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Abstract 

This paper presents a detailed convective 
forecast accuracy analysis at center and sector levels. 
The study is aimed to provide more meaningful 
forecast verification measures to aviation community, 
as well as to obtain useful information leading to the 
improvements in the weather translation capacity 
models.  

In general, the vast majority of forecast 
verification efforts over past decades have been on 
the calculation of traditional standard verification 
measure scores over forecast and observation data 
analyses onto grids. These verification measures 
based on the binary classification have been applied 
in quality assurance of weather forecast products at 
the national level for many years. Our research 
focuses on the forecast at the center and sector levels. 
We calculate the standard forecast verification 
measure scores for en-route air traffic centers and 
sectors first, followed by conducting the forecast 
validation analysis and related verification measures 
for weather intensities and locations at centers and 
sectors levels. An approach to improve the prediction 
of sector weather coverage by multiple sector 
forecasts is then developed. The weather severe 
intensity assessment was carried out by using the 
correlations between forecast and actual weather 
observation airspace coverage. The weather forecast 
accuracy on horizontal location was assessed by 
examining the forecast errors. The improvement in 
prediction of weather coverage was determined by 
the correlation between actual sector weather 
coverage and prediction.  

The analysis was accomplished by using 
observed and forecasted Convective Weather 
Avoidance Model (CWAM) data collected from June 
to September in 2007. CWAM zero-minute forecast 
data with aircraft avoidance probability of 60% and 
80% are used as the actual weather observation. All 
forecast measurements are based on 30-minute, 60-
minute, 90-minute, and 120-minute forecasts with the 
same avoidance probabilities.  

 

The forecast accuracy analysis for times under 
one-hour showed that the errors in intensity and 
location for center forecast are relatively low. For 
example, 1-hour forecast intensity and horizontal 
location errors for ZDC center were about 0.12 and 
0.13. However, the correlation between sector 1-hour 
forecast and actual weather coverage was weak, for 
sector ZDC32, about 32% of the total variation of 
observation weather intensity was unexplained by 
forecast; the sector horizontal location error was 
about 0.10. 

The paper also introduces an approach to 
estimate the sector three-dimensional actual weather 
coverage by using multiple sector forecasts, which 
turned out to produce better predictions. Using 
Multiple Linear Regression (MLR) model for this 
approach, the correlations between actual observation 
and the multiple sector forecast model prediction 
improved by several percents at 95% confidence 
level in comparison with single sector forecast. 

1. Introduction 
Flight delays have been a serious problem in the 

National Airspace System (NAS) for many years. 
Statistics shows that approximately 70% of the delays 
are attributed to weather and up to two third of 
weather delays could be avoidable [1]. Severe 
convective weather accounts for a significant fraction 
of these delays. Because of the significant economic 
losses caused by these delays, there is a need to 
improve the air traffic flow management (TFM) 
operations.  

TFM manages air traffic flow to balance the air 
traffic demand against en route airspace capacity that 
has been reduced by convective weather. During 
severe weather, TFM may perform advanced airspace 
management planning. For example, the air traffic 
controllers may ask flights to hold or to change routes 
to stay clear of weather to maintain safety. Currently, 
most weather support to TFM is done manually, with 



weather displays that must be interpreted by air 
traffic managers and controllers. Since the inaccurate 
estimate of the reduction of sector capacities often 
produces unnecessary delays, it is vital to develop 
automated decision support tools based on the 
reliable models to translate weather forecast 
information into its impacts on airspace.   

Efforts have been made during the past several 
years to characterize the dynamic capacity during 
convective weather based on short-term and long-
term forecasts. Several algorithms translating weather 
forecast information into appropriate TFM 
constraints, such as sector dynamic capacity [2-7], 
have been developed. These algorithms are based on 
concepts, ranging from simple weather precipitation 
intensity coverage in sector to more complex 
methods utilizing weather intensity and location 
information in sector, air traffic patterns, and traffic 
flows. Given the uncertainty associated with forecast 
of the weather intensity and location, one might 
wonder if more sophisticated models would always 
produce better estimates of dynamic sector capacity 
than simpler ones. In other words, forecast 
uncertainty bounds must be taken into accounts in 
estimates and predictions. 

The weather forecast uncertainty directly affects 
the accuracy of the predicted dynamic sector 
capacity. The forecast verification efforts over the 
past few decades have been focused on the 
calculation of traditional standard verification 
measure scores over forecast and observation data 
analyses onto grids [8-10]. These verification 
measures are based on binary classification and have 
been applied in quality assurance of weather forecast 
products at the national level for many years. These 
measures are often difficult to interpret in meaningful 
physical terms, and are insufficient to determine the 
accuracy of forecast on weather intensity and location 
at air traffic center and sector levels. 

In this paper, the standard forecast verification 
measure scores computed using the binary 
classification method for en-route air traffic centers 
and sectors are presented. The enhanced measures to 
evaluate the accuracy and errors of deterministic 
weather forecast upon the weather severity, weather 
location, and timing of weather intensity at center and 
sector levels were discussed. An approach to improve 
the prediction of sector weather coverage by using 
multiple sector forecasts was analyzed. The paper is 

organized as follows. A brief review of the 
Convective Weather Avoidance Model (CWAM) 
weather forecast and the descriptions of forecast 
verification mechanics and evaluation measures used 
for forecast evaluation are provided in section 2. The 
results using these forecast evaluation measures at air 
traffic centers are presented in section 3. Section 4 
reports the results on CWAM forecast evaluations for 
sectors. An approach for improving sector weather 
forecast coverage accuracy by using forecast in 
multiple sectors is presented in section 5. Finally, 
conclusion remarks are provided in Section 6. 

