases, generally confirm pre-launch expectations about size, shape, and SSA sensitivity,

109	 and add considerable detail to earlier predictions.

110

111	 Post-launch statistical assessments of the MISR aerosol products have so far concentrated on

112 AOD [e.g., Abdou et al., 2005; Christopher and Wang, 2004; Diner et al., 2001; Jiang et al.,

113	 2007; Kahn et al. 2005a; Liu et al., 2004; Martonchik et al., 2004]. For example, Kahn et al.

114 [2005a; henceforth Paper 1] evaluated the Version 12 early post-launch aerosol product by

115 comparing MISR AOD with a two-year, globally distributed set of AErosol RObotic NETwork

116 (AERONET) surface-based sun photometer measurements [Holben et al., 1998]. Paper 1

117 concluded that for Version 12 of the MISR algorithm, about two-thirds of the MISR-retrieved

118 AOD values for which there are coincident AERONET retrievals fall within the larger of 0.05 or

119 20% AOD relative to AERONET, and more than a third were within 0.03 or 10% AOD. The

120 results also suggested that adding to the algorithm climatology more absorbing spherical

121	 particles, more realistic dust optical analogs, and a richer selection of multi-modal aerosol

122 mixtures would reduce the remaining AOD discrepancies with AERONET for MISR retrievals

123	 over land; in addition, refining instrument low-light-level calibration would reduce or eliminate a

124 small but systematic offset in Maritime AOD values.

125

126 Version 22 (V22) incorporates many of the suggested upgrades, including a more realistic

127 medium-mode desert dust optical model [Kalashnikova et al., 2005; see also Table 2], small-

128 medium, spherical particles having mid-visible SSA of 0.8 and 0.9, and more multi-modal

129 aerosol distributions in the standard algorithm climatology, along with other algorithm

130 adjustments	 described	 in	 the	 MISR	 product	 documentation	 [see

131	 http://eosweb.larc.nasa.gov/PRODOCS/misr/table_misr.html] . In addition, the MISR band-to-

132 band and camera-to-camera radiometric calibration has been improved, which partly corrected
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133 the low-AOD bias relative to AERONET [Bruegge et al., 2007; Diner et al., 2004; Kahn et al.,

134 2005b]. As before, the V22 algorithm reports the best estimate spectral AOD as “regional mean”

135 values, which are averages, with equal weight, of the AOD obtained for each mixture in the

136	 algorithm climatology that pass the acceptance criteria. But the best estimate particle size, SSA,

137 and fraction AOD spherical are obtained from the aerosol mixture having TOA radiances with

138 the lowest residuals relative to the MISR observations. The AOD associated with the lowest-

139 residual mixture is also reported in the data product. The full MISR data record from February

140 2000 to the present has been reprocessed to V22.

141

142 In this paper we assess the quality of the MISR V22 Level 2AS Aerosol product over land and

143 water, and make suggestions for additional algorithm refinements. Further assessment and

144 product refinement are justified by the exacting demands on AOD particle type accuracy for air

145	 quality and material transport studies, and for evaluating direct aerosol radiative forcing

146 regionally and globally. The ten-year record is also beginning to make time-series and trend

147 analyses worth pursuing with MISR data. Fortunately, over this period, we have acquired much

148 more validation data, which provide better statistics, cover a wider range of conditions, and

149 include more detailed ground-truth measurements than were available early in the MISR

150 mission. In addition, we have learned a great deal from work already done with the MISR

151 products, by the instrument team and many others.

152

153 Our approach is to compare the MISR data with coincident observations from 81 globally

154 distributed AERONET sites over eight years. As in Paper 1, we take a statistical approach, and

155 stratify the observations by season and expected aerosol type. But here, in addition to comparing

156 the new MISR-retrieved mid-visible AOD, we study Angstrom Exponent (ANG) in light of

157 AERONET direct sun spectral AOD measurements, and explore the implications for retrieved

158 particle components and mixtures. These are all total-column effective values, as there is no

159 height-resolved information in either the MISR or the AERONET aerosol retrievals (though the

160 MISR stereo product includes aerosol plume heights in wildfire, volcanic, and desert dust near-

161	 source regions [Kahn et al., 2007b]). Note also that, as with Paper 1, this is not a test of MISR

162 cloud masking, because coincidences must pass both the MISR and AERONET cloud masks to

163 be included in this study. MISR cloud mask performance is the subject of separate studies [e.g.,

164	 Zhao et al., 2009].

165
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166 This paper is organized as follows: Section 2 describes how the MISR and AERONET data were

167 selected and processed, and gives an overview of sampling statistics. Section 3 summarizes

168 AOD performance; trends and patterns in the AOD differences are identified, stratified by

169 location and season so as to separate typical aerosol types, and are compared with results from

170 the early post-launch product studied in Paper 1. Section 4 looks in detail at the particle

171	 properties reported in the MISR aerosol product, investigates outliers, and explores possible

172 causes for the observed behavior. Section 5 provides a summary of results and recommendations

173	 for further product refinements, and the final section presents conclusions.

174

175

176 2. Data Selection and Analysis Approach

177

178 We compare MISR-retrieved aerosol quantities with coincident AERONET direct-sun and sky-

179	 scan results. The data involved are described in this section.

180

181 2.1. AERONET Surface-based Sun Photometer Network Data

182

183 AERONET direct-sun measurements are taken automatically with ground-based CIMEL sun

184 photometers every 15 minutes during daylight hours. Standard processing includes operational

185 cloud screening [Smirnov et al., 2000] and generates AOD from the direct transmission.

186 AERONET sun photometers are inter-calibrated with reference CIMELs, which in turn are

187 calibrated using the Langley method at Mauna Loa Observatory, Hawaii, in bands nominally

188 centered at about 340, 380, 440, 500, 675, 870, and 1020 nm, plus a column water vapor channel

189	 [Holben et al., 1998; http://aeronet.gsfc.nasa.gov/] . For this study, we work with Version 2

190 AERONET data, at Level 2.0 (Level 1.5 AERONET AOD data are cloud-screened values, but

191	 are calibrated based on a single pre-deployment comparison with a standard reference, and can

192 have an uncertainty of 0.02 or greater. The Level 2 data, for which a second, post-deployment

193 comparison is also used in calibration along with manual validation checks, are somewhat less

194 frequent overall, but they have AOD measurement accuracy of ~0.01 in the mid-visible [ Eck et

195 al., 1999].) Unlike Paper 1, we include here cases for which mid-visible AOD values exceed

196 1.0, in part to take advantage of increased AERONET particle property retrieval accuracy.

197 However, such cases are relatively rare in the coincident data set, and often involve dust or

198 smoke plumes having considerable spatial variability; this exacerbates sampling differences and
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199 reduces the utility of the comparison for MISR retrieval validation (see Paper 1). We also

200 include comparisons between MISR AOD and coincident measurements from A ERONET’s

201 ship-based Marine Aerosol Network (MAN) sun photometers [ Smirnov et al., 2009]. These

202 observations are obtained with hand-held Microtops instruments; the data are processed similarly

203 to the CIMEL direct sun measurements, but have slightly reduced measurement accuracy of

204 ~0.02. MAN provides additional dark ocean AOD and ANG cases, which are especially

205 valuable here because there are very few MISR-AERONET coincidences in these situations.

206

207 ANG is derived from the spectral AOD values. It is defined as the negative slope of the least-

208 squares linear fit of ln (AOD) vs. ln (wavelength). ANG is a single variable related to the

209	 particle size distribution, though its interpretation is complicated, in part when non-linearity in

210 spectral AOD dependence is significant, and especially when multi-modal aerosol distributions

211 are present [e.g., Schuster et al., 2006]. AERONET AOD and ANG are both derived solely from

212 direct-sun extinction measurements; as such, the primary uncertainty in these values when

213 compared to MISR observations arises from sampling differences, though these can be

214 considerable, especially near aerosol sources, where particle concentrations can vary greatly.

215 Other uncertainties include differences in the wavelengths measured by each instrument, and for

216 ANG, the fact that it is derived from the slope of multiple observations, each having its own

217 measurement errors.

218

219	 To facilitate comparisons, note that unlike the linear interpolation applied for Paper 1, all

220 AERONET AOD values used in this paper were interpolated to the MISR band effective

221 wavelengths using a second-order polynomial fit to ln (AOD) vs. ln (wavelength), as

222 recommended by Eck et al. [1999]. As before, the AERONET Angstrom Exponents are

223 calculated from the spectrally interpolated and temporally averaged direct-sun AERONET AOD

224 values at the four MISR wavelengths, using the same least-squared fitting approach adopted for

225 the MISR data themselves.

226

227 The AERONET instruments also perform sky scans in the principal plane and across the

228 almucantar at 440, 675, 870, and 1020 nm about once per hour, from which aerosol size

229 distributions and refractive indices are derived [ Dubovik and King, 2000; Dubovik et al., 2006].

230 Retrieved size is reported as a relative, volume-weighted quantity in 22 bins of particle radius,

231	 spread logarithmically between 0.05 and 15 microns. Size distributions are also provided in the

232 AERONET standard product as one medium-mode and one coarse-mode log-normal parameter,
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233 fit to the 22-bin histogram [Dubovik and King, 2000]. A combination of direct sun and sky-scan

234 data is used to retrieve spectral indices of refraction and SSA, though they are considered of high

235 quality only when the solar zenith angle is greater than 50 ˚ and the AOD at 440 nm is 0.4 or

236 above [Dubovik et al., 2000].

237

238 Figure 1 shows the locations of the 81 AERONET sites used in this study. These sites were

239 selected for their geographic diversity, and for providing generally good-quality and well-

240 populated data records during the analysis period (Table 1). The sites are classified as Dusty,

241 Biomass Burning, Continental, Urban, Maritime, or Hybrid (smoke + dust), based on the

242 expected dominant aerosol type, at least during some seasons. (Independent, event-by-event

243	 classification of aerosol type is possible only on rare occasions, primarily when in situ

244 measurements from field campaigns are available, or when major smoke or dust plumes fall

245 within the coincident MISR-AERONET sampling region.) Although component particle

246 microphysical properties vary within each category, these six groupings represent broad classes

247 of aerosol air mass types we expect to distinguish globally with MISR [ Kahn et al., 2001], and to

248	 some extent, they represent different passive remote-sensing retrieval challenges.

249

250 2.2. MISR Data Attributes, and Co-location with Surface Stations

251

252 The MISR Standard aerosol retrieval algorithm searches a database of TOA radiances simulated

253 for the MISR channels, solar position, and viewing geometries, assuming a range of candidate

254 aerosol mixtures and optical depths, and compares them with the observed radiance imagery

255	 [Martonchik et al., 1998; 2009]. Component particle optical properties assumed in the algorithm

256 cover ranges of “small,” “medium,” and “large,” non-absorbing and absorbing, spherical and

257 randomly oriented non-spherical types (Table 2). A limited selection of mixtures of these

258 components is used in the V22 algorithm, as given in Table 3. The entries are organized so that,

259 for most of this table, each decade contains mixtures among a fixed set of components, in

260 systematically varying proportions. Exclusively spherical, non-absorbing components are found

261	 in Mixtures 1 to 30, with the fine-mode components having progressively larger sizes for

262 Mixtures 1-10, 11-20, and 21-30. Mixtures 31-40 and 41-50 include spherical, absorbing fine-

263 mode components, with mid-visible SSA=0.90 and 0.80, respectively, and 51-74 are mixtures

264 that contain non-spherical medium and coarse-mode dust optical analogs. Overall sensitivity to

265 particle type AOD fraction is around 0.2 for AOD >~ 0. 15, and diminishes when AOD is lower

266 [Chen et al., 2008; Kalashnikova and Kahn, 2006].
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267

268 Aerosol retrieval success is measured by the degree to which observed multi-angle, multi-

269 spectral TOA radiances match modeled radiances, using several chi-squared criteria [e.g., Kahn

270 et al., 1998; Martonchik et al., 1998; 2009]. In V22, the MISR ANG is obtained from the mean

271	 optical depths of all successful mixtures, calculated separately at each MISR wavelength. As

272 with the AERONET data, the MISR aerosol retrievals used here meet the cloud-free and other

273	 high-data-quality standards set by the experiment team [e.g., Diner et al., 2006; Kahn et al.,

274 2009; summarized in the MISR Data Quality Statement distributed on-line with MISR data

275 products; http://eosweb.larc.nasa.gov/PRODOCS/misr/table_misr.html] . MISR Level 2 aerosol

276 retrievals use only data that pass angle-to-angle smoothness and spatial correlation tests

277	 [Martonchik et al., 2002], as well as stereoscopically derived cloud masks and adaptive cloud-

278 screening brightness thresholds [Di Girolamo and Wilson, 2003; Zhao and DiGirolamo, 2004].

279

280 As in Paper 1, we searched the V22 product for overflights having successful retrievals either in

281 the MISR 17.6 km retrieval region containing each AERONET station selected (the “central”

282 region), or in one or more of the eight retrieval regions surrounding the central one. We use both

283 the central and all available surrounding region retrievals for comparison with AERONET AOD;

284 values obtained for the surrounding regions help assess AOD spatial variability on 20-to-50 km

285 scales. We also required in Paper 1 that the AERONET time series for each coincidence include

286 at least one AOD measurement during the hour before the MISR overpass, and at least one

287 during the hour after the overpass. We do the same here.