2. Forecast Evaluation Methodology  
2.1  CWAM Forecast Data 

CWAM is developed using the Corridor 
Integrated Weather System (CIWS), a product of 
MIT Lincoln Laboratory (LL) [11]. CIWS combines 
data from dozens of weather radars with satellite 
data, surface observations, and numerical weather 
models in order to improve the accuracy and 
timeliness of storm severity information. It provides 
automated, real-time, high spatial resolution (about 
1km), three-dimensional forecast information of 
storms at a 5-minute update rate. CIWS data includes 
precipitation measured by the vertically integrated 
liquid (VIL) and the (storm) echo tops forecast. 
CIWS is used for air traffic en route control tactical 
planning with 0-120 minute forecast lead time and in 
forecast increments of 15 minutes. A study on CIWS 
accuracy at forecasting regions of storm reflectivity 
has been published recently [2, 12]. 

Based on CIWS, LL has developed the 
Convective Weather Avoidance Model (CWAM). 
CWAM models the flight deviation behavior around 
severe weather as a function of reflectivity level and 
echo tops [13] and translates convective weather 
information from CIWS data into Weather 
Avoidance Field (WAF) at each flight altitude level. 
The WAF provides an estimate of the probability of 
aircraft deviation around severe weather in en route 
airspace as a function of horizontal location. For each 
of the WAF files, the data include high spatial 
resolution weather polygons of predicted aircraft 
avoidance with different probability thresholds, such 
as 60% or 80%, for each of the flight levels from 
25000 ft (FL250) up to 45000 ft (FL450), in 1000 ft 
increments. The CWAM data include forecasted 
WAFs from 0 to 2 hours with a 15 minutes forecast 



interval and an update rate of 5 minutes. The weather 
information used in this paper is from the initial 
Convective Weather Avoidance Model, CWAM1. 
CWAM2 and CWAM3 versions were developed by 
LL, the performance of the two models varied 
slightly from CWAM1, especially on horizontal 
levels [12, 14].  

We select a representative CWAM 60% or 80% 
deviation probability threshold to covert the 
corresponding WAFs into a deterministic forecast 
and then use a forecast evaluation approach that is 
similar to previous studies of deterministic weather 
forecasts. CWAM weather data from June to 
September in 2007 is used for this study. CWAM 
zero-minute forecast data with 60% and 80% aircraft 
avoidance probabilities are used as the actual weather 
observation and all forecast measurements are based 
on same avoidance probability CWAM forecasts at 
30-minute, 60-minute, 90-minute, and 120-minute 
time horizons.  

2.2 Standard Forecast Verification Measures 
 

The quality assessment on the performance of 
convective weather forecast products has been 
ongoing for many years. Over the past decades, a 
number of studies have been conducted to evaluate 
the forecast accuracy of the aviation convective 
weather products using traditional standard forecast 
verification measures. The standard statistical 
verification measures are computed from a basic 2X2 
contingency table, Table 1, for a dichotomous 
evaluation (e.g., “Yes”/“No”). The “Yes”/“No” 
forecast/observation pairs are used to create the 
statistics in the study. 

 

Table 1 Basic contingency table for dichotomous 
(“Yes”/”No”) events. Elements in the cells are the 
pixel counts of forecast-observation pairs 

Observation  
Yes No 

Yes YY YN Forecast 
No NY NN 

 

The method adopts the concept of binary 
classification in which the forecasts and the actual 
weather observations are compared pixel by pixel on 
a high-resolution grid in the specific horizontal 

region for analysis. All grid pixels in the region were 
initially assigned either a “Yes” or a “No” value as 
follows: for a forecast, a “Yes” pixel on the grid 
designates that it has intersection with any part of the 
weather forecast polygons, whereas a “No” means 
otherwise; for an observation, pixels on the grid with 
a “Yes” value indicate the actual weather observation 
area, whereas a “No” indicates no weather was 
observed. A true positive pixel of forecast is assigned 
if the pixel is a “Yes” pixel for both forecast and 
observation and a true negative pixel of forecast 
assigned if the pixel is a “No” pixel for both forecast 
and observation. The True Positive pixel counts, 
denoted as YY, are calculated as the total true 
positive pixels of forecasts in the region. The True 
Negative pixel counts, NN, are computed as the total 
true negative pixels of forecasts. The False Positive 
(YN) is then equal to the number of total “Yes” 
forecast pixels minus the YY. The False Negative 
(NY) is the difference between the total observation 
“Yes” pixels and the YY. The total number of pixels 
in the region on the grid, denoted as N, is the sum of 
YY, YN, NY and NN. 

Using the dichotomous forecast statistics 
generated in Table 1, some frequently used forecast 
verification measures are described briefly below. 
More information about these measures can be found 
in Ref 15-18. 

The Probability of Detection for true positives 
(PODy) is the proportion of “Yes” observed events 
that were correctly forecast. PODy = YY / (YY + NY). 
It has a range of 0 to 1. If NY= 0, then the score goes 
to 1, which is the best value possible. 

The Probability of Detection for true negatives 
(PODn) is the proportion of “No” observed events 
that were correctly forecast. PODn = NN / (NN + 
YN). Its values also range from 0 to 1. If YN= 0, then 
the score goes to 1, the best one can expect. 

The False Alarm Ratio (FAR) is the proportion 
of “Yes” values incorrectly forecasted.   FAR = YN / 
(YY + YN). It has a range from 0 to 1. If YY= 0, then 
the score goes 1, which is the worst value possible. 
For a perfect forecast, PODy=1 and FAR=0 (or 
PODn=1). 

The Critical Success Index (CSI) is the 
proportion of true positives that were either forecast 
or observed. CSI = YY / (YY + NY + YN). Its values 
range from 0 to 1 with a value of 1 indicating a 



perfect forecast score. The CSI is more complete 
measure than PODy, PODn, or FAR. It depends on 
both false positives and false negatives, namely the 
CSI is sensitive to the accuracy of both forecast 
weather intensity and locations.  

The Gilbert Skill Score (Gilbert) is the CSI 
corrected for the number of true positives expected 
by random chance. Gilbert = (YY - C) / (YY - C + YN 
+ NY), where C is the number of true positives 
expected by chance. The probability of true positives 
expected by random chance is (YY + YN)*(YY + NY) 
/ N2. So that, C = (YY + YN)*(YY + NY) / N.  

The True Skill Statistic (TSS) is a measure of the 
ability of the forecast to discriminate between "Yes" 
and "No" observations. TSS = PODy + PODn – 1. 

The Heidke Skill Score (Heidke) is the percent 
correct (true positives and true negatives of forecast) 
adjusted by the number expected by random chance.  
Heidke = (YY + NN - B) / (N – B), where B is the 
number of true positives and true negatives expected 
by chance. B= [(YY + YN)*(YY + NY) + (NN + 
YN)*(NN + NY)] / N. 

Bias Rate (BR) is defined as the ratio of the 
number of “Yes” forecasts to the average number of 
“Yes” forecasts and “Yes” observations: BR = (YY + 
YN) / (2*YY + NY+YN). The BR value ranges from 0 
to 2, it is a measure of over- (>1) or under-forecasting 
(<1). An unbiased forecast has a BR value of 1. 

FWC is the ratio of the forecast domain area 
where convection is expected to occur and the region 
area. FWC = (YY + YN) / N. This measure does not 
depend on the observations. 

OWC is the ratio of the weather observation area 
and the region area. OWC = (YY + NY) / N. This 
measure does not depend on the forecast. 

2.3 Forecast Evaluation Measures for 
Intensity and Location 
 

The forecast evaluation developed in this paper 
focuses on the capacity prediction accuracy for 
centers and sectors during severe weather. The 
existing models for translating en route convective 
weather forecasts into weather impacted airspace 
capacities rely on the accuracy of forecast of the 
weather intensities and weather locations [5-6, 19-22, 
24]. The standard verification measures give 

statistical tools to evaluate the forecast and compare 
different forecast products. However, the measures 
do not provide quantitative values on the accuracy of 
forecast intensity and location in terms of errors. The 
forecast evaluation methods described in this 
subsection are used to verify the accuracy of forecast 
of the weather intensity and location quantitatively at 
center and sector levels. 

For many years, sector weather coverage has 
been used as a measure of weather intensity to 
estimate reduction in airspace capacity. The 
evaluation measures of convective weather 
observation coverage (OWC), weather forecast 
coverage (FWC), and Forecast Bias rate (BR) are 
used to score the forecast accuracy on weather 
intensity qualitatively. Higher values of weather 
coverage indicate worse weather in a sector. To 
evaluate the forecast intensity accuracies 
quantitatively, the correlation between FWC and 
OWC is used to calculate the forecast intensity errors. 
The correlation might provide not only the 
knowledge on the forecast intensity accuracies in the 
airspaces but also the prediction accuracy of the 
airspace capacity using forecast weather coverage 
method. 

To study the impact of forecast location 
accuracy on airspace sector capacity predictions 
alone, we can examine the cases in which forecast 
weather intensity is assumed to be as same as the 
actual weather intensity in the airspace. Under this 
condition (BR = 1), YN is as same as NY. Forecast 
location error rate for 1-mile at least can be estimated 
by YN/(YY+YN) or approximately defined by 
((YN+ NY)/2.0)/(YY + (YN+ NY)/2.0) = (1-
CSI)/(1+CSI) if BR is close to 1. 

Since comparison of high resolution (1-mile) 
forecast pixels to observation pixels can be affected 
by small variations in weather location that are not of 
concern to air traffic management operation, a 
revised YY, denoted as YY20, was used to evaluate 
the forecast accuracy for the horizontal location. 
Based on the same forecast and observation weather 
“Yes” /“No” grids, the true positive counts, YY20, of 
binary classification were re-calculated using a 
distance threshold of 20 miles between the forecast 
and observation “Yes” pixels in a given airspace (a 
center or a sector). A true positive forecast was 
assigned to a “Yes” forecast pixel if any observation 
“Yes” pixels in the same sector or center could be 



detected within 20 miles of its location. Likewise, a 
true positive observation was assigned to a “Yes” 
observation pixel if its distance to any forecast pixels 
in the same sector or center is within 20 miles. The 
true positive counts, YY20, is defined as the minimum 
of the total true positive pixels of forecasts and the 
total true positive pixels of observations in a center or 
a sector to avoid double counting. Obviously, YY is 
never greater than YY20. The corresponding false 
positive YN20 is equal to the number of total “Yes” 
forecast pixels in the sector or center minus YY20. 
The false negative NY20 is the difference between the 
total observation “Yes” pixels in the sector or center 
and YY20.  

The forecast Location Error Rate, LER, is 
defined as 

LER = (YN20+ NY20) / (2*YY20 + YN20+ NY20) (1) 

When the airspace FB is 1, then YN20= NY20 and 
LER =YN20/ (YY20 + YN20) = NY20/ (YY20 + NY20). 
So the LERs give the errors on the forecasted 
horizontal locations if FB is close to 1. For example, 
given the sector FB of 1, a LER of 0.2 means about 
20% of the weather forecast in the airspace occurred 
at locations more than 20 miles from the actual 
observed weather. The LER value ranges from 0 to 1.  
A LER value of 0 indicates that forecasts match 
actual observations within 20 miles and a LER value 
of 1 means that the all forecasts are more than 20 
miles from weather observations. The LER values 
give the inaccuracy of the forecast horizontal location 
to the observation in the airspace. For evaluations of 
the forecast location accuracies using airspace FLE, 
only those data where the BR values are in the range 
of 0.9 and 1.1 were collected and analyzed in this 
study. This BR requirement is to ensure that the 
forecast weather intensity is close to the actual 
weather intensity in the airspace so that LER would 
depend on the location accuracy only. 

2.4 Correlation Analysis 

Correlation analysis between forecast and actual 
weather coverage was used to evaluate the center and 
sector forecast accuracy on weather intensity. The 
strength of the linear relationship between the 
weather forecast and actual weather observation is 
described by the Pearson correlation coefficient r and 
95% confidence lower and upper bounds. The 
confidence bounds of the correlation are based on an 
asymptotic normal distribution of 0.5*log((1+ r)/(1- 

r)) assumption, with an approximate variance equal 
to 1/(n-3). The rl and ru denote lower and upper 
bounds for a 95% confidence interval, respectively. 
These bounds would be accurate for large samples 
when the two variables have multivariate normal 
distributions. A Pearson correlation greater than .8 is 
generally considered as strong whereas a correlation 
of less than .5 is generally treated as weak. As an 
example, if r = .80, then r 2 = .64, which means that 
64% of the total variation in the actual weather can 
be explained by the forecast using a linear 
relationship.  The other 36% of the total variation of 
actual weather remains unexplained by forecast. In 
this paper, 1- r2 has been used to measure the weather 
intensity error for the forecast quantitatively.  