288

289 A fundamental difference between the MISR and AERONET AOD observations is that MISR

290 acquires instantaneous data over an entire 20-to-50 km study area (one central + eight

291	 surrounding 17.6 km retrieval regions), whereas AERONET obtains a time-series of point data at

292 each surface station. For each event, we averaged with equal weight all available AERONET

293 AOD retrievals for a two-hour window centered on the MISR overpass time. This crudely

294 covers the period during which aerosols advecting at 5-to-15 m/s would traverse the MISR study

295 area, though not necessarily sampling it uniformly. We rely on the large number of events

296 included in this study to average out any subtle sampling anomalies, and we highlight as outliers

297 any individual pathological cases. We also take the likely limitations of these assumptions into

298 consideration when drawing conclusions.

299
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300 There are far fewer once-hourly AERONET sky-scan particle property retrievals than AOD

301 values. To effect comparisons with MISR, we accepted any case where at least two good-quality

302 sky-scan results fall within a four-hour window centered on MISR overpass time. If there are

303 multiple, successful AERONET sky-scan retrievals within the window, SSA values are

304 averaged. An assumption underlying this approach is that within an aerosol air mass, particle

305 type varies less than AOD; there is some observational support for this assumption [e.g.,

306 Anderson et al., 2003], though there are likely to be exceptions [e.g., Kahn et al., 2007a],

307 especially near sources, or when multiple aerosol layers of different types are present. In

308 practice, about 80% of the cases included have at least one measurement on each side of

309 overpass time; the rest have at least two measurements on one side of the overpass window.

310

311	 Table 4 summarizes the sampling statistics for the entire data set, stratified by season and

312 expected aerosol type. Over eight years, we obtained 5,156 coincident, central MISR-

313 AERONET AOD observations that met the data selection criteria, and 2,130 central sky-scan

314 results. There are over 1,300 central AOD events for each of Continental and Urban aerosol

315 sites, over 650 each for Biomass Burning and Dusty, over 600 for Hybrid, and not quite 400 for

316 the Maritime categories. There are about 650 Sky-scan coincidences for Urban, just under 500

317 for Continental, about 300 each for Biomass Burning, Dusty, and Hybrid, and 81 for Maritime.

318 Frequent cloud contamination and relatively few available sites contribute to lower sampling for

319	 Maritime sites.

320

321 Also shown in Table 4 are the numbers of events in each category for which the lowest residual

322 aerosol mixture in the MISR V22 product contained (a) only spherical, non-absorbing particles,

323	 (b) both spherical absorbing and non-absorbing particles, or (c) both non-spherical mineral dust

324 and spherical non-absorbing particles. Although the lowest residual mixture is generally unique,

325 more than one mixture can meet the chi-squared criteria for a successful retrieval. These data are

326	 discussed in the next section.

327

328

329 3. MISR AOD Retrieval Assessment

330

331 Figure 2 and Table 5 report the overall group average MISR-AERONET mid-visible (558 nm)

332 AOD difference statistics by probable aerosol category, as well as summary statistics derived in
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333 Paper 1 based on similar aerosol-type groupings for the Version 12 algorithm. Table 5 also

334 contains the corresponding site-specific data. The figure compares the AERONET values with

335 the MISR central and surrounding retrieval regions for each category. Of 5,156 coincidences,

336 125 significant outliers (2.4%), where the MISR AOD is more than 2.5 times higher than

337 AERONET, and 68 (1.3%) where the MISR AOD is less than 60% of the corresponding

338 AERONET value, have been removed from the statistics of Table 5 and Figure 2. Of the high

339	 outliers, 61% are attributable to spatial and/or temporal scene variability, convolved with the

340 differences between MISR and AERONET sampling, rather than retrieval error. This conclusion

341	 is based on variability in the retrieval results from the central vs. surrounding regions, and/or the

342 AERONET time series. About an additional 35% of the high outliers are likely due to variability

343 as well, including cases having nearby scattered or broken cloud. The corresponding values for

344 the low AOD outliers are 63% and 22%, respectively. Sampling outliers can occur if an aerosol

345 plume is found in the MISR image but misses the AERONET field-of-view (FOV), or if a plume

346 fills the AERONET FOV but accounts for only a small fraction of the MISR retrieval region. So

347 for both the high and low outliers of significant magnitude, over 80% are likely due to sampling

348 differences. A similar result was obtained in Paper 1. About 15% of the 68 MISR low outliers

349 in this data set are cases where MISR adopted an unduly high particle SSA compared to

350 AERONET. Other factors, including algorithmic issues, account for the remaining cases; these

351	 issues are explored in more detail below.

352

353	 In Figure 2, focus first on the position along the horizontal axis of the filled diamond and circle

354 symbols, connected with solid lines. These represent the category-specific percent of cases for

355 which the MISR central AOD is within 0.05 or 20% AOD, and 0.03 or 10% AOD, of the

356 near-coincident AERONET value, respectively. The results vary considerably, depending on

357 category. For V22, about 70% to 75% fall within 0.05 or 20% AOD of the validation data,

358 and about 50% to 55% meet the 0.03 or 10% AOD criterion, except in the Dusty and Hybrid

359 (smoke + dust) categories. The open diamond and circle symbols and dashed lines plot the

360 corresponding values for the V12 algorithm. For the 0.05 or 20% AOD criterion, the V22

361 values are about 10%, 7%, and 6% higher than those for V12 for the Biomass Burning,

362 Continental, and Maritime aerosol categories, respectively, reflecting improvements made to the

363 retrieval algorithm as mentioned in Section 1. For the Dusty category, the agreement is about 5%

364 poorer, due in part to a lack of medium-mode spherical particles in the V22 component set

365	 (Section 4.2 below); the other categories were not independently tracked in the earlier, smaller
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366 data set. Similar relationships among the categories, and between the V12 and V22 results, are

367 found for the more stringent 0.03 or 10% AOD criterion.

368

369 Placement along the vertical axis in Figure 2 compares the AERONET two-hour-averaged values

370 with the spatial average of MISR AOD results for the central and as many of the eight

371	 surrounding regions as have successful retrievals, and with those for the central region alone.

372 The difference plotted accounts to some degree for variability; for points above the zero line, the

373	 larger-spatial-scale (~50 km) central + surrounding region average produces systematically better

374 agreement with AERONET than the single-region (17.6 km) central comparison. For points

375 below the zero line, there is an advantage for the MISR retrieval regions to be collocated with the

376 AERONET site as closely as possible. These results by category are statistically fairly robust, as

377 each large symbol represents hundreds to over 1,000 MISR-AERONET comparisons, though the

378	 sampling varies significantly for individual sites (Table 5).

379

380 Focusing again on the filled symbols, the larger-scale averaging produces 2 to 3% better

381 agreement for the Continental and Biomass Burning categories, 5% better agreement for Dusty,

382 and almost 8% for Maritime, whereas the central region provides better agreement for the Urban

383 class and marginally better agreement for the less-well-sampled Hybrid class. In Urban regions,

384 where AOD variability is expected to be dominant on short spatial scales, the central regions

385 have a systematic advantage in representing the AERONET two-hour-window measurements

386	 [Jiang et al., 2007]. Site-specific values illustrate this point. For example, Mexico City is

387 responsible for an Urban outlier that would plot along the vertical axis in Figure 2 at about -32%

388 (Table 5). By contrast, for Maritime situations, where aerosols are generally more uniform on 10

389 km to 100 km scales, the larger spatial averaging reduces the impact of serendipitous aerosol air

390 mass edges and AOD gradients sampled differently by the satellite and surface stations [ Kahn et

391	 al., 2007a, Section 3.2]. Similarly, at Continental sites such as El Arenosillo in southern Spain

392 and Arica in northern Chile, regional averaging produces significantly better agreement with the

393 AERONET time series. Site-to-site differences in regional source characteristics, topography,

394 and meteorology account for the scatter among AERONET stations within each category, but

395	 overall, the variability patterns are distinct, and consistent with expectations.

396

397 Figure 3 looks in more detail at the MISR-AERONET mid-visible AOD comparisons, showing

398 both scatter and difference plots, stratified by season and by the six expected aerosol air mass

399 type groupings described above. The middle row of this figure focuses on the low-AOD range of
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400 the scatter plots from the top row, and uses open circles to improve the visibility of individual

401	 events.

402

403 The data exhibit many expected patterns, such as Maritime AOD generally below 0.3, and high

404 AOD events, in excess of 0.6, occurring preferentially for the Biomass Burning, Dusty, Urban,

405 and Hybrid categories. The quantitative ranges of values are somewhat higher than

406 corresponding ones in Paper 1, due to much greater sampling in the current data collection,

407 which captures a broader spectrum of naturally occurring conditions. Although these MISR

408 validation data subsets were chosen for coincidence with AERONET rather than being optimized

409 to represent the “global-average” AOD, they cover a diversity of situations. As such, they

410	 illustrate one reason for obtaining longer-term, climate-quality data records; as larger data sets

411	 are acquired, it will become possible to separate with greater confidence sampling effects from

412 natural patterns, trends, and extreme events, and an increasingly robust environmental picture

413 will emerge. This is true for the validation process itself as well. Having provided an overview

414 based on Figures 2 and 3, we now explore individual strata in more detail.

415

416 3.1. AOD Performance at Very Low AOD and Maritime Sites

417

418 When AOD is very low, MISR tends to overestimate AOD, for a small but significant fraction of

419	 cases in all aerosol types. The concentrations of points above the zero lines in the difference

420 plots along the bottom row of Figure 3, when AOD is low, illustrate this condition. The middle

421 row of plots in Figure 3 reveals a gap of about +0.025 in the MISR mid-visible AOD values near

422 zero AOD. This gap does not appear in the AERONET validation data, as is especially clear for

423 the well-sampled Biomass Burning and Continental category plots. Comparison between MISR

424 and a much larger number of coincident MODIS/Terra observations shows similar MISR

425 behavior [Figure 5 of Kahn et al., 2009].

426

427 Previous work removed about half of a ~0.05 high bias, evident in the early post-launch (Version

428 12) MISR AOD over-ocean product, when the MISR band-to-band and camera-to-camera

429	 calibrations were corrected [Bruegge et al., 2007; Diner et al., 2004; Kahn et al., 2005b]. These

430 corrections were identified from direct radiometric tests, independent of aerosol-retrieval-related

431 considerations. The ~6% improvement in MISR-AERONET AOD agreement at Maritime sites

432 between Versions 12 and 22 (Figure 2) is traced primarily to these calibration corrections. The

433 gap that appears in the Row 2 plots of Figure 3 is comparable in magnitude to the remaining high
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434 MISR AOD bias relative to AERONET that shows up at low AOD in the Row 3 difference plots

435	 of this figure, and could account statistically for much or all of it.

436

437 There are relatively few coincident, over-water MISR-AERONET retrievals in our data set, due

438 to the small number of AERONET island sites, frequent cloud cover over open ocean, and silt or

439 pollution in surface waters along many coasts that makes them unsuitable for dark water

440 retrievals. However, over ocean, scene conditions are typically more uniform than over land, so

441	 it is easier to identify small artifacts in the retrieved values. In the much larger coincident MISR-

442 MODIS over-ocean data set used by Kahn et al. [2009, Figure 5], MISR V22 AOD values,

443 especially below about 0.25, show AOD quantization noise in approximately 0.025 increments,

444 in addition to the gap near zero AOD. These low-AOD features are artifacts of the MISR V22

445 retrieval algorithm, which interpolates AOD values from a grid with 0.025 spacing.

446

447 Near coasts, where pollution, runoff, or ocean biological activity can at times significantly

448 increase surface water reflectivity, MISR AOD can be skewed high, because the MISR over-

449 water algorithm assumes the ocean surface is dark in the red and NIR spectral bands [e.g.,

450 Section 3.1 of Kahn et al., 2007]. Figure 4 takes a closer look at MISR-AERONET coincidences

451	 over water, focusing exclusively on retrievals done with the MISR over-water algorithm, and

452 including AOD observations coincident with the AERONET Marine Aerosol Network (MAN)

453	 [Smirnov et al., 2009] as well as island stations. The vast majority of the 282 island + 61 MAN

454 stations show very low AOD. They fall within 0.05 of the red center line, offset by +0.025, as

455	 expected based on the earlier analysis, and scatter uniformly about this line.

456

457 The outliers in Figure 4 include twelve scenes dominated by broken cloud or dust plumes,

458 identified based on visual inspection of the image data, and marked with plus symbols; in these

459 cases, cloud contamination or scene variability are likely factors contributing to the observed

460 discrepancies. Data from two AERONET stations in the shallow, polluted waters of the Arabian

461 Gulf not included in the general MISR-AERONET coincidence data set of this paper (Table 1),

462 are highlighted with orange exes. For this population of 63 points, the MISR values tend to be

463 skewed high relative to AERONET, as well as to the +0.025 line. Most cases unaffected by

464 surface pollution or scene variability, for which AERONET AOD is greater than about 0.5, fall

465 below the zero difference line, as observed in the over-land categories, but sampling is too poor

466 to draw strong conclusions. MISR AOD behavior in coastal regions is discussed further in

467	 Section 3.4 below.
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468

469 3.2. AOD Performance at Biomass Burning Sites

470

471 Focusing specifically on the Biomass Burning category, the MISR mean AOD is well within the

472 envelopes described above, with 76% of cases falling within 0.05 or 20% AOD of the near-

473 coincident AERONET values, and 55% within 0.03 or 10% AOD (Figure 2 and Table 5).

474 These statistics cover all months of the year, whereas for most Biomass Burning sites, actual

475 burning occurs only during a specific season, so the plots include both periods when small-

476 medium, spherical, smoke particles dominate the aerosol load, and times when background

477	 particles prevail.