The Spearman’s rank correlation coefficient  
was also used for evaluating the nonlinear 
relationship between forecast and observation. The 
95% confidence interval (CI) around the sample 
Spearman correlation was constructed and derived 
from 5000 "non-parametric" bootstrap samples of 
observed frequency distribution of the estimates. 

3. Evaluations of CWAM Forecast for 
Centers 

The forecast analysis is based on the CWAM 
data collected from the five centers in northeast 
region of US. The five centers are Chicago (ZAU), 
Washington (ZDC), Indianapolis (ZID), New York 
(ZNY), and Cleveland center (ZOB). 

3.1 Standard Forecast Verification Measures 

The average summaries of standard verification 
measures are computed using CWAM data on ten 
bad weather days (6/12, 7/09, 7/10, 7/11, 7/17, 7/18, 
7/19, 7/19 and 8/9) during the convective season of 
2007. The verification measure scores are listed in 
Table 2 and Table 3 for 60-minute and 120-minute 
forecasts respectively. The measures are calculated 
using the same 60% avoidance probability at FL300 
on the grid of 1X1 mile pixels. 

These 2 tables indict two general trends. First, 
there is over-forecasting in all cases (BR>1). Second, 
for any particular center, both the forecast weather 
coverage (FWC) and Bias Rate (BR) show little 
change in different time horizons. For all other 
verification measures, the scores in Table 3 are worse 
than that in Table 2, meaning that short term forecast 



are more accurate as compared to long term ones. 
That is, we have a better estimate about what the 
weather will be in 1 hour than that in 2 hours. 

Table 4 displays the standard verification 
measure average scores computed using the 120-
minute forecast with the 80% aircraft deviation 
threshold. Compared to Table 3, the scores are worse. 

 

Table 2 Verification statistical table for 60-minute forecast  

Center PODy PODn FAR CSI Gilbert TSS Heidke BR FWC 
ZAU .735 .930 .434 .473 .418 .666 .560 1.17 .169 
ZDC .653 .963 .506 .387 .361 .618 .509 1.15 .074 
ZID .643 .948 .528 .370 .335 .593 .477 1.17 .097 
ZNY .635 .928 .499 .386 .337 .565 .479 1.14 .132 
ZOB .655 .952 .560 .351 .324 .608 .465 1.22 .083 

 

Table 3 Verification statistical table for 120-minute forecast  

Center PODy PODn FAR CSI Gilbert TSS Heidke BR FWC 
ZAU .614 .889 .541 .349 .278 .504 .406 1.17 .191 
ZDC .477 .947 .635 .247 .216 .425 .336 1.13 .079 
ZID .435 .931 .651 .233 .192 .367 .296 1.11 .100 
ZNY .462 .913 .598 .266 .211 .376 .321 1.07 .129 
ZOB .478 .936 .674 .232 .200 .416 .311 1.21 .090 

 

Table 4 Verification statistical summaries for 120-minute forecast (80%) 

Center PODy PODn FAR CSI Gilbert TSS Heidke BR FWC 
ZAU .566 .908 .629 .282 .233 .475 .351 1.24 .141 
ZDC .435 .952 .733 .184 .162 .389 .266 1.24 .061 
ZID .392 .931 .764 .162 .132 .325 .218 1.24 .085 
ZNY .445 .911 .696 .213 .171 .357 .269 1.18 .114 
ZOB .443 .942 .768 .170 .149 .386 .240 1.31 .073 

 

Table 5 Verification statistical summary for ZDC using different pixel size grids  

Pixel Size PODy PODn FAR CSI Gilbert TSS Heidke BR FWC OWC 
1X1 Mile .477 .947 .635 .247 .216 .425 .336 1.13 .079 .063 

10X10 Mile .536 .931 .579 .297 .253 .469 .386 1.12 .108 .088 
20X20 Mile .585 .918 .532 .341 .285 .504 .425 1.11 .137 .113 

 

Table 5 lists the standard verification measures 
for ZDC center using 120-minute forecast with 60% 
threshold on the grids with different pixel sizes. For 
large pixel size (10X10 or 20X20 miles) case, the 
“Yes” /“No” pixels are assigned using the score box 
definitions from Figure 2-3 in Ref. 2: a large “Yes” 
pixel (e.g. for 20X20 mile grid) is assigned if the 
numbers of 1X1 mile “Yes” pixels in the large size 

pixel are greater than 16 (about 4% of the total 1X1 
mile pixels); a “No” means otherwise. As the pixel 
size increases, the standard verification measure 
scores improve. Since the OWC are higher for the 
larger size grid, the actual observation coverage 
accuracy for the forecast verification is somewhat 
reduced if the resolution of CWAM observation is 
about 1 mile. For the subsequent comparisons 
investigated in this study, we limit our CWAM 
forecast evaluations on the 1-mile scale. 



3.2 Forecast Accuracy on Weather Intensity 

The results of weather intensity forecast 
accuracy for ZDC are described in this subsection. 

3.2.1 Center Bias Rate 

Figure 1 displays the ZDC center BR histograms 
at FL300 (CWAM with avoidance probability of 60% 
and 80%) for 30-minute, 60-minute, 90-minute, and 
120-minute forecasts. The center BR for longer 
forecast times are spread more widely from 1, 
indicating deterioration in forecast intensity accuracy. 
It also shows that the forecast intensity accuracy for 
60% is better than that for 80%. 