478

479 Seasonal information is given by the colors in Figure 3; summer and autumn burning season

480 events occurring in much of the northern hemisphere appear in green and orange, respectively.

481 Where deviations occur, especially for AOD > 0.2, the MISR value tends to be skewed low

482 relative to AERONET (lower left panel of Figure 3). The same pattern was observed at biomass

483 burning sites in Paper 1, as well as for specific biomass burning events by Chen et al. [2008],

484 and for pollution aerosols in East Asia and at the eastern end of the Indo-Gangetic plain [Figure

485 6 of Kahn et al., 2009]. The AOD underestimation was traced in those studies to a lack of

486 mixtures containing spherical particles having sufficiently low SSA in the MISR Standard

487 algorithm. This interpretation is supported by comparisons between MISR and AERONET-

488 retrieved SSA discussed in Section 4.3 below; if aerosol SSA adopted by the MISR algorithm is

489 too high, fewer particles are required to produce the scattered-light signal observed, and the

490 retrieved AOD will be skewed low. In nearly two-thirds of the 68 outliers where the MISR AOD

491 is less than 60% of the AERONET value, dark particles, either biomass burning or urban

492 pollution, are expected. For a few of these events, for example, at Arica, Yulin, and Ispra, the

493 AERONET-retrieved SSA is both reliable (i.e., the AERONET 440 nm AOD > 0.4) and

494 substantially lower than the SSA obtained from the corresponding MISR retrieval. And for

495 many others, the scene is hazy and the surrounding MISR retrieval regions produce higher AOD,

496 conditions typical of smoke and urban pollution plumes.

497

498 As noted in the publications cited above, the MISR V22 algorithm climatology includes only one

499 size of spherical particles having SSA other than unity (Table 2), and the algorithm is forced to

500 select among the available choices for particle size and/or SSA. However, there are events where
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501 the MISR-retrieved AOD is substantially lower than the corresponding AERONET value and the

502 actual particle SSA is at or very near unity, especially for non-biomass-burning cases where

503 AOD>~0.5 (Figure 3, bottom row of plots); such situations, where SSA is not a leading factor in

504 AOD underestimation, are discussed in the next section.

505

506 3.3. AOD Performance at Dusty, Continental, Urban and Hybrid (smoke + dust) Sites

507

508 Statistical AOD comparisons with AERONET at Dusty sites (Figure 2 and Table 5) yield results

509 similar to those of previous studies [ Martonchik et al., 2004; Kahn et al. 2005; Kalashnikova and

510 Kahn, 2006]. AOD discrepancies with ground truth are somewhat larger over bright desert

511	 surfaces than for other site categories, but the patterns of overall agreement, some over-

512 estimation for very low AOD and under-estimation at high AOD, as shown in Figure 3, parallel

513 those for the Biomass Burning sites discussed above. As the details of AOD retrieval success

514 depend in part on the aerosol optical properties included in the algorithm, some limitations in the

515 V22 component and mixture assumptions that can affect AOD results, such as those for dusty

516	 situations, are discussed further in Section 4 below.

517

518 For Continental sites, Figure 2 and Table 5 show large differences from site to site in the level of

519 AOD agreement between MISR and AERONET. This reflects the diversity of conditions in the

520 Continental grouping; the sites cover an enormous range of surface fractional vegetation cover,

521	 and locations where different mixtures of spherical and non-spherical aerosols dominate. From

522 Figure 3, there are relatively few Continental cases for which mid-visible AOD exceeds about

523 0.6, because these sites tend to be away from sources that produce concentrated aerosol plumes.

524 Again the patterns of overall AOD agreement, over-estimation for very low AOD and under-

525 estimation for AOD about 0.4 and higher (Figure 3, Row 3), parallel those for other categories.

526 However, unlike the smoke particles discussed in Section 3.2, Continental aerosols often have

527 SSA at or near unity, so at least one factor in addition to SSA must contribute to the observed

528 under-estimation at high AOD.

529

530 As discussed in Chen et al. [2008], at higher AOD, there is less signal from the surface, and

531	 under such circumstances, the lack of surface information creates ambiguity that can result in the

532 algorithm assigning too much of the TOA radiance to the surface (i.e., a higher surface albedo),

533 thereby underestimating AOD. But in principle, the surface reflectance adopted by the algorithm

534 should matter less as AOD increases, and the algorithm might partition the radiance in various
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535 ways when there is less information about the surface. However, variations in the AOD itself

536 can produce scene variability that could be interpreted by the MISR over-land algorithm as

537 coming from the surface, leading to errors in the retrieved AOD in some situations.

538

539 AOD for the Continental category overall varies much less systematically with season than for

540 the Biomass Burning and Dusty categories, due in part to greater site-to-site variability of aerosol

541	 source types for Continental cases, as well as the inherently seasonal nature of dust storm and

542	 fire occurrence. This seasonal behavior is not shown explicitly in the plots, but it is suggested by

543 the degree to which the seasonal color-coding is more stratified for the Dusty and Biomass

544 Burning categories in Figure 3 than for Continental cases.

545

546 MISR-AERONET AOD agreement for Urban sites in Figure 2 is similar to that for the

547 Continental category, but the aerosol is more spatially localized. This favors MISR Central

548 retrieval regions, compared to MISR Surrounding regions, as discussed at the beginning of

549 Section 3; it also leads to more frequent mid-visible AOD values exceeding 0.6, as shown in

550 Figure 3.

551

552 MISR AOD retrieval performance for the Hybrid aerosol air mass category was identified as

553 problematic in earlier comparisons between MISR and AERONET [Paper 1] and between MISR

554 and MODIS, especially in sub-Saharan Africa, in southern Africa, and near Mexico City during

555	 certain seasons [Kahn et al., 2009]. Detailed analysis of individual cases by Chen et al. [2008]

556 showed that seasonal mixing of spherical, absorbing smoke and non-spherical dust is common in

557 western Africa from December through March. In Figure 2 of the current study, the MISR AOD

558 retrievals in the Hybrid category again show the poorest statistical agreement with AERONET

559 among the categories identified here. Taken together, these results reinforce the need to add

560 mixtures of non-spherical dust with spherical, absorbing smoke particle analogs to the MISR

561	 Standard retrieval climatology. Returning to Figure 3, the qualitative trends are similar to those

562 observed for the other categories: where outliers occur, the MISR V22 product tends to

563 overestimate low-AOD values and underestimate high-AOD values.

564

565 3.4. Global Distribution of AOD Outliers

566

567 On a global basis, AERONET site distribution does not provide an adequate statistical

568 assessment of AOD outlier geographical patterns; however, comparisons between coincident
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569 MISR and MODIS/Terra AOD retrievals offer some useful insights in this regard [e.g., Kahn et

570 al., 2009]. Figure 5 shows the geographical distributions of points for which the MISR-MODIS

571 mid-visible AOD discrepancies exceed 0.2 over land, and 0.125 over ocean, for January and July

572 2006. These outlier subsets represent 1% and 0.6% of the total population of coincidences over

573 water for January and July 2006, respectively, and 10% and 6% for January and July 2006 over

574 land. Below we associate observed outlier patterns with algorithmic factors that are likely to be

575 involved. But aside from algorithm issues, actual differences in MISR-MODIS sampling,

576 convolved with AOD variability at kilometer scales, contribute to the outlier populations as well,

577	 especially in high-AOD situations [e.g. Kahn et al., 2007a], and even in regions of outlier

578	 concentration, only a small fraction of coincident retrievals show large discrepancies.

579

580 Regionally, the outliers tend to cluster in places where known issues occur, as discussed in Kahn

581	 et al. [2009]. Over land, the Sahel region of Africa stands out, as smoke and dust particles are

582 mixed in the atmospheric column. MODIS aerosol optical models applied in this season and

583	 region include mixtures of smoke and dust particles [Remer et al., 2005; Levy et al., 2007],

584 whereas the V22 MISR aerosol models do not. Generally, MISR AOD exceeds MODIS in these

585 cases, as is indicated by the difference-plot insets of Figures 5a and 5b. For eastern China, and

586 for northern India in January, low-SSA pollution particles are common. The MISR AOD

587 underestimation at high AOD noted in Section 3.2 and 3.3 above, and the lack of retrieved low-

588 SSA spherical particles in the MISR V22 product, combine to produce some of the largest

589 outliers in the over-land data in these regions, with MISR AOD less than MODIS. In July,

590 wildfire smoke in Siberia and parts of the western US produces similar effects, whereas smoke is

591 sometimes mixed with dust over central Africa, so MISR-MODIS difference outliers of either

592 sign occur in this region, though at high AOD, MISR underestimation tends to dominate.

593 MODIS AOD overestimation over the bright land surfaces produces outliers for Patagonia in

594 January, and this effect along with MISR AOD underestimation at high AOD generates scattered

595 outliers in the western and central US and Europe, especially in July.

596

597 Over water, cloudy regions in the seasonal storm track bands produce most of the observed AOD

598 differences; these appear preferentially in the Southern Ocean and across the northern mid-

599 latitude oceans in January, and in the southern mid-latitude oceans in July. Also in July, MISR-

600 MODIS over-water AOD differences of either sign occur where cloud and some sea-ice appear,

601 at high northern latitudes; most often, MODIS is higher than MISR. MODIS AOD also tends to

602 exceed MISR off the coast of west Africa in January, and off the central African coast in July,
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603 places where high AOD dust or smoke plumes, or smoke-dust mixtures, are common in these

604	 seasons.

605

606 There is also a concentration of outliers of either sign in some coastal regions, such as along

607 south Asia, the Red Sea, and the Arabian Gulf, especially in January. These regions correspond

608 with relatively high concentrations of dissolved organic matter in the SeaWiFS satellite ocean

609 color data (not shown). As mentioned in Section 3.1 above, the MISR and MODIS over-water

610 algorithms assume a dark ocean surface at red and longer wavelengths; Kahn et al. [2007a]

611	 describe differences in the way these algorithms treat observed radiances in such situations that

612 can account for the retrieved AOD discrepancies. Bright coastal (Case 2) water also contributes

613 to, and in places might dominate, situations where over-water MISR and/or MODIS AOD

614 retrievals are discontinuously higher than the corresponding results for nearby land.

615

616 4. Particle Microphysical Property Retrieval Assessment

617

618 Figure 6 offers a qualitative overview of MISR aerosol-air-mass-type identification, based on the

619 lowest residual mixtures retrieved for cases where AOD > 0.15. For situations where dust is

620 most likely, mixtures containing non-spherical particles are especially common (Mixtures #51-

621	 74, see Table 3). Where biomass burning smoke or urban pollution aerosol is expected, the

622	 retrievals tend to pick mixtures containing spherical, absorbing particles (Mixtures #31-50). At

623	 some Maritime sites, transported dust or smoke is observed, though sampling in this category is

624 poor in the MISR-AERONET coincident data, as discussed in Section 3.1 above. Spherical

625 absorbing and non-absorbing particles, as well as non-spherical dust are all common at

626 Continental, Urban, and Hybrid sites, but absorbing particles appear less frequently at

627 Continental than at Urban and Hybrid sites, where aerosol containing black carbon from

628 incomplete combustion is more likely to be found.

629

630 Figure 7 presents a geographically oriented view of retrieved aerosol properties, in the same

631	 three broad categories highlighted in Figure 6: Spherical Non-absorbing (cyan), Spherical

632 Absorbing (magenta), and Non-spherical (yellow), from the July 2007 MISR V22 aerosol

633 product. The MISR algorithm retrieves aerosol properties from a climatology of components

634 and mixtures that is applied globally (Tables 2 and 3), rather than pre-selecting them based on

635 region or season. Many expected patterns appear, such as non-spherical dust analogs over and
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636 downwind of North African and Middle Eastern desert dust sources. Spherical, absorbing smoke

637 analogs are retrieved in tropical and boreal summertime biomass burning regions, and similar

638 particle types are found around pollution centers along the east coasts of North America and

639 China, whereas spherical, non-absorbing maritime particles are retrieved over much of the

640 Southern Hemisphere oceans.

641

642 Some artifacts appear as well, especially in remote-ocean and other low-AOD regions where

643	 sensitivity to particle properties is reduced. Non-spherical particles are retrieved at times over

644 equatorial, southern hemisphere and some boreal waters that are likely to be unscreened cirrus

645	 [Pierce et al., 2010]. Absorbing, spherical particles are frequently retrieved over northern

646 hemisphere oceans in the July map, and shift to the southern hemisphere oceans for January 2007

647 (not shown). In these regions, the range of scattering angles viewed by MISR, and hence the

648	 sensitivity to particle type, is limited in summer [Figure 2 of Kahn et al., 1997].

649

650 4.1. Angstrom Exponent (ANG)

651

652 In this section, we go beyond the broad, qualitative assessments, by comparing MISR and

653 AERONET ANG differences as a function of AERONET AOD, for Biomass Burning, Dusty,

654 and Continental sites, stratified by season (Figure 8). The difference plots provide a more

655	 sensitive representation of deviations than the scatter plots that are often used for such

656 comparisons. Smaller dots identify cases where AOD is below 0. 15, and arrows highlight some

657 of the low-AOD situations where the MISR ANG values are especially scattered, relative to

658 AERONET. As has been discussed in previous papers (e.g., Paper 1), this is expected; particle

659 microphysical property information is reduced when the AOD is below about 0.15 or 0.2,

660 depending on conditions, due to increased relative contributions from surface reflectance

661	 uncertainties, unmasked cloud, etc. However, as a consequence of the systematic air mass factor

662 sampling MISR multi-angle views provide, MISR AOD retrievals themselves tend to be robust

663 down to values of 0.05 or lower even when particle microphysical properties are poorly

664	 constrained [e.g., Kahn et al., 1998; Paper 1].