3.2.2 Correlation between FWC and OWC  

The correlations between forecast and observed 
weather coverage of ZDC at FL300 using CWAM 
with avoidance probability of 60% and 80% for 
different forecast time horizons are listed in Table 6 
and Table 7, respectively. The Pearson correlations 
are displayed by the correlation coefficient r, 95% 
confidence lower, rl, and upper bounds, ru, and 1- r2. 
The Spearman’s rank correlations  and 95% 
confidence intervals of the rank correlations are also 
listed in these tables.  

 
Figure 1 Center ZDC BR histograms for different CWAM forecast times with 60% and 80% 

avoidance probability, respectively 

 

Table 6 Correlations between the center ZDC observed and forecast weather coverage at FL300 
(avoidance probability of 60%) 

Forecast r rl ru 1- r2 Spearman’s  95% CI 
30 min. .977 .974 .980 .045 .966 .005 
60 min. .937 .929 .944 .122 .923 .010 
90 min. .887 .873 .899 .214 .872 .016 

120 min. .815 .794 .835 .335 .814 .021 

Table 7 Correlations between the center ZDC observed and forecast weather coverage at FL300 
(avoidance probability of 80%) 

Forecast r rl ru 1- r2 Spearman’s  95% CI 
30 min. .956 .950 .961 .087 .942 .007 
60 min. .909 .898 .919 .173 .896 .012 
90 min. .858 .841 .873 .264 .842 .018 

120 min. .788 .764 .810 .379 .792 .022 
 

 



Table 6 shows that about 5%, 12%, 21%, and 34% of 
the total variation of actual weather intensity (using 
1- r2) are unexplained for 30-minute, 60-minute, 90-
minute, and 120-minute forecasts with a 60% aircraft 
avoidance probability, respectively. The correlation, 
even though all strong (>0.8), tends to be 
significantly weaker (at a 95% confidence level) as 
forecast time horizons increase. The strong 
correlations reflect a strong degree of linear 
relationship between forecast and observation 
weather coverage. 

Table 7 shows that about 9%, 17%, 26%, and 
38% forecast intensity errors for the forecast times of 
30-minutes, 60-minutes, 90-minutes, and 120-minute 
using 80% avoidance probability, respectively. From 
the two tables, one can observe that longer term 
forecasts produce weaker correlations between 
forecast and observation coverage, also the lower 
avoidance probabilities are associated with the better 
correlations, even though all the correlations are 
seemingly strong. This also holds for other centers 
we studied. 

3.3 Forecast Accuracy on Horizontal Weather 
Positions 

3.3.1 Center CSI 

Figure 2 displays the ZDC center CSI 
histograms at FL300 for CWAM forecasts with 

avoidance probability of 60% and 80% and 30-
minute, 60-minute, 90-minute, and 120-minute time 
intervals. When the CSI value is closer to 1, it 
indicates better forecast intensity and location 
accuracies qualitatively. This figure clearly reveals 
the same pattern as shown in section 3.2.2, i.e., with 
longer-term forecasts producing worse CSI scores, 
worse forecast in weather intensity and location 
accuracy. These conclusions apply to the forecasts of 
other centers as well. 

3.3.2 Center Forecast Location Error Rate 

Table 8 lists the average values of ZDC center 
Forecast Location Error Rate, denoted as LER, at 
FL300 for forecasts of 30-minute, 60-minute, 90-
minute, and 120-minute time intervals with 60% and 
80% aircraft avoidance probabilities, respectively. As 
mentioned before, the data were filtered by the 
requirement of 0.9<BR<1.1. 

The table shows that, on average, about 9%, 
13%, 18%, and 25% of forecast locations were off by 
more than 20 miles from actual observations for 
forecast times of 30-minute, 60-minute, 90-minute, 
and 120-minute, respectively, using 60% aircraft 
avoidance probability. It also reveals that the drift 
between forecast and actual weather is higher for 
80% avoidance probability than that for the 60% 
case. 

 
Figure 2 Center ZDC CSI histograms for different CWAM forecast times with 60% and 80% 

avoidance probability respectively 

Table 8 Average of center ZDC LER (20 miles apart at least) 

 60% Prob. 80% Prob. 
30-minute 0.088 0.111 
60-minute 0.130 0.195 



90-minute 0.183 0.244 
120-minute 0.253 0.332 

 

 

4. Forecast Evaluation at Sector-level 
The forecast analysis for several high-altitude 

sectors that have high demand and are impacted by 
high-frequency weather events is described in the 
follow subsections. The list of sectors follows: 
Chicago Center sector 83 (ZAU83), Washington 
Center sector 32 (ZDC32), Indianapolis Center sector 
66(ZID66), New York Center sector 42 (ZNY42), 
and Cleveland Center sector 66 (ZOB66).  

4.1 Standard Forecast Verification Measures 

The analysis is conducted using 60% avoidance 
probability CWAM data at FL300. The result is a 
summary of verification measure scores based on the 
data collected in August, 2007. The measures for 60-
minute and 120-minute forecasts are calculated on 
the 1X1 mile grid and listed in Table 9 and Table 10 
respectively. 

The results show the same pattern reported in 
section 3.1 for centers, i.e., for any particular sector, 
60-minute and 120-minute forecasts produce very 
similar average values of the forecast weather 
coverage (FWC) and Bias Rate (BR), and over-
forecasting for all sectors. For all other measures, the 
scores in Table 10 are worse than that in Table 9. The 
forecast quality is getting worse as the forecast time 
getting longer. 

Table 11 shows the average verification measure 
scores computed using the CWAM 120-minute 
forecast with 80% deviation threshold at FL300 flight 
level. Compared with Table 10, the scores are worse 
in most cases. 

Table 12 lists the verification measures for 
ZDC32 from the same 120-minute CWAM forecast 
with 60% threshold using grids with different pixel 
sizes. As the pixel size increases, the OWC and CSI 
measure scores increase significantly. 

 

Table 9 Verification statistical table for 60-minute forecast  

Sector PODy PODn FAR CSI Gilbert TSS Heidke BR FWC 
ZAU83 .733 .798 .403 .498 .340 .533 .468 1.13 .366 
ZDC32 .618 .911 .448 .412 .346 .531 .476 1.09 .174 
ZID66 .590 .893 .511 .359 .285 .484 .406 1.10 .204 
ZNY42 .657 .821 .388 .478 .319 .480 .436 1.03 .339 
ZOB66 .605 .882 .457 .394 .298 .489 .426 1.08 .229 

 

Table 10 Verification statistical table for 120-minute forecast 

Sector PODy PODn FAR CSI Gilbert TSS Heidke BR FWC 
ZAU83 .601 .745 .478 .391 .209 .347 .303 1.09 .369 
ZDC32 .461 .891 .528 .290 .215 .354 .317 1.01 .169 
ZID66 .450 .845 .581 .244 .156 .297 .239 1.04 .204 
ZNY42 .569 .764 .449 .390 .198 .335 .293 1.03 .339 
ZOB66 .475 .837 .531 .283 .169 .313 .262 1.03 .229 

 

Table 11 Verification statistical table for 120 minute forecast (80%) 

Sector PODy PODn FAR CSI Gilbert TSS Heidke BR FWC 
ZAU83 .580 .733 .531 .355 .178 .314 .266 1.16 .367 
ZDC32 .434 .900 .586 .249 .190 .336 .289 1.04 .139 
ZID66 .405 .862 .640 .200 .127 .269 .198 1.09 .176 



ZNY42 .586 .744 .453 .396 .206 .331 .303 1.04 .360 
ZOB66 .472 .828 .567 .273 .164 .301 .254 1.07 .228 
 

Table 12 Verification statistical table for ZDC32 using different pixel size grids  

Size PODy PODn FAR CSI Gilbert TSS Heidke BR OWC FWC 
1 Mile .461 .891 .528 .290 .215 .354 .317 1.01 .167 .169 

10 Mile .548 .781 .456 .369 .221 .331 .332 1.02 .279 .284 
20 Mile .592 .730 .426 .409 .211 .322 .340 1.03 .356 .376 

 

 

4.2 Forecast Accuracy on Weather Intensity 

4.2.1 Sector Bias Rate 

Figure 3 displays the ZDC32 sector BR 
histograms at FL300 (CWAM avoidance probability 
of 60% and 80%) for 30-minute, 60-minute, 90-
minute, and 120-minute forecasts. The figure 
indicates the worsened intensity forecast accuracies 
for longer forecast time horizons. It also illustrates 
that the forecast intensity accuracy for 60% 
avoidance probability is better than that for 80% 
avoidance probability. These patterns also hold for 
other sectors. 

4.2.2 Correlation between FWC and OWC  

The correlations between forecast and 
observation weather coverage of ZDC32 sector at 
FL300 using CWAM with 60% and 80% avoidance 
probability for different forecast times are listed in 
Table 13 and Table 14, respectively.  

Once again, the same trend is observed in these 
tables, namely that longer-term forecasts and higher 
avoidance probabilities produce a lower correlation 
between forecast and observation coverage. 
However, when compared with Washington Center 
(ZDC) in Table 6 and 7, both the linear and nonlinear 
correlations are poorer. For sector ZDC32, about 
32% and 39% of the total variation of actual weather 
intensity are unexplained by the 1-hour forecast using 
60% and 80% aircraft avoidance probabilities, 
respectively.  

The correlations between 60-minute forecasts 
and observation weather coverage using CWAM 
60% and 80% avoidance probabilities for several 
other high-demands and high-altitude sectors are 
listed in Table 6 and 7, respectively. Poor forecast 
intensity accuracy occurred for these sectors as well. 

This underscores the challenge to provide accurate 
and useful weather forecasts for smaller areas. 

4.3 CWAM Forecast Accuracy on Weather 
Horizontal Positions for Sectors 

4.3.1 Sector CSI 

Figure 4 displays the ZDC32 sector CSI 
histograms at FL300 for CWAM (60% and 80% 
avoidance probability) forecast times of 30-minute, 
60-minute, 90-minute, and 120-minute. The figure 
shows again that as the time horizon extends out, the 
forecasts of weather intensity and location accuracy 
become worse. The same conclusions are true for 
other sectors as well. 

4.3.2 Sector Forecast Horizontal Location 
Error Rate 

Table 17 lists the average of ZDC32 sector 
forecast Location Error Rate (LER) values for 
CWAM (avoidance probability of 60% and 80% at 
FL300) forecast times of 30-minute, 60-minute, 90-
minute, and 120-minute. As stated before, the data 
were filtered to include only those having sector FB 
values between 0.9 and 1.1 only.  

The table illustrates that on average, about 7%, 
10%, 14%, and 15% of forecast locations differ from 
the actual observations by more than 20 miles in 
ZDC32 for forecast times of 30-minutes, 60-minutes, 
90-minutes, and 120-minutes, respectively, using 
CWAM avoidance probabilities of 60%. The average 
forecast location errors are smaller than the 
corresponding errors in Table 8 for ZDC center. This 
is understandable because the location errors of 
forecast and actual weather are limited by the sector 
boundary. 

The average forecast location error LER of 
several other sectors using 60-minute forecast and 
observation data with the sector FB values between 



0.9 and 1.1 are listed in Table 18 for 60% and 80% 
aircraft avoidance probabilities, respectively. The 
table shows forecast locations differed from the 
actual weather by more than 20 miles ranged from 8 
to 14% for 60% avoidance probability forecast. 

4.4 Quality Assessment of CWAM Forecast 
Times 

To illustrate the differences between the 
convective forecast times and actual weather times, 
sector weather intensities were traced by both 120-
minute forecast weather coverage (FWC) and the 
actual observation (OWC) at FL300. Figures 5 and 6 
show the time series of the weather coverage of 
sector ZAU83, ZDC32, ZID66, and ZOB66 with 

CWAM flight avoidance probabilities of 60% and 
80% respectively. In these figures, Eastern Daylight 
Time (EDT) is displayed in minutes on the x-axis, 
ranging from 0 to 1440; the sector weather intensities 
for forecast FWC (red lines) and observed weather 
OWC (blue line) are on the y-axis, ranging from 0 to 
1. 