665

666 Most of the biomass burning cases in this dataset occur during northern summer and autumn. As

667 Panels c and d in Figure 8 illustrate, the MISR-retrieved ANG values scatter fairly uniformly

668 around the zero-difference line during these seasons; there is good statistical agreement between

669 MISR and AERONET ANG for biomass burning situations when AOD > 0.15. However, as
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670 noted above, the range of spherical particle size and SSA combinations in the V22 retrieval

671	 algorithm is limited, so a richer set of components and mixtures would reduce the observed

672 scatter. This has been demonstrated with the MISR Research Aerosol retrieval algorithm for

673	 individual cases [e.g., Chen et al., 2008], but for implementation in the Standard algorithm,

674 accommodation must also be made for situations where particle property information in the

675 observations is limited (see Section 5). Figure 8e displays the MISR-AERONET ANG

676 difference as a function of AERONET ANG for Biomass Burning sites. Although the vast

677 majority of points in this panel are over-plotted close to the zero-ANG-difference line (easier to

678 see from panels a-d), the outliers show a tendency for MISR to overestimate ANG when the

679 AERONET ground-truth ANG value is small, and conversely, to underestimate ANG when it is

680 large. That is, the dynamic range of MISR-retrieved ANG is less than that of AERONET,

681	 further indicating that a richer set of spherical components and mixtures could improve the

682	 results.

683

684 Dust events in this data set are most common during northern spring and summer. Panels g and

685 h of Figure 8 show that the MISR V22 algorithm systematically overestimates ANG at sites

686 frequently dominated by desert dust when AOD > 0. 15, indicating that the particles retrieved by

687 MISR under dusty conditions tend to be smaller than those observed by AERONET. Figure 8j

688 illustrates more specifically that when AERONET ANG < 1 (indicating that medium-to-large

689 particles dominate), MISR retrieves smaller particles (larger ANG). Several factors likely

690 contribute to this trend. The MISR algorithm contains only two non-spherical components, one

691 medium and one coarse-mode aerosol analog (Table 2); the coarse-mode optical model,

692 generated from a distribution of ellipsoids, does not provide a completely satisfactory match to

693 thick, near-source dust plumes observed by MISR, even when combined with medium-mode

694 dust [Kalashnikova and Kahn, 2006]. Developing more generally applicable coarse-mode dust

695	 optical models is the subject of current research [e.g., Bi et al., 2010]. In addition, due to a lack

696 of spectral channels longer than 866 nm, MISR is insensitive to the optical properties of coarse-

697 mode particles larger than about 2.5 m diameter, whereas desert dust aerosol distributions often

698 contain a significant fraction of particles up to about 10 m in size, especially near sources.

699

700 According to Figure 8, there is also a tendency for the MISR retrievals to overestimate ANG at

701 Continental sites, and the ANG dynamic range is again smaller than that obtained by AERONET

702 (Figure 8o), further indicating the need for a richer set of components and mixtures in the
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703	 retrieval climatology. In particular, the effective radius of the “large spherical” particle among

704 the V22 aerosol components is 2.80 m (Particle #6 in Table 2), and the next-smaller spherical

705	 particles are 0.26 and 0.12 m in size (Particles #3 and #2, respectively). Absorbing spherical

706 particles are available only at 0.12 m effective radius in V22 (Particles #8 and #14). Given the

707 limited mixtures available in V22, for situations where the retrieved ANG is too high, the MISR

708 algorithm often picks a combination of unduly small particles, along with enough very large

709 particles to match the observed radiances as much as possible.

710

711	 Field data indicate that particles of sizes intermediate between Particles #3 and #6 are significant

712 in some regions. The AERONET climatology is dominated by a “Fine Mode” component having

713	 very nearly the size distribution of Particle #2 (Table 2) for all aerosol type categories, and a

714 “Coarse Mode” component that is much more variable, but with a mid-range close to MISR

715 Particle #6 [Dubovik et al., 2002; to compare this reference with Table 2 here, the AERONET

716 particle size parameters were converted from volume-weighted to number-weighted log-normal

717 distribution values]. However, even though the AERONET data are often interpreted in terms of

718 bi-modal distributions by fitting their 22 size bins with two log-normal distributions, an

719 additional medium mode appears in the underlying retrievals in some cases, for example at Cape

720 Verde, the Maldives, and possibly Bahrain in Dubovik et al. [2002, Figure 1] based on

721 AERONET Version 1 processing, and at Ilorin in west Africa [Eck et al., 2010] with the more

722 robust Version 2 processing. More generally, spherical particles having sizes between the 0.26

723 and 2.80 m V22 MISR components can form as pollution and biomass burning particles age,

724 for example, downwind of the east coasts of North America and China. These regions are not

725 well sampled by AERONET stations, but contribute significantly to satellite data records having

726 global coverage.

727

728 4.2. Constraints on Particle Size as a Categorical Variable

729

730	 Spherical-particle sensitivity studies using a fine grid of spherical particle sizes and SSA values

731	 indicate that in general, MISR can separate three-to-five size groupings under good retrieval

732 conditions, i.e., when mid-visible AOD >~ 0.15 or 0.2, with minimal cloud, surface snow and

733 ice, or whitecap contamination, and for relatively uniform aerosol loading on 1 to 10 km scales

734	 [Chen et al., 2008; Kahn et al., 1998]. As such, a size range intermediate between the “coarse”

735 and “fine” modes, discussed in Section 4.1 above, can be distinguished from the MISR data. The
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736	 sensitivity studies also showed that particle size, as retrieved by MISR, should be treated as a

737 categorical rather than a continuous variable, providing an aerosol type classification amounting

738 to “small,” “medium,” and “large.”

739

740 This classification is reflected in the MISR aerosol product variable Regional Best-Estimate

741	 Spectral Optical Depth Fraction (RegBestEstimateSpectralOptDepthFraction), which reports the

742 fraction of total column AOD assigned to particles having radius <0.35 m (small), 0.35 to 0.70

743	 m (medium), and > 0.70 m (large). The classification is based upon the sensitivity studies

744 cited above, and on the Version 12 algorithm, which included intermediate-sized particles having

745	 effective radius 0.57 and 1.28 m [Paper 1].

746

747 To assess MISR-retrieved particle size as a categorical variable, we applied k-means cluster

748 analysis to the MISR vs. AERONET ANG values. The AERONET ANG values are obtained

749 from direct-sun measurements and provide a reliable and well-sampled ground-truth quantity

750 (see Section 2.1 above), whereas AERONET size distributions are derived with additional

751 assumptions. We subsequently interpret the comparative ANG values in terms of the MISR-

752 retrieved mixtures and components.

753

754 The clustering approach determines bins or “clusters” directly from the data, rather than

755 imposing them arbitrarily, as must be done, e.g., for 2-d histograms. The algorithm used begins

756 with k “seeds,” constituting an initial guess at the number and centroid values of the clusters.

757 Using a distance metric, the algorithm identifies all points that are closer to a given seed than any

758	 other, and calculates the centroid of all points associated with each seed. These centroids are

759	 then taken as the new seeds, and the process is iterated until convergence [e.g., Press et al.,

760 2007]. This approach allows us to determine the number and range of ANG classes in the data,

761	 and to evaluate their degree of separation. The number of categories that the data can distinguish

762 is obtained as the highest value of k that produces separable clusters arrayed near the 1:1 line in a

763 plot of retrieved vs. validation ANG data. We used simple Euclidean distance as our metric, and

764 performed the cluster analysis for k values of 2, 3, 4, and 5 on the coincident MISR-AERONET

765 ANG pairs for each of the six aerosol type categories. Several initial seed locations were tested

766	 in each case, to assure the robustness of the results.

767
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768 The plots in Row 1 of Figure 9 show the results for k=3, i.e., the algorithm was initiated with

769 three cluster seeds, which are marked as open black circles. The centroids of the final clusters,

770	 shown as solid black circles in these plots, are systematic, and fall roughly along the 1:1 line for

771 the Maritime category. For the Urban, Continental, Hybrid, and Biomass Burning classes, two

772 of the three point clouds are less separable when projected along the vertical (MISR ANG) axis.

773	 The clusters are more systematic for k=2, and become increasingly scattered when k=4 and 5

774 (not shown). To help interpret these results in terms of what they say about the particle types

775 available in the V22 algorithm, Figure 9 also shows, in Row 2, scatter plots of AOD (similar

776 format to Figure 3), and in Rows 3-5, histograms of all successful mixtures in the retrievals

777	 (similar format to Figure 6) for each of the three clusters, respectively. These plots are color-

778	 coded by the clusters identified in the Row 1 plots. As expected, the large particle clusters

779 (green; small ANG) are associated with systematically higher AOD for the Dusty and Hybrid

780 categories shown in Row 2, whereas the small and medium particle clusters (orange and purple)

781 tend to have higher AOD for sites often dominated by Biomass Burning smoke; the situation for

782 Continental and Urban sites is more mixed.

783

784 The Figure 9 data confirm, and add specificity to, many expected patterns in particle size, and

785 more generally, in particle type (e.g., Figure 7). In Figure 9 Row 3, the preponderance of small,

786 absorbing smoke particles stands out (Mixtures #31-36 and 41-45; Table 3) in the Biomass

787 Burning and Hybrid categories, and their occurrence at times in the other categories is also

788 evident. Spherical non-absorbing particles are common in all categories, especially Mixtures

789 #11-18, containing the small-medium particle (0.12 m effective radius) that is also the fine-

790 mode size distribution preferred by AERONET; it is mixed with up to 60% mid-visible AOD of

791 the very large spherical component (Particle #6), the common coarse-mode component of the

792 AERONET climatology. In the Dusty and Hybrid categories, mixtures containing fine-mode

793	 spherical-absorbing particles along with significant fractions of the very large, spherical Particle

794 #6 are also common.

795

796 Considering next the low-ANG, larger-effective-particle-size clusters represented in Rows 4 and

797 5, the peaks progressively broaden in all categories except Dusty, moving toward greater

798 admixtures of the very large, spherical particles within each 10-mixture grouping of the MISR

799 algorithm climatology (Table 3), as would be expected. Medium dust is more common, and

800 coarse dust (Mixtures #63-74), which is nearly absent from the Row 3 clusters, makes significant

801	 contributions to most categories. Note that for the Continental and Urban categories, the
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802 respective mixture spectra in Rows 4 and 5 are very similar for all mixture groupings, and for

803 Biomass Burning, the main difference is a shift between small, spherical particles having

804 different SSA values. This demonstrates why the purple and green (medium and small ANG)

805 clusters for these categories in Row 1 have poorly resolved ANG values in the MISR data,

806 despite having significantly different values in the AERONET data. Field-measured size

807 distributions and previous MISR sensitivity studies suggest that adding to the mixtures in Table

808 3 components intermediate in size between the small-medium spherical Particle #3 and the very

809 large spherical Particle #6, should move the centroids of the green clusters toward smaller ANG,

810 achieving closer agreement with the AERONET ANG ground-truth. The same would also

811	 apply to the Biomass Burning and Hybrid categories, except that here, absorbing particles larger

812 than 0.12 m effective radius would be needed [ Chen et al., 2008].

813

814 The situation with the Dusty category is more complex. The MISR ANG corresponding to the

815 highest AERONET ANG values are too small; there are not adequate mixtures of dust with a

816 medium-mode spherical particle, so mixtures of medium dust with the large spherical Particle

817 #6, and mixtures of small absorbing (especially Row 4) and non-absorbing (especially Row 5)

818	 spherical particles with Particle #6 are often selected. In part, Particle #6 is substituting for dust,

819 as there are few alternative mixture options in the V22 climatology, and in addition, the current

820 coarse-mode dust optical model does not match the MISR data well [ Kalashnikova and Kahn,

821	 2006].

822

823 In summary, AERONET provides a powerful tool for validating ANG. When sufficient

824 component and mixture options are available, the MISR algorithm distinguishes at least three

825 groupings in ANG, but detailed analysis also highlights specific limitations in the current

826 component and mixture tables, and in particular, a lack of medium-mode particles.

827

828 4.3. Particle Single-scattering Albedo (SSA) and Particle Sphericity

829

830 For MISR, particle SSA and shape are also categorical variables; sensitivity analyses and early

831	 validation studies indicate two-to-four groupings in SSA, and at least spherical vs. non-spherical

832 shape, can be distinguished under good retrieval conditions (as defined in Section 4.2) [ Chen et

833	 al., 2008; Kalashnikova and Kahn, 2006; Kahn et al., 1997; 1998].

834
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835 We attempted to validate MISR-retrieved SSA with AERONET, but there were too few

836 coincident events meeting the AERONET high AOD and low solar elevation angle acceptance

837	 criteria to obtain a statistical sampling of SSA retrievals. The cases obtained are not

838 representative of average conditions, though AERONET SSA values in general provide the most

839	 extensive suborbital coverage available.

840

841 Qualitatively, MISR tends to obtain SSA at or near unity, especially when the AOD is too low

842 for MISR to produce good SSA constraints. Globally, sea salt and sulfate aerosols are non-

843 absorbing, and in addition, aged smoke and some pollution particles are only weakly absorbing,

844 so this is a reasonable value to adopt in these circumstances. As discussed earlier, MISR does

845 tend to retrieve absorbing particles preferentially at Biomass Burning and Hybrid sites in seasons

846 when smoke is expected (Figures 6 and 7).

847

848 Even with the limited particle component and mixture options available in V22, MISR-retrieved

849 SSA helps distinguishing aerosol air mass types, especially when combined with retrieved

850 particle size and/or shape information, as demonstrated statistically at the beginning of Section 4,

851 and in available field campaign events where coincident suborbital measurements of the key

852 validation quantities were made [e.g., Figure 6 of Kahn et al., 2008].

853

854 Validating MISR-retrieved particle shape is also challenging, again because ground truth is

855 difficult to obtain. Although information about particle sphericity can be derived from

856 AERONET sky-scan data [Dubovik et al., 2006], non-spherical AOD fraction is not yet provided

857 as a validated field in the AERONET products. Individual cases where other coincident aircraft

858 or surface field observations were obtained provide some additional tests of the retrieval results

859	 [e.g., Kalashnikova and Kahn, 2006; Kahn et al., 2008; Schladits et al., 2008], and the evolution

860 of the MISR-retrieved fraction AOD spherical for dust plumes during transport over ocean

861	 follows expected patterns [Kalashnikova and Kahn, 2008]. MISR-retrieved particle shape also

862	 helps distinguish dust from spherical particles for air quality applications [Liu et al., 2007a; b],

863	 contributes to mapping changes in the seasonal distribution of anthropogenic vs. natural aerosols

864 over India [Dey and Di Girolamo, 2010], and discriminates between thin cirrus, spherical

865	 particles, and to some extent dust, over ocean [ Pierce et al., 2010]. In each of these studies,

866 further validation of the MISR-retrieved particle properties specific to the application was

867 performed, offering qualitative support for the MISR particle sphericity retrieval results, as do

868 Figures 6 and 7 of the current paper, discussed above.
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869

870

871 5. Summary of Recommendations

872

873	 The data set developed and analyzed in this paper adds to earlier product validation statistical

874 comparisons having smaller samplings, and to field campaign and other case studies. The effort

875 has allowed us to take a detailed and critical look at the MISR V22 aerosol products, with the

876 aim of assessing strengths and identifying specific areas where further improvements are

877 possible. In this section, we summarize the issues identified, and suggest ways of addressing

878 some of them in future aerosol product versions. Bear in mind that most of these issues affect

879 small fractions of the data set and are confined to specific retrieval situations, geographic

880 regions, and in some cases seasons. Overall AOD performance, in global context, is summarized

881	 in the Conclusions section, which follows.

882

883 • There is a gap in MISR-retrieved mid-visible AOD values below about 0.02, as well as

884 quantization noise at 0.025 AOD intervals reported previously from MISR-MODIS AOD

885 comparisons. The gap tends to skew the retrieved AOD to higher values, and is especially

886 significant statistically for very low-AOD situations that dominate the Maritime category. This

887 is also likely to contribute to adjacent land-ocean AOD differences, which tend to show higher

888 AOD over ocean in some regions. The numerical scheme in future versions of the algorithm will

889	 correct these issues.

890

891	 • There is a lack of medium spherical particles in the V22 climatology, having effective radii

892 between 0.26 and 2.8 m. This tends to skew the retrieved ANG to larger values (smaller

893 particles) in some situations. Based on field observations, the addition of mixtures containing

894 spherical non-absorbing and also weakly absorbing (mid-visible SSA ~ 0.94) particles having

895 effective radius around 0.57 m, and also a spherical non-absorbing component at about 1.25

896	 m, should address this issue at the level-of-detail appropriate to typical MISR sensitivity.

897

898 • There is a lack of spherical, absorbing particles in the V22 climatology at sizes other than 0.12

899	 m effective radius. This tends to skew the retrieved AOD to lower values when absorbing

900	 spherical particles are present, as the algorithm sometimes selects spherical non-absorbing

901 particles closer to the AERONET-observed size range. The issue is most common for the
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902 Biomass Burning and Urban categories. Based on field measurements, the addition of spherical

903 absorbing and weakly absorbing particles (mid-visible SSA around 0.84 and 0.94, respectively)

904 having effective radius around 0.06 m, and weakly absorbing particles having effective radius

905	 around 0.26 m, should address this issue [e.g., Chen et al., 2008; Dubovik et al., 2002].

906 Adjusting the SSA of the spherical absorbing and weakly absorbing 0.12 m particles in the

907 current algorithm (Table 2) to these values could also improve the situation. The spectral

908 dependence of SSA represents an additional dimension to be considered, as Urban Pollution

909 particles have generally shallower spectral slope than Biomass Burning particles [e.g., Bond and

910	 Bergstrom, 2006; Chen et al., 2008; Reid et al., 2005].

911

912 • For AERONET AOD > ~ 0. 4, MISR-retrieved AOD is frequently underestimated over land

913	 (Figure 3), and possibly also over water, though sampling over dark, cloud-free water is too

914 small to draw a strong conclusion (Figure 4). Several factors appear to be involved. (1) In

915 situations where the atmospheric particles are absorbing, MISR tends to adopt an SSA at or near

916 unity due to a lack of absorbing, spherical particles in the V22 climatology. This skews the

917 retrieved AOD low [Kahn et al., 2005a; 2007; Chen et al., 2008]. (2) Most high-AOD

918 underestimation cases occur when the actual particle SSA is at or near unity, so MISR SSA

919 overestimation is not a factor. As the MISR over-land algorithm assumes that TOA reflectance

920 variability on one-to-ten-kilometer scales comes entirely from the surface, AOD variability on

921 these scales could be assigned to the surface, causing an AOD underestimation. Unlike surface

922 reflectance variability, the contributions of aerosol variations to the scene tend to increase with

923	 increasing view angle. This could be used to identify and flag such situations. Similarly, testing

924 whether the MISR-retrieved surface angular reflection factors differ significantly from location-

925 specific values in a climatology derived from low-AOD MISR observations could be used for

926 this purpose. (3) Other algorithmic factors are also under investigation by the MISR team.

927

928 • There is a lack of mixtures containing both spherical, absorbing smoke analogs and non-

929 spherical dust in the V22 climatology. This results in poor AOD performance for the Hybrid

930 category. Theoretical sensitivity analysis suggest that two-component mixtures in 10 or 20%

931 AOD increments would capture the information content of the MISR data under good retrieval

932	 conditions [Kahn et al., 2001; Chen et al., 2008].

933
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934 • In the V22 algorithm, ANG in the Dusty category tends to be over-estimated. As discussed by

935 Kalashnikova and Kahn [2006], an upgraded coarse-mode dust optical analog should improve

936 ANG, and to some extent AOD retrievals, when dust dominates the aerosol air mass, especially

937 near dust source regions. The inclusion of medium-mode spherical particles in the algorithm

938 climatology seems likely to help reduce this discrepancy too, as discussed in Section 4 above.

939

940 • In situations where the range of scattering angles observed by MISR is diminished by solar

941 geometry and sun-glint over water, and/or when mid-visible AOD is below about 0.15 or 0.2,

942 particle property information is diminished, and absorbing spherical particles are sometimes

943 retrieved where none are expected. Flagging cases having low AOD or limited scattering angle

944 coverage, or more generally, when many mixtures pass the algorithm acceptance criteria, would

945	 alert users to the possibility that particle property information in the observations is limited.

946 Similarly, coastal water sites, where seasonally high runoff or ocean biological activity can

947 increase ocean surface reflectance, and other regions and seasons where algorithm assumptions

948 tend to be violated (Figure 5), can be flagged as a warning that retrieved AOD might be aliased.

949

950

951 6. Conclusions

952

953 We have assessed the MISR V22 AOD and ANG products with coincident AERONET sun

954 photometer observations from around the globe, and have examined qualitatively MISR-

955 retrieved SSA and fraction AOD spherical. Comparisons were stratified by season and by

956 location; AERONET sites having good measurement records over the MISR observing period

957 were partitioned into six categories, based on expected aerosol air mass type. One challenge

958 facing the validation effort, and the interpretation of MISR (and other) remote-sensing products,

959 is that retrieval sensitivity varies considerably depending upon environmental conditions, which

960 include AOD, surface brightness, scene heterogeneity, range of scattering angles observed, and

961	 actual aerosol components in the column. The variation in sensitivity to particle properties has

962 implications for the retrieval algorithm itself; the range of aerosol components and mixtures

963	 selected for the retrieval climatology represents a compromise between conciseness, to limit

964 redundancy and reduce algorithm run time, and completeness, to capture the information content

965 of the measurements under the best observing conditions.

966
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967 Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the

968 paired validation data, and about 50% to 55% meet the 0.03 or 10% AOD criterion, except in

969 the Dusty and Hybrid (smoke + dust) categories. Substantially improved agreement compared to

970 the early post-launch assessment [ Kahn et al., 2005a] was achieved for the Maritime and

971	 Biomass Burning categories (Figure 2), mostly due to calibration adjustments and the addition of

972 spherical absorbing aerosol components, respectively, made after the 2005 assessment.

973

974 Scene heterogeneity makes an important contribution to MISR-AERONET AOD discrepancies.

975	 Sampling differences rather than retrieval error contribute to over 80% of significant outliers in

976 the paired MISR-AERONET data set (3.7% of all coincident cases). For the Maritime,

977 Continental, and Dusty categories, averaging MISR retrievals covering a ~50 km spatial scale

978 provides systematically better agreement with the AERONET ±1 hour time-series than

979 comparing with only the central 17.6 km MISR retrieval region containing the AERONET site.

980 For the Urban category, persistent small-spatial-scale variability produces a statistical advantage

981	 when only the central MISR retrieval region is considered. As expected, the largest seasonal

982 variability was found at most sites designated Biomass Burning or Dusty.

983

984 AERONET also provides powerful validation for ANG from direct-sun measurements at

985 multiple wavelengths. When sufficient component and mixture options are available, the MISR

986 algorithm distinguishes three-to-five groupings in ANG, based on sensitivity analysis and case

987 studies for which we have validation data. The MISR V22 product distinguishes two or three size

988 bins, depending on aerosol type, as well as spherical vs. non-spherical particles, and in some

989 circumstances, about two bins in SSA. But unlike the situation for AOD and ANG, there is too

990 little MISR-AERONET coincident validation data for SSA and particle shape to perform formal

991	 statistical assessments. To some extent, expected trends in particle absorption properties and

992 non-spherical AOD fraction are observed, and qualitative assessment is supplemented by

993 previously published case studies for which near-coincident field observations were obtained

994	 [e.g., Kahn et al., 2004; 2008; Redemann et al., 2005; Reidmiller et al., 2006; Schmid et al.,

995 2003]. Based on the validation study results, specific algorithm upgrades are proposed, and are

996 summarized in Section 5 above; the MISR team is addressing each of them, such as

997 modifications to the component particle optical models and mixtures to maximize particle type

998	 discrimination.

999
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1000 This paper provides formal validation of the MISR V22 aerosol product. As with any remote

1001 sensing measurements, there are strengths and limitations. Here we have identified the key

1002 issues and traced them to specific retrieval conditions, information essential for applying and

1003 interpreting the data appropriately. Care must be taken with MISR AOD values at the extremes,

1004 when mid-visible AOD is likely to be > 0.5 and when it is expected to be very small (< 0.025).

1005 The impact on retrieved AOD of variability, especially within aerosol plumes, of bright water

1006	 surfaces, and broken cloud situations, should also be considered. Sensitivity to particle

1007 microphysical properties is diminished for mid-visible AOD below about 0.15 or 0.2.

1008

1009 Taking these caveats into account, MISR-retrieved AOD over water, land, and bright surfaces is

1010 used to study zonal mean aerosol short-wave forcing [Kim and Ramanathan, 2008; Kishcha et

1011 al., 2009] as well as regional long-wave forcing [ Zhang and Christopher, 2003]. The MISR

1012 aerosol product has also been used to monitor dust plume evolution [ Kalashnikova and Kahn,

1013	 2008] and air quality [Liu et al., 2007a;b; van Donkelaar et al., 2010], to map aerosol air mass

1014 type evolution [Dey and Di Girolamo, 2010], and to validate aerosol transport model AOD

1015	 simulations. [ Yu et al., 2006; Kinne et al., 2006]. Additional information helpful for applying the

1016 MISR aerosol product can be found in Kahn et al. [2009] and the MISR Data Quality Statements

1017	 available online [http://eosweb.larc.nasa.gov/PRODOCS/misr/table_misr.html].

1018
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1307

1308 Figure 1. Geographical distribution of the 81 sites used in this study. Sites are color-coded

1309 according to expected aerosol air mass type: Biomass Burning – brown, Continental – green,

1310 Dusty – orange, Maritime – blue, Urban – gray, and Hybrid (smoke + dust) – red.

1311

1312 Figure 2. MISR-AERONET mean AOD difference (%) for 5,156 coincidences, stratified

1313 according to the aerosol air mass type class that frequently dominates the site. Comparisons

1314 between MISR central retrieval region AOD and near-coincident AERONET values are shown

1315 along the horizontal axis. The vertical axis gives the difference between MISR AOD, assessed

1316 as the average of the central plus all available of the eight surrounding regions, and the

1317 corresponding value assessed using the MISR central region only. Filled diamonds represent the

1318 class-average percent meeting the [0.05 or 20% AOD] criterion. Filled circles plot the class-

1319 average percent meeting the more stringent [0.03 or 10% AOD] criterion. Open symbols show

1320 corresponding class-average results for the MISR Version 12 product [from Kahn et al., 2005].

1321	 Colors are used to distinguish aerosol type classes, as indicated in the legend. Lines connect the

1322	 symbols for clarity. Numerical values for the central retrieval region statistics, along with the

1323	 number of counts per site and per class and site-specific statistics, are given in Table 5. From the

1324 MISR-central statistics, 193 outliers were removed, but not from the central + surroundings

1325	 statistics.