The time distributions in the figures show the 
forecasts differ from the actual weather, sometimes 
the two have a time-lagged correlation; and for the 
cases examined, one tendency seems clear, i.e., the 
forecast is always more severe than the actual 
weather is. 

 

 
Figure 3 Sector ZDC32 BR histograms for different CWAM forecast times with 60% and 80% 

avoidance probability, respectively. 

Table 13 Correlations between the sector ZDC32 observed and forecast weather coverage (aircraft 
avoidance probability of 60%) 

Forecast r rl ru 1- r2 Spearman’s  95% CI 
30 min. .915 .905 .923 .164 .845 .019 
60 min. .822 .803 .840 .324 .726 .031 
90 min. .726 .698 .752 .473 .609 .043 

120 min. .603 .565 .638 .637 .481 .048 
 

Table 14 Correlations between the sector ZDC32 observed and forecast weather coverage (aircraft 
avoidance probability of 80%) 

Forecast r rl ru 1- r2 Spearman’s  95% CI 

30 min. .885 .870 .898 .217 .796 .027 
60 min. .783 .757 .807 .386 .668 .039 
90 min. .682 .647 .715 .534 .554 .048 

120 min. .539 .492 .583 .710 .402 .057 
. 



Table 15 Correlations between observed and 60-minute forecast weather coverage for sectors at 
FL300 (avoidance probability of 60%) 

Forecast r rl ru 1- r2 Spearman’s  95% CI 
ZAU83 .827 .818 .837 .316 .660 .023 
ZID66 .724 .709 .739 .475 .627 .023 
ZID87 .784 .772 .795 .386 .621 .022 
ZNY42 .706 .689 .722 .502 .551 .028 
ZOB66 .794 .783 .804 .370 .631 .022 
ZTL50 .710 .696 .723 .496 .598 .020 

 

Table 16 Correlations between observed and forecast weather coverage for sectors at FL300 
(avoidance probability of 80%) 

Forecast r rl ru 1- r2 Spearman’s  95% CI 
ZAU83 .762 .748 .776 .419 .541 .030 
ZID66 .588 .564 .612 .654 .447 .034 
ZID87 .601 .579 .623 .639 .428 .032 
ZNY42 .525 .496 .552 .725 .402 .037 
ZOB66 .663 .644 .681 .561 .489 .031 
ZTL50 .530 .508 .552 .719 .436 .028 

 

 
Figure 4 Sector ZDC CSI histograms for different CWAM forecast times with 60% and 80% 

avoidance probability, respectively. 

Table 17 Average of Sector ZDC32 LER (20 miles 
apart at least) 

 Prob. Of 60% Prob. Of 80% 
30-minute 0.068 0.081 
60-minute 0.101 0.110 
90-minute 0.143 0.148 

120-minute 0.150 0.193 
 

 

Table 18 Sector ZDC32 location error rates for 20 
miles apart at least (0.9<FB<1.1) 

 Prob. Of 60% Prob. Of 80% 
ZAU83 0.078 0.078 
ZID66 0.141 0.160 
ZID87 0.087 0.137 
ZNY42 0.101 0.102 
ZOB66 0.108 0.118 
ZTL50 0.135 0.207 

 



 
Figure 5 Sector FWC and OWC time series distributions of sector ZAU83, ZDC32, ZID66, and 

ZOB66 for CWAM avoidance probability of 60% on July 17, 2007. 

 
Figure 6 Sector FWC and OWC time series distributions of sector ZAU83, ZDC32, ZID66, and 

ZOB66 for CWAM avoidance probability of 80% on July 17, 2007.



5. Sector Observed Weather Coverage 
Predicted by Multiple Sector Forecasts 

 

5.1 Sector Weather Coverage Index 

Airspace convective weather coverage has been 
used by traffic controllers to estimate the traffic 
reduction for many years. The 3D convective weather 
coverage was originally proposed by taking into 
account the forecasted echo tops at different flight 
levels in CWAM [23]. The CWAM weather area at a 
flight level with a given aircraft deviation probability 
threshold in a sector was used for the weather 
coverage at that altitude. At each level, the ratio of 
the coverage in a sector to the sector area, Sw, can be 
calculated. The 3-D sector convective Weather 
Coverage Index (WCI) is then the average of weather 
coverage for all flight levels inside a sector: 

                                                (2) 

Here  is a constant, and nFL is the 
total number of flight levels separated by 1000 ft in 
the sector. The WCI’s range is from 0 to 1, where 0 

means no weather in the sector and the value of 1 
indicates a complete coverage by weather.  

The WCI can be used as a model to translate 
weather forecast into air traffic and sector capacity. 
The errors of sector capacity predictions are mainly 
caused by the inaccuracy of forecast which can be 
estimated by the correlations between weather 
forecast coverage, WCIf, and observation coverage, 
WCIo, for a sector [24]. Table 19 and 20 list the 
Pearson correlations for different forecast time 
horizons and sectors with aircraft avoidance 
probability of 60% and 80%. The results correspond 
to our previous findings that longer-term forecasts 
have lower WCI correlations, and that lower 
avoidance probabilities have WCI higher correlation. 
The correlation between WCIf and WCIo ranged from 
0.6 to 0.7 for 2 hour predictions with 60% aircraft 
avoidance probability. That means more than 50% of 
120-minute forecasts may not have the precision to 
be really useful. Therefore, in order to use WCI 
weather translation models in TFM operations one 
has to improve the prediction for the sector 
observation weather coverage, especially for 120-
minute horizons. 