1326
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1327 Figure 3. (Top row) Mid-visible (558 nm) MISR vs. AERONET coincident AOD scatter plots,

1328 stratified based on six broad aerosol type categories expected to dominate, at least during some

1329 seasons, at each site. Seasonality is represented by color: DJF – orange; MAM – blue; JJA –

1330 green; SON – orange. (Middle row) Magnified versions of the top-row scatter plots, for AOD

1331 between 0 and 0.2, which reduces over-plotting and helps clarify seasonality. (Bottom row)

1332 [MISR – AERONET] vs. AERONET difference plots for the full set of mid-visible coincident

1333 AOD data, stratified and color-coded as above. The AERONET data have been interpolated to

1334 the MISR effective wavelength for all cases. Statistics associated with these plots are given in

1335	 Table 5.

1336

1337 Figure 4. Difference plot showing comparisons between MISR over-water algorithm mid-

1338 visible AOD retrieval results and near-coincident AERONET retrievals over Island sites (green

1339 open circles) and shipboard, hand-held sun photometer observations (blue open squares) from

1340 AERONET’s Marine Aerosol Network (MAN) [ Smirnov et al., 2009]. Green and blue plus

1341 symbols indicate scenes dominated by broken cloud or dust plumes, and AERONET sites in

1342 relatively shallow, polluted waters of the Arabian Gulf (Abu Al Bukhoosh and Sir Bu Nuair) are

1343 identified with orange exes. AERONET AOD is used for the horizontal axis, blue lines mark

1344 zero-difference and bracket the 0.05 or 20% AOD envelope, and a red line marks the +0.025

1345 MISR AOD offset discussed in Section 3.1.

1346

1347 Figure 5. MISR-MODIS outliers. Geographic distributions of coincident MISR and MODIS

1348 AOD retrieval cases where the ABS[MISR_AOD – MODIS_AOD] > 0.125 for the over-ocean

1349 plots, and > 0.2 for the over-land plots, color coded by region. (a) January 2006 over land; (b)

1350 July 2006 over land; (c) January 2006 over ocean; (d) July 2006 over ocean. The insets show

1351 difference plots of [MISR_AOD – MODIS_AOD] vs. MODIS AOD, color coded with the same

1352 scheme as the respective maps, but over-plotted, so some information is lost where the data

1353	 overlap.

1354

1355 Figure 6. MISR-retrieved aerosol types. These histograms show the number of lowest-residual

1356 occurrences of each aerosol mixture, for all events within the MISR-AERONET coincident event

1357 data set having mid-visible MISR AOD > 0.15. The data are stratified by sites where each of the

1358 six broad aerosol air mass type categories are expected, at least in some seasons. Attempts at

1359 further stratification by aerosol air mass type proved unhelpful, due to site-to-site differences in

1360	 seasonality, inter-annual variability, and limited event-by-event aerosol type information.
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1361	 Mixture definitions are given in Table 3, and the histograms are color-coded to identify mixtures

1362 containing spherical, non-absorbing particles of various sizes, those that include spherical

1363 absorbing particles, and mixtures having non-spherical dust along with spherical components.

1364 The same color scheme is used in Figure 7. Note that the vertical scales vary from panel to panel,

1365 depending on available sample size.

1366

1367 Figure 7. Global map showing the distribution of retrieved Spherical Non-absorbing, Spherical

1368 Absorbing, and Non-spherical components, for the July 2007 MISR V22 aerosol product. In

1369 each 1 ˚ 1 ˚ bin, the lowest-residual mixtures are considered. The fraction AOD of all spherical

1370 non-absorbing components in the lowest-residual mixture is multiplied by the retrieved AOD for

1371 each observation, summed for the entire month, and assigned to the cyan color. The fractions of

1372 spherical absorbing and non-spherical components are processed similarly, and assigned to

1373	 magenta and yellow, respectively. Linear, ternary mixing is used to assign the overall color to

1374 the 1 ˚ 1 ˚ bin, with pure cyan, magenta, and yellow as the three end-members. AOD-weighting

1375	 de-emphasizes the low-AOD retrievals for which the retrieved particle properties are less certain.

1376 The retrieved aerosol properties reflect many of the expected regional-scale patterns as well as

1377	 some artifacts, as discussed in the text.

1378

1379 Figure 8. [MISR-AERONET] ANG vs. AERONET AOD is shown in rows 1 through 3 for

1380 locations dominated, at least during some seasons, by: Biomass Burning (a-d), Dusty (f-i), and

1381 Continental (k-n) aerosol air mass types. The columns are distinguished by season. Column 5

1382 provides the annual aggregate of [MISR-AERONET] ANG vs. AERONET ANG for the

1383 respective categories. Smaller dots are for cases where the AERONET AOD <0.15. The zero-

1384 difference lines are indicated by dashed horizontal lines, and dashed vertical lines mark

1385 AERONET AOD = 0.15 in the panels of the first four columns. For plots in the fifth column, the

1386 MISR ANG=1 line is drawn.

1387

1388 Figure 9. Angstrom Exponent (ANG) Cluster Analysis. Row 1 presents the MISR vs.

1389 AERONET ANG scatter plots, partitioned into K-means clusters, with K=3, for each of the six

1390	 aerosol air mass type categories. Initial cluster seeds are shown as open circles, and final cluster

1391 centers are indicated as solid black dots; the quantitative cluster centroid locations are given in

1392 the annotation of each plot. Row 2 shows the corresponding MISR vs. AERONET AOD scatter

1393 plots, colored according to cluster. Seasonal information is encoded in the symbol shapes: DJF,
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1394 diamonds; MAM, triangles; JJA, squares; SON, circles. Rows 3-5 provide histograms of

1395 mixture number (Table 3) for all successful mixtures, similar in format to those Figure 6, but

1396 partitioned and color-coded according to cluster, for the ANG clusters identified with smaller

1397 (orange), intermediate (purple), and larger (green) column-effective particle sizes, respectively.

1398 Only cases having MISR AOD > 0.15 are included in this analysis, due to limited MISR aerosol

1399 property sensitivity for lower AOD, as illustrated in Figure 8; this accounts for the horizontal

1400 low-end cutoff in the AOD plots in Row 2. Note that the vertical scales in the Row 3-5 plots

1401	 vary, based on the numbers of counts in each cluster.

1402



Table 1. AERONET validation site locations, seasonal coverage,
and MISR coincidence counts

Site Name Lat Long Altitude
(meters)

DJF MAM JJA SON Total

Obs

Total

Seasons

Biomass Burning

Abracos_Hill -10.76 -62.36 200 1 3 17 11 32 14

Alta_Floresta -9.92 -56.02 175 0 4 20 9 33 18

Bonanza_Creek 64.74 -148.32 150 0 15 3 8 26 11

Cuiaba-Miranda -15.73 -56.02 210 2 8 21 6 37 13

Jabiru -12.66 132.89 30 6 11 42 27 86 18

Mongu -15.25 23.15 1107 11 53 63 39 166 30

Mukdahan 16.61 104.68 166 31 14 1 8 54 14

Rio_Branco -9.96 -67.87 212 1 1 7 7 16 9

SANTA_CRUZ -17.80 -63.18 442 6 2 9 2 19 8

Skukuza -24.99 31.59 150 9 35 50 30 124 30

Tinga_Tingana -28.98 139.99 38 24 13 15 17 69 19

Continental

Arica -18.47 -70.31 25 20 14 2 9 45 15

Bondville 40.05 -88.37 212 18 19 12 27 76 26

BSRN_BAO_Boulder 40.04 -105.01 1604 10 17 53 28 108 27

Bratts_Lake 50.28 -104.70 586 0 12 35 19 66 18

COVE 36.90 -75.71 37 8 21 20 25 74 28

Cart_Site 36.61 -97.49 318 13 19 24 21 77 22

Cordoba-CETT -31.52 -64.46 730 14 24 28 29 95 21

El_Arenosillo 37.10 -6.73 0 6 5 22 6 39 18

Forth_Crete 35.33 25.28 20 0 5 4 0 9 6



Konza_EDC 39.10 -96.61 341 24 16 41 26 107 26

Maricopa 33.07 -111.97 360 17 30 31 22 100 23

Nes_Ziona 31.92 34.79 40 9 18 32 16 75 23

Pimai 15.18 102.56 220 24 14 3 2 43 12

Rimrock 46.49 -116.99 824 8 10 36 21 75 23

Rogers_Dry_Lake 34.93 -117.89 680 20 53 63 31 167 20

Sevilleta 34.35 -106.89 1477 8 22 39 11 80 24

Sioux_Falls 43.74 -96.63 500 4 11 30 25 70 20

Toravere 58.26 26.46 70 0 16 12 14 42 16

Dusty

Anmyon 36.54 126.33 47 2 9 5 4 20 13

Birdsville -25.90 139.35 46 12 4 3 7 26 7

Capo_Verde 16.73 -22.93 60 18 21 18 14 71 27

Dakar 14.39 -16.96 0 20 17 14 20 71 19

Dalanzadgad 43.58 104.42 1470 30 28 15 34 107 27

Dhadnah 25.51 56.33 81 2 13 16 7 38 13

Hamim 22.97 54.30 209 5 15 6 13 39 13

Mezaira 23.15 53.78 204 0 0 9 3 12 3

Mussafa 24.37 54.47 10 6 7 7 10 30 7

Railroad_Valley 38.50 -115.96 1435 16 14 44 47 121 18

Solar_Village 24.91 46.41 650 7 33 59 11 110 25

Maritime

Ascension_Island -7.98 -14.41 30 16 5 14 8 43 19

Azores 38.53 -28.63 50 0 2 6 2 10 8

Bermuda 32.37 -64.70 10 0 2 5 3 10 8

La_Jolla 32.87 -117.25 115 10 18 17 11 56 19



Lanai 20.74 -156.92 20 13 16 12 7 48 14

Midway_Island 28.21 -177.38 0 15 7 16 12 50 14

Nauru -0.52 166.92 7 1 7 1 10 19 10

Rottnest_Island -32.00 115.30 40 16 17 7 6 46 10

San_Nicolas 33.26 -119.49 133 6 11 5 7 29 16

Tahiti -17.58 -149.61 98 2 7 9 7 25 13

UCSB 34.42 -119.85 33 11 8 7 16 42 12

Urban

Avignon 43.93 4.88 32 34 44 65 41 184 30

Bac_Giang 21.29 106.23 15 4 3 1 10 18 9

Beijing 39.98 116.38 92 25 33 25 32 115 24

Belsk 51.84 20.79 190 0 7 10 7 24 14

CCNY 40.82 -73.95 100 11 12 10 18 51 21

Fresno 36.78 -119.77 110 10 24 46 37 117 23

GSFC 38.99 -76.84 87 31 38 7 40 116 29

Hamburg 53.57 9.97 105 6 20 12 22 60 19

Ispra 45.80 8.63 235 1 17 17 10 45 22

Kanpur 26.45 80.35 142 23 33 10 31 97 25

Lille 50.61 3.14 60 5 12 13 9 39 21

MD_Science_Center 39.28 -76.72 15 11 30 14 35 90 29

Mexico_City 19.33 -99.18 2268 20 26 5 5 56 19

Minsk 53.00 27.50 200 0 6 3 10 19 11

Moscow_MSU_MO 55.70 37.51 192 0 21 9 17 47 17

Osaka 34.65 135.59 50 5 11 1 4 21 17

Rome_Tor_Vergata 41.84 12.65 130 28 25 49 40 142 25

Sao_Paulo -23.56 -46.74 865 9 11 24 24 68 24



Shirahama 33.69 135.36 10 3 5 5 0 13 11

Thessaloniki 40.63 22.96 60 6 9 9 8 32 10

Tomsk 56.48 85.05 130 0 7 12 13 32 15

XiangHe 39.75 116.96 36 23 21 12 31 87 15

Yulin 38.28 109.72 1080 0 9 7 9 25 6

Hybrid_BD

Banizoumbou 13.54 2.66 250 50 29 20 45 144 28

DMN_Maine_Sorokok 13.22 12.02 350 19 10 4 9 42 9

Djougou 9.76 1.60 400 14 9 1 7 31 12

IER_Cinzana 13.28 -5.93 285 39 27 18 33 117 15

Ilorin 8.32 4.34 350 20 11 0 5 36 15

Ouagadougou 12.20 -1.40 290 20 11 0 17 67 21

Sede_Boker 30.85 34.78 480 22 48 62 56 188 32



Table 2. MISR Version 22 Aerosol Component Optical Models*

#
Component Name

r1 r2 rc


SSA SSA SSA SSA AOD(446)/ AOD(672)/ AOD(867)/

g Particle
Size/Shape

(m) (m) (m) () (558) (672) (866) AOD(558) AOD(558) AOD(558)
(558) Category

1 sph_nonabsorb_0 0.001 0.4 0.03 1.65 1.00 1.00 1.00 1.00 1.95 0.55 0.23 0.352 Small Spherical.06

2 sph_nonabsorb_0 0.001 0.75 0.06 1.7 1.00 1.00 1.00 1.00 1.54 0.66 0.35 0.609 Small Spherical.12

3 sph_nonabsorb_0 0 .01 1.5 0.12 1.75 1.00 1.00 1.00 1.00 1.18 0.82 0.58 0.717
Medium

.26 Spherical

6 sph_nonabsorb_2 0.10 50. 1.0 1.9 1.00 1.00 1.00 1.00 0.99 1.02 1.06 0.776 Large Spherical.80

8 Small Spherical
sph_absorb_0.12_ 0.001 0.75 0.06 1.7 0.91 0.90 0.89 0.85 1.50 0.68 0.37 0.612 moderately

ssa_green_0.9 absorbing

14 Small Spherical
sph_absorb_0.12_ 0.001 0.75 0.06 1.7 0.82 0.80 0.77 0.72 1.47 0.69 0.40 0.614 strongly

ssa_green_0.8 absorbing

19 Medium_grains 0.10 1.00 0.5 1.5 0.92 0.98 0.99 1.00 0.90 1.06 1.08 0.711 Medium Dust

21 Coarse_spheroids 0.10 6.0 1.0 2.0 0.81 0.90 0.97 0.98 0.99 1.02 1.05 0.772 Coarse Dust

*These aerosol optical models apply to the MISR standard Level 2AS aerosol product, Versions 16 through 22. A number-
weighted, log-normal particle size distribution function is adopted for all components. Aerosol components are named based
on particle shape (spherical, non-spherical grains or spheroids), SSA (non-absorbing or absorbing) and effective radius (in
μ m). For absorbing aerosols, the green-band SSA is also given. Single scattering properties were calculated using a Mie code
for the spherical particles; the dust component properties were calculated using the Discrete Dipole and T-matrix approaches
for medium and coarse modes, respectively [ Kalashnikova et al., 2005]. Wavelength in nm is specified in parentheses where



appropriate. r1 and r2 are the upper and lower limits of the size distribution, rc 

parameters in the log-normal distribution, and SSA is the single-scattering albedo.  The asymmetry parameter (g) will 

generally represent particle scattering phase functions poorly for the purpose of calculating MISR multi-angle radiances, and is 

given here only in MISR green band for reference; full phase functions are available in the MISR standard product 

“ACP_APOP” files.  All spherical components are assumed to be distributed vertically within 10 km of the surface, and have 

scale heights of 2 km. Medium dust is confined to the lowest 10 km, and coarse dust is confined to the lowest 10 km.  

 

 

 



Table 3. MISR Version 22 Aerosol Mixture Properties §

Mixture # Component Fractional AOD (at 558 nm) AOD rel. to green Single Scattering Albedo ANG

# 1 * 2 * 3 * 6 * 8 * 14 * 19 * 21 * blue red nir blue green red nir

Spherical, Non-absorbing Mixtures

1 1 - - - - - - - 1.95 0.549 0.23 1 1 1 1 3.23

2 0.95 - - 0.05 - - - - 1.9 0.573 0.271 1 1 1 1 2.94

3 0.9 - - 0.1 - - - - 1.85 0.596 0.312 1 1 1 1 2.69

4 0.8 - - 0.2 - - - - 1.76 0.644 0.395 1 1 1 1 2.26

5 0.7 - - 0.3 - - - - 1.66 0.691 0.477 1 1 1 1 1.88

6 0.6 - - 0.4 - - - - 1.57 0.738 0.559 1 1 1 1 1.55

7 0.5 - - 0.5 - - - - 1.47 0.786 0.642 1 1 1 1 1.24

8 0.4 - - 0.6 - - - - 1.37 0.833 0.724 1 1 1 1 0.96

9 0.3 - - 0.7 - - - - 1.28 0.881 0.807 1 1 1 1 0.69

10 0.2 - - 0.8 - - - - 1.18 0.928 0.889 1 1 1 1 0.42

11 - 1 - - - - - - 1.54 0.66 0.348 1 1 1 1 2.24

12 - 0.95 - 0.05 - - - - 1.51 0.679 0.384 1 1 1 1 2.07

13 - 0.9 - 0.1 - - - - 1.49 0.697 0.419 1 1 1 1 1.91

14 - 0.8 - 0.2 - - - - 1.43 0.733 0.49 1 1 1 1 1.62

15 - 0.7 - 0.3 - - - - 1.38 0.769 0.56 1 1 1 1 1.36

16 - 0.6 - 0.4 - - - - 1.32 0.805 0.631 1 1 1 1 1.11

17 - 0.5 - 0.5 - - - - 1.26 0.842 0.701 1 1 1 1 0.89

18 - 0.4 - 0.6 - - - - 1.21 0.878 0.772 1 1 1 1 0.68

19 - 0.3 - 0.7 - - - - 1.15 0.914 0.843 1 1 1 1 0.47

20 - 0.2 - 0.8 - - - - 1.1 0.95 0.913 1 1 1 1 0.28

21 - - 1 - - - - - 1.18 0.82 0.576 1 1 1 1 1.09

22 - - 0.95 0.05 - - - - 1.17 0.83 0.6 1 1 1 1 1.02

23 - - 0.9 0.1 - - - - 1.17 0.841 0.624 1 1 1 1 0.94



24 - - 0.8 0.2 - - - - 1.15 0.861 0.672 1 1 1 1 0.81

25 - - 0.7 0.3 - - - - 1.13 0.881 0.72 1 1 1 1 0.68

26 - - 0.6 0.4 - - - - 1.11 0.901 0.767 1 1 1 1 0.55

27 - - 0.5 0.5 - - - - 1.09 0.921 0.815 1 1 1 1 0.43

28 - - 0.4 0.6 - - - - 1.07 0.942 0.863 1 1 1 1 0.32

29 - - 0.3 0.7 - - - - 1.05 0.962 0.911 1 1 1 1 0.21

30 - - 0.2 0.8 - - - - 1.03 0.982 0.959 1 1 1 1 0.10

Spherical, Absorbing + Non-absorbing Mixtures

31 - - - - 1 - - - 1.51 0.677 0.375 0.911 0.9 0.885 0.8 2.10

32 - - - 0.05 0.95 - - - 1.48 0.694 0.409 0.914 0.905 0.894 0.8 1.96

33 - - - 0.1 0.9 - - - 1.45 0.712 0.443 0.917 0.91 0.902 0.8 1.80

34 - - - 0.2 0.8 - - - 1.4 0.746 0.511 0.924 0.92 0.917 0.9 1.53

35 - - - 0.3 0.7 - - - 1.35 0.781 0.578 0.931 0.93 0.93 0.9 1.28

36 - - - 0.4 0.6 - - - 1.3 0.815 0.646 0.938 0.94 0.943 0.9 1.05

37 - - - 0.5 0.5 - - - 1.25 0.85 0.714 0.946 0.95 0.954 0.9 0.84

38 - - - 0.6 0.4 - - - 1.2 0.884 0.782 0.955 0.96 0.965 0.9 0.64

39 - - - 0.7 0.3 - - - 1.14 0.919 0.85 0.965 0.97 0.975 0.9 0.44

40 - - - 0.8 0.2 - - - 1.09 0.953 0.918 0.976 0.98 0.984 0.9 0.26

41 - - - - - 1 - - 1.47 0.695 0.403 0.821 0.8 0.773 0.7 1.95

42 - - - 0.05 - 0.95 - - 1.45 0.712 0.436 0.827 0.81 0.79 0.7 1.81

43 - - - 0.1 - 0.9 - - 1.42 0.728 0.468 0.833 0.82 0.805 0.7 1.68

44 - - - 0.2 - 0.8 - - 1.37 0.761 0.533 0.847 0.84 0.834 0.8 1.43

45 - - - 0.3 - 0.7 - - 1.33 0.793 0.598 0.861 0.86 0.861 0.8 1.20

46 - - - 0.4 - 0.6 - - 1.28 0.826 0.664 0.876 0.88 0.886 0.8 0.99

47 - - - 0.5 - 0.5 - - 1.23 0.859 0.729 0.893 0.9 0.908 0.9 0.79

48 - - - 0.6 - 0.4 - - 1.18 0.892 0.794 0.911 0.92 0.929 0.9 0.60

49 - - - 0.7 - 0.3 - - 1.13 0.924 0.859 0.93 0.94 0.949 0.9 0.42

50 - - - 0.8 - 0.2 - - 1.08 0.957 0.924 0.952 0.96 0.967 0.9 0.24

Dust Mixtures



51 - 0.72 - 0.08 - - 0.2 - 1.37 0.77 0.551 0.989 0.995 0.998 0.9 1.37

52 - 0.48 - 0.32 - - 0.2 - 1.24 0.857 0.72 0.988 0.995 0.999 0.9 0.81

53 - 0.16 - 0.64 - - 0.2 - 1.06 0.973 0.946 0.986 0.995 0.999 0.9 0.17

54 - 0.54 - 0.06 - - 0.4 - 1.25 0.844 0.683 0.977 0.991 0.997 0.9 0.91

55 - 0.36 - 0.24 - - 0.4 - 1.15 0.909 0.81 0.975 0.991 0.997 0.9 0.53

56 - 0.12 - 0.48 - - 0.4 - 1.02 0.996 0.979 0.972 0.991 0.998 0.9 0.05

57 - 0.36 - 0.04 - - 0.6 - 1.13 0.918 0.815 0.962 0.986 0.996 0.9 0.49

58 - 0.24 - 0.16 - - 0.6 - 1.07 0.961 0.9 0.959 0.986 0.996 0.9 0.25

59 - 0.08 - 0.32 - - 0.6 - 0.977 1.02 1.01 0.956 0.986 0.997 0.9 -0.06

60 - 0.18 - 0.02 - - 0.8 - 1.01 0.991 0.947 0.943 0.982 0.995 0.9 0.10

61 - 0.12 - 0.08 - - 0.8 - 0.98 1.01 0.989 0.941 0.982 0.995 0.9 -0.02

62 - 0.04 - 0.16 - - 0.8 - 0.936 1.04 1.05 0.938 0.982 0.995 0.9 -0.17

63 - 0.4 - - - - 0.48 0.12 1.16 0.898 0.783 0.951 0.977 0.993 0.9 0.60

64 - 0.4 - - - - 0.36 0.24 1.18 0.892 0.78 0.94 0.968 0.99 0.9 0.62

65 - 0.4 - - - - 0.24 0.36 1.19 0.887 0.776 0.928 0.959 0.986 0.9 0.64

66 - 0.4 - - - - 0.12 0.48 1.2 0.881 0.773 0.918 0.95 0.983 0.9 0.66

67 - 0.2 - - - - 0.64 0.16 1.04 0.977 0.928 0.927 0.97 0.991 0.9 0.17

68 - 0.2 - - - - 0.48 0.32 1.05 0.969 0.924 0.91 0.958 0.987 0.9 0.20

69 - 0.2 - - - - 0.32 0.48 1.07 0.962 0.919 0.894 0.946 0.983 0.9 0.23

70 - 0.2 - - - - 0.16 0.64 1.08 0.954 0.914 0.879 0.934 0.979 0.9 0.25

71 - - - - - - 0.8 0.2 0.914 1.06 1.07 0.896 0.962 0.99 0.9 -0.24

72 - - - - - - 0.6 0.4 0.933 1.05 1.07 0.873 0.947 0.985 0.9 -0.20

73 - - - - - - 0.4 0.6 0.951 1.04 1.06 0.851 0.932 0.98 0.9 -0.17

74 - - - - - - 0.2 0.8 0.97 1.03 1.06 0.83 0.917 0.976 0.9 -0.13

§ The eight components used in this mixture table are described in Table 2.



Table 4. AOD and Sky-scan Coincidence Sampling, by Season and Aerosol Type

Total DJF MAM JJA SON
BiomassBurni ng

Central AOD 662 91 159 248 164
Surrounding AOD 653 89 157 244 163
Central Sky scan 318 39 75 110 94
Lowest Residual nonabsorbing 383 57 99 139 88
Lowest Residual absorbing 199 17 43 90 49
Lowest Residual dusty 80 17 17 19 27

Continental
Central AOD 1348 202 326 488 332
Surrounding AOD 1342 200 325 486 331
Central Sky scan 496 90 134 130 130
Lowest Residual nonabsorbing 990 158 218 357 257
Lowest Residual absorbing 178 22 44 71 41
Lowest Residual dusty 180 22 64 60 34

Dusty
Central AOD 645 118 161 196 170
Surrounding AOD 641 117 159 196 169
Central Sky scan 300 41 81 101 77
Lowest Residual nonabsorbing 299 67 63 72 97
Lowest Residual absorbing 120 30 26 22 42
Lowest Residual dusty 226 21 72 102 31

Maritime
Central AOD 378 90 100 99 89
Surrounding AOD 378 90 100 99 89
Central Sky scan 81 20 27 19 15
Lowest Residual nonabsorbing 157 41 36 48 32
Lowest Residual absorbing 61 11 10 23 17
Lowest Residual dusty 160 38 54 43 59

Urban
Central AOD 1498 255 424 366 453
Surrounding AOD 1480 249 420 363 448
Central Sky scan 648 122 180 103 243
Lowest Residual nonabsorbing 1027 170 269 275 313



Lowest Residual absorbing 242 49 64 48 81
Lowest Residual dusty 229 36 91 43 59

Hybrid_BD

Central AOD 625 188 155 110 172
Surrounding AOD 620 187 153 109 171
Central Sky scan 287 98 70 36 83
Lowest Residual nonabsorbing 227 63 33 42 89
Lowest Residual absorbing 131 33 32 29 37
Lowest Residual dusty 267 92 90 39 46

Nonabsorbing mixtures are 1-30, absorbing mixtures are 31-50, and
dusty mixtures are 51-74 in Table 3.