 

Table 19 Correlations between observed and forecast WCI for sectors (avoidance probability of 60%) 

Forecast 30-minute 60-minute 90-minute 120-minute 
ZAU83 .91 .86 .80 .72 
ZDC32 .88 .81 .72 .61 
ZID66 .86 .79 .70 .58 
ZID87 .91 .86 .78 .69 
ZOB66 .90 .85 .80 .71 
ZTL50 .84 .74 .62 .48 

 

Table 20 Correlations between observed and forecast WCI for sectors (avoidance probability of 80%) 

Forecast 30-minute 60-minute 90-minute 120-minute 
ZAU83 .85 .80 .74 .66 
ZDC32 .78 .71 .62 .51 
ZID66 .76 .68 .59 .48 
ZID87 .84 .78 .70 .59 
ZOB66 .83 .76 .70 .60 
ZTL50 .70 .59 .45 .32 

 

 



5.2 An Approach to Improve Sector Observed 
WCI Prediction 

The forecast evaluation of airspace intensity 
errors from section 3 and 4 indicates that the 
correlation between weather forecast and observation 
coverage for a center is much better than that for an 
individual sector. Hence the prediction of a sector 
actual observation WCIo could be improved by using 
not only the sector forecast coverage but also to take 
into account of the forecast coverage for adjacent 
sectors. 

The sector observed actual 3D weather coverage 
was determined by the Multiple Linear Regression 
(MLR) model using multiple sectors (n) 3D forecast 
coverage as, 

 
  (3) 

Here  and can be derived by MLR on 
training data that include both of the sector WCIo and 
n sector WCIf. Consequently, using WCIf from the 
test data, the correlation between sector WCIo and the 

prediction of can be compared 

with the correlations between WCIo and WCIf for the 
same sector using the same test data. To validate the 
results, tenfold cross-validation and paired t-test were 
used in this paper to compare the two prediction 
methods. 

In tenfold cross-validation the data was first 
partitioned into 10 equally (or nearly equally) sized 
segments or folds. Subsequently, 10 iterations of 
training and validation were performed such that 
within each iteration a different fold of the data was 
held out for validation test while the remaining 9 
folds were used for MLR process training to compute 

 and . The constructed MLR model and using 
single sector forecast were then applied to make 
predictions about the sector actual weather coverage. 
The accuracy of each was defined by the correlation 
analysis between the predictions and the observations 
in the test fold. The paired statistical hypothesis tests, 
paired Student’s t-test, were performed for the 
assessment of the statistical significances for the 

difference of two methods obtained through cross-
validation. 

To illustrate this approach, the results for 
ZDC32 are shown below. The WCIo of ZDC32 and 
2-hour forecast WCIf of ZDC32 with 8 adjacent 
sectors (ZDC04, ZDC12, ZDC16, ZDC36, ZDC52, 
ZTL33, ZTL42, and ZTL43) were collected using 
CWAM data with 60% aircraft avoidance probability 
from July to August in 2007. Tenfold group cross-
validation was used for the MLR model validation. 
The data were randomly divided into 10 groups with 
similar sample sizes. In cross-validation, a MLR 
model was constructed, each time by dropping a 
different group of the data and applying the MLR to 
the remaining 9 groups of data. The one being 
dropped was used to test the MLR model. At the end 
of this procedure, 10 predictions assembled from the 
dropped cases are compared with the observed target, 
ZDC32 WCIo, and the correlations between the MLR 
predictions and the targets were computed. The 
correlation between ZDC32 WCIf and ZDC32 WCIo 
was also calculated for the 10 individual testing 
groups (labeled as “Single” in the following tables). 
For a tenfold cross-validation, the correlation results 
are listed in Table 21. 

As expected the results show that the 
correlations between the ZDC32 observation weather 
coverage and nine sector 2-hour forecast MLR 
predictions are all better than the ones using single 
ZDC32 2-hour forecast for all 10 cases. Using paired 
sample t-test to test a null hypothesis that the sample 
comes from the same normal distribution, resulted in 
a p-value is about 0.000008. This test rejects the null 
hypothesis at the default 0.05 significance level, 
namely the MLR prediction of the actual weather 
coverage is notably better than that by using the 
ZDC32 forecast along at least at the 95% confidence 
level. To ensure the randomness of 10 group 
selection, the process was repeated for 100 times. All 
p-values are much less than 0.05 with an average of 
0.00016; the repeated experiments for different 
tenfold cross-validation produced the similar results, 
which certifies our previous conclusion, even with 
50% errors from exact p-value [25]. However the 
correlation using adjacent sector forecast coverage 
MLR model is still not strong; the improvement for 
the correlation is only about 6%. 

 

 



Table 21 Tenfold correlation result of MLR and single forecast for ZDC32  

Group 1 2 3 4 5 6 7 8 9 10 Mean 
MLR .605 .693 .728 .661 .669 .717 .618 .658 .685 .629 0.666 
Single .574 .637 .672 .629 .608 .690 .568 .611 .647 .610 0.625 

 

6. Concluding Remarks 
 

This paper presents standard forecast 
verification measure scores for weather intensities 
and locations at center and sector levels. It also 
presents an approach to improve the prediction of 
sector weather coverage by multiple sector forecasts. 
The weather intensity (weather severity) assessment 
was carried out by using the correlations between 
forecast and actual weather observation airspace 
coverage. The weather forecast horizontal location 
accuracy was evaluated by forecast location errors. 
The improvement on prediction of weather coverage 
was determined by the correlation between actual 
sector weather coverage and prediction. The forecast 
evaluation and analysis was accomplished by using 
actual and forecast Convective Weather Avoidance 
Model data from June through September of 2007. 

For forecast times under one-hour, the errors in 
forecast of weather intensity and location in centers 
are relatively low. The study showed that the 1-hours 
forecast intensity and horizontal location errors were 
about 0.12 and 0.13 for 60% aircraft avoidance 
probability forecast. We found that the correlations 
between sector 1-hour forecast and actual weather 
coverage were not strong, the sector forecast intensity 
errors ranging from 0.3 to 0.5 for 60% avoidance 
probability and 0.4 to 0.7 for 80%; the horizontal 
location errors were relatively small, under 0.15 for 
60% avoidance probability and under 0.2 for 80%. 

The paper also introduces an approach to 
estimate the sector three-dimensional actual weather 
coverage by using multiple sector forecasts which 
turned out to produce better prediction. Using MLR 
model for this approach, the correlations between 
actual observation and the model prediction can be 
significantly improved by several percents at 95% 
confidence level. 
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