Table 5. MISR-AERONET Green-band AOD Comparison Statistics for central regions without outliers and for
surroundings, stratified by Site and by Expected Aerosol Type Category †

Site Count MISR AOD AERONET
AOD

AOD
Corr

Mean
Abs
Diff
el) %

AOD
Gain

AOD
Offset

0%Dor
20	 or

0.05
10% o

0%Do

0.03

DAOD:
Surr -
Cntr

V12 AOD:
20% or 0.05/
10% or 0.03

Mean Stdv Mean Stdv

BiomassBurning 635 0.191 0.024 0.215 0.013 0.930 32.49 0.653 0.050 76.38 54.96 2.0 / 1.7 66/39

Abracos_Hill 31 0.242 0.018 0.300 0.017 0.960 19.72 0.700 0.032 74.19 54.84 0.8 / -1.7

Mukdahan 54 0.332 0.027 0.396 0.022 0.922 19.97 0.740 0.039 62.96 46.30 -5.6 / -9.3

Mongu 165 0.213 0.025 0.217 0.011 0.955 22.39 0.837 0.031 87.27 69.09 2.5 / 3.8

Skukuza 123 0.141 0.019 0.154 0.008 0.950 23.81 0.834 0.013 86.99 66.67 2.5 / 1.1

Jabiru 85 0.103 0.023 0.109 0.009 0.902 26.99 0.838 0.011 87.06 67.06 3.6 / 7.4

Rio_Branco 16 0.321 0.031 0.501 0.024 0.966 30.66 0.470 0.085 37.50 25.00 12.5 / -6.3

Alta_Floresta 32 0.310 0.028 0.443 0.036 0.918 31.31 0.530 0.075 59.38 37.50 10.3 / 1.9

Cuiaba-Miranda 33 0.246 0.028 0.349 0.024 0.984 31.96 0.688 0.006 57.58 18.18 -6.2 / 8.8

Santa_Cruz 19 0.158 0.025 0.161 0.011 0.905 36.11 0.481 0.081 68.42 42.11 21.1 / 10.5

Bonanza_Creek 26 0.071 0.007 0.057 0.005 0.726 55.77 0.802 0.025 80.77 65.39 3.8 / 7.7

Tinga_Tingana 51 0.130 0.033 0.074 0.008 0.837 104.67 1.064 0.050 49.02 13.73 4.6 / 6.6

Dusty 585 0.283 0.039 0.270 0.015 0.874 50.83 0.766 0.077 49.57 28.21 5.0 / 0.9 55/37

Mezaira 12 0.392 0.077 0.352 0.011 0.658 21.11 0.901 0.075 83.33 50.00 0.0 / 16.7



Capo_Verde 71 0.356 0.032 0.367 0.018 0.849 22.30 0.872 0.037 54.93 29.58 7.0 / 1.55

Dhadnah 37 0.377 0.049 0.404 0.020 0.785 23.37 0.946 -0.005 43.24 35.14 9.4 / -6.2

Solar_Village 108 0.378 0.062 0.341 0.019 0.915 26.03 0.735 0.127 58.33 37.04 -1.1 / -8.9

Anmyon 19 0.389 0.026 0.524 0.035 0.950 26.39 0.723 0.010 36.84 26.32 -11.8 /-11.3

Mussafa 30 0.343 0.046 0.303 0.018 0.815 29.55 1.072 0.018 50.00 33.33 30.0 / 13.3

Dakar 70 0.332 0.034 0.440 0.020 0.861 30.11 0.719 0.016 32.86 14.29 10.8 / 2.6

Hamim 39 0.380 0.056 0.286 0.014 0.888 37.49 1.291 0.011 33.33 23.08 -5.1 /-7.7

Dalanzadgad 86 0.139 0.018 0.090 0.009 0.825 78.64 0.928 0.055 59.30 31.40 -5.1 / -0.6

Railroad_Valley 99 0.117 0.025 0.064 0.005 0.722 107.56 1.143 0.044 50.51 24.24 17.3 / 6.3

Birdsville 14 0.123 0.035 0.057 0.005 0.889 132.49 1.421 0.041 21.43 0.00 -6.0 / 3.8

Continental 1294 0.142 0.030 0.128 0.010 0.859 49.00 0.721 0.050 69.78 49.38 3.0 / 0.5 63/42

Pimai 43 0.314 0.035 0.357 0.022 0.810 20.07 0.615 0.095 62.79 41.86 18.6 / 11.6

Nes_Ziona 75 0.230 0.047 0.273 0.023 0.916 21.56 0.799 0.012 64.00 34.67 8.0 / 13.3

Toravere 40 0.124 0.012 0.123 0.009 0.944 22.05 0.917 0.011 92.50 77.50 -2.0 / 5.8

Arica 43 0.201 0.039 0.264 0.016 0.685 29.91 0.698 0.017 44.19 23.26 26.9 / 19.0

El_Arenosillo 36 0.160 0.033 0.208 0.011 0.867 30.51 0.714 0.012 44.44 27.78 37.6 / 26.1

Konza_EDC 106 0.114 0.021 0.109 0.008 0.854 30.84 0.686 0.039 86.79 72.64 2.9 / 4.9

Cordoba-CETT 93 0.064 0.012 0.075 0.008 0.907 32.28 0.621 0.017 93.55 82.80 0.1 / 0.4

Cart_Site 76 0.125 0.026 0.105 0.007 0.895 36.69 0.874 0.033 84.21 64.47 2.8 / -2.1

Bondville 76 0.123 0.021 0.123 0.009 0.890 38.00 0.635 0.045 82.90 59.21 -3.9 /-10.5



Forth_Crete 8 0.202 0.018 0.314 0.014 0.908 38.59 1.234 -0.186 37.50 0.00 18.1 / 11.1

Sioux_Falls 69 0.112 0.018 0.096 0.007 0.888 39.47 1.059 0.010 81.16 68.12 1.7 / -1.0

Rimrock 72 0.106 0.021 0.081 0.006 0.823 50.94 0.999 0.025 77.78 50.00 16.9 / 26.0

Boulder 105 0.121 0.034 0.092 0.008 0.838 53.23 0.906 0.038 72.38 57.14 -2.0 /-7.1

COVE 74 0.213 0.028 0.175 0.016 0.979 53.45 0.934 0.049 68.92 33.78 -4.1 / 0.0

Maricopa 99 0.128 0.038 0.091 0.007 0.699 55.72 0.940 0.043 68.69 48.49 2.3 / -4.5

Bratts_Lake 64 0.127 0.023 0.107 0.011 0.800 56.31 0.507 0.073 78.13 59.38 -3.9 /-9.4

Sevilleta 70 0.159 0.049 0.095 0.006 0.927 90.88 1.004 0.064 32.86 20.00 4.6 / 2.5

Rogers_Dry_Lake 145 0.135 0.045 0.074 0.005 0.715 96.43 1.343 0.036 46.21 19.31 -4.3 /-11.5

Urban 1467 0.203 0.028 0.237 0.021 0.924 26.90 0.662 0.046 70.76 49.42 -4.5 /-1.2

Belsk 23 0.182 0.020 0.197 0.020 0.964 14.22 0.938 -0.003 82.61 60.87 9.1 / 10.0

Moscow 47 0.166 0.016 0.181 0.017 0.907 18.90 0.746 0.032 87.23 57.45 -4.3 / 10.6

Mexico_City 56 0.243 0.031 0.273 0.043 0.918 20.02 0.748 0.039 71.43 44.64 -32.1 /-21.4

Bac_Giang 18 0.545 0.045 0.655 0.030 0.803 21.03 0.488 0.225 61.11 33.33 -16.7 /-11.1

Tomsk 31 0.168 0.021 0.196 0.017 0.973 21.16 0.779 0.016 80.65 61.29 -2.5 / 7.5

MD_Science_Center 89 0.140 0.017 0.150 0.016 0.957 22.51 0.773 0.023 87.64 70.79 1.2 / 5.9

Hamburg 60 0.159 0.017 0.160 0.017 0.921 22.81 0.961 0.005 85.00 65.00 0.0 / 3.3

Shirahama 13 0.286 0.024 0.372 0.020 0.933 22.91 0.716 0.020 46.15 23.08 7.7 / 23.1

Rome_Tor_Vergata 141 0.144 0.025 0.165 0.017 0.869 23.05 0.795 0.012 74.47 53.19 -7.6 /-10.9

Lille 39 0.155 0.021 0.186 0.017 0.935 23.77 0.736 0.018 71.80 51.28 5.1 / 5.1



Beijing 113 0.292 0.041 0.381 0.033 0.930 24.21 0.620 0.056 54.87 38.94 1.7 / -4.2

Sao_Paulo 66 0.171 0.021 0.204 0.022 0.888 25.36 0.554 0.059 66.67 40.91 -2.0 / 3.2

XiangHe 86 0.311 0.038 0.399 0.038 0.913 25.78 0.594 0.074 59.30 39.54 -1.8 / 1.8

Kanpur 96 0.430 0.046 0.574 0.033 0.820 26.08 0.620 0.074 39.58 13.54 -6.6 / 1.9

Thessaloniki 29 0.188 0.027 0.251 0.020 0.927 26.38 0.783 -0.008 48.28 31.03 -1.4 / 9.6

Osaka 21 0.284 0.035 0.297 0.030 0.900 29.07 0.651 0.090 47.62 23.81 9.5 / 14.3

Yulin 24 0.288 0.058 0.318 0.030 0.739 29.80 0.498 0.130 54.17 33.33 1.8 / -1.3

GSFC 116 0.109 0.012 0.111 0.009 0.948 30.99 0.678 0.034 93.10 82.76 2.6 / -1.7

Avignon 182 0.149 0.026 0.145 0.014 0.843 32.83 0.729 0.044 77.47 54.95 -3.6 /-2.8

Ispra 31 0.178 0.023 0.256 0.024 0.869 33.46 0.689 0.002 41.94 12.90 -1.9 / 13.8

Fresno 116 0.146 0.040 0.138 0.010 0.746 33.85 0.597 0.063 78.45 52.59 -21.2 /-13.3

Minsk 19 0.175 0.018 0.167 0.013 0.930 35.46 1.064 -0.002 68.42 52.63 10.5 /-5.3

CCNY 51 0.168 0.025 0.184 0.014 0.914 35.62 0.727 0.034 70.59 45.10 -2.0 / 11.8

Maritime 366 0.117 0.018 0.095 0.008 0.870 53.69 0.801 0.041 74.86 50.00 7.7 / 4.8 69/45

Ascension_Island 43 0.193 0.035 0.195 0.010 0.944 28.27 0.768 0.043 76.74 48.84 0.0 / 0.0

Nauru 19 0.087 0.008 0.070 0.007 0.776 31.86 0.976 0.018 89.47 68.42 0.0 / 10.5

Bermuda 10 0.123 0.016 0.116 0.008 0.572 39.66 0.320 0.086 60.00 60.00 30.0 / 0.0

Midway_Island 50 0.108 0.013 0.079 0.007 0.935 40.86 1.160 0.016 88.00 60.00 6.0 / 8.0

Tahiti 25 0.071 0.014 0.067 0.010 0.518 42.93 0.456 0.041 92.00 72.00 0.0 / 4.0

Azores 9 0.100 0.016 0.084 0.009 0.762 49.25 0.493 0.059 88.89 55.56 1.1 / 14.4



La_Jolla 50 0.128 0.023 0.112 0.015 0.670 54.86 0.774 0.042 52.00 32.00 28.4 / 16.2

Lanai 46 0.105 0.014 0.073 0.007 0.621 55.59 0.699 0.053 80.44 47.83 2.9 / 2.2

Rottnest_Island 46 0.069 0.012 0.053 0.004 0.226 61.42 0.195 0.059 89.13 71.74 2.2 / -2.2

UCSB 39 0.148 0.022 0.108 0.009 0.930 67.60 0.990 0.041 61.54 30.77 14.7 / 7.3

San_Nicolas 29 0.115 0.018 0.067 0.004 0.755 107.30 0.839 0.059 51.72 24.14 0.0 / -3.4

Hybrid_BD 614 0.346 0.053 0.372 0.019 0.876 36.80 0.597 0.124 47.56 27.85 -2.3 /-0.7

Ouagadougou 66 0.347 0.041 0.427 0.021 0.907 20.84 0.553 0.111 59.09 33.33 -5.4 /-2.0

Banizoumbou 142 0.425 0.066 0.460 0.023 0.855 21.77 0.659 0.122 63.38 45.07 0.5 / -0.6

DMN_Maine_So 41 0.351 0.060 0.351 0.027 0.846 21.91 0.722 0.097 70.73 41.46 -1.7 / 6.2

IER_Cinzana 117 0.349 0.049 0.383 0.016 0.878 24.01 0.757 0.060 58.97 36.75 0.9 / -0.9

Djougou 29 0.501 0.057 0.712 0.031 0.905 29.17 0.618 0.061 27.59 13.79 -8.2 /-10.6

Ilorin 35 0.507 0.040 0.774 0.030 0.867 32.30 0.468 0.145 28.57 8.57 -3.6 / 2.5

Sede_Boker 184 0.225 0.049 0.152 0.012 0.815 67.64 0.793 0.105 25.54 9.78 -3.7 /-0.2

†AERONET spectral AOD was interpolated to the MISR green-band wavelength for these comparisons (see text). The last column contains Version
12 results corresponding to the Biomass Burning, Continental, Dusty, and Maritime categories, though with a different selection sites and different
sampling, from Kahn et al. [2005] (Paper 1). These data are from V22 of the aerosol product.
§This column contains two numbers. The first is the difference between the percent of MISR [Central + Surroundings] falling within 20% or 0.05 x
AOD of the corresponding AERONET value, and the percent of MISR Central-only falling within this envelope. The second number is the same
quantity, but calculated for the 10% or 0.03 x AOD envelope. For the categories overall (bold in this table), these quantities are plotted in Figure 2
along the vertical axis. (See text for details.)
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