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Abstract

This paper presents a detailed convective
forecast accuracy analysis at center and sector levels.
The study is aimed to provide more meaningful
forecast verification measures to aviation community,
as well as to obtain useful information leading to the
improvements in the weather translation capacity
models.

In general, the vast majority of forecast
verification efforts over past decades have been on
the calculation of traditional standard verification
measure scores over forecast and observation data
analyses onto grids. These verification measures
based on the binary classification have been applied
in quality assurance of weather forecast products at
the national level for many years. Our research
focuses on the forecast at the center and sector levels.
We calculate the standard forecast verification
measure scores for en-route air traffic centers and
sectors first, followed by conducting the forecast
validation analysis and related verification measures
for weather intensities and locations at centers and
sectors levels. An approach to improve the prediction
of sector weather coverage by multiple sector
forecasts is then developed. The weather severe
intensity assessment was carried out by using the
correlations between forecast and actual weather
observation airspace coverage. The weather forecast
accuracy on horizontal location was assessed by
examining the forecast errors. The improvement in
prediction of weather coverage was determined by
the correlation between actual sector weather
coverage and prediction.

The analysis was accomplished by using
observed and forecasted Convective Weather
Avoidance Model (CWAM) data collected from June
to September in 2007. CWAM zero-minute forecast
data with aircraft avoidance probability of 60% and
80% are used as the actual weather observation. All
forecast measurements are based on 30-minute, 60-
minute, 90-minute, and 120-minute forecasts with the
same avoidance probabilities.

The forecast accuracy analysis for times under
one-hour showed that the errors in intensity and
location for center forecast are relatively low. For
example, 1-hour forecast intensity and horizontal
location errors for ZDC center were about 0.12 and
0.13. However, the correlation between sector 1-hour
forecast and actual weather coverage was weak, for
sector ZDC32, about 32% of the total variation of
observation weather intensity was unexplained by
forecast; the sector horizontal location error was
about 0.10.

The paper also introduces an approach to
estimate the sector three-dimensional actual weather
coverage by using multiple sector forecasts, which
turned out to produce better predictions. Using
Multiple Linear Regression (MLR) model for this
approach, the correlations between actual observation
and the multiple sector forecast model prediction
improved by several percents at 95% confidence
level in comparison with single sector forecast.

1. Introduction

Flight delays have been a serious problem in the
National Airspace System (NAS) for many years.
Statistics shows that approximately 70% of the delays
are attributed to weather and up to two third of
weather delays could be avoidable [1]. Severe
convective weather accounts for a significant fraction
of these delays. Because of the significant economic
losses caused by these delays, there is a need to
improve the air traffic flow management (TFM)
operations.

TFM manages air traffic flow to balance the air
traffic demand against en route airspace capacity that
has been reduced by convective weather. During
severe weather, TFM may perform advanced airspace
management planning. For example, the air traffic
controllers may ask flights to hold or to change routes
to stay clear of weather to maintain safety. Currently,
most weather support to TFM is done manually, with



weather displays that must be interpreted by air
traffic managers and controllers. Since the inaccurate
estimate of the reduction of sector capacities often
produces unnecessary delays, it is vital to develop
automated decision support tools based on the
reliable models to translate weather forecast
information into its impacts on airspace.

Efforts have been made during the past several
years to characterize the dynamic capacity during
convective weather based on short-term and long-
term forecasts. Several algorithms translating weather
forecast information into appropriate TFM
constraints, such as sector dynamic capacity [2-7],
have been developed. These algorithms are based on
concepts, ranging from simple weather precipitation
intensity coverage in sector to more complex
methods utilizing weather intensity and location
information in sector, air traffic patterns, and traffic
flows. Given the uncertainty associated with forecast
of the weather intensity and location, one might
wonder if more sophisticated models would always
produce better estimates of dynamic sector capacity
than simpler ones. In other words, forecast
uncertainty bounds must be taken into accounts in
estimates and predictions.

The weather forecast uncertainty directly affects
the accuracy of the predicted dynamic sector
capacity. The forecast verification efforts over the
past few decades have been focused on the
calculation of traditional standard verification
measure scores over forecast and observation data
analyses onto grids [8-10]. These verification
measures are based on binary classification and have
been applied in quality assurance of weather forecast
products at the national level for many years. These
measures are often difficult to interpret in meaningful
physical terms, and are insufficient to determine the
accuracy of forecast on weather intensity and location
at air traffic center and sector levels.

In this paper, the standard forecast verification
measure scores computed using the binary
classification method for en-route air traffic centers
and sectors are presented. The enhanced measures to
evaluate the accuracy and errors of deterministic
weather forecast upon the weather severity, weather
location, and timing of weather intensity at center and
sector levels were discussed. An approach to improve
the prediction of sector weather coverage by using
multiple sector forecasts was analyzed. The paper is

organized as follows. A brief review of the
Convective Weather Avoidance Model (CWAM)
weather forecast and the descriptions of forecast
verification mechanics and evaluation measures used
for forecast evaluation are provided in section 2. The
results using these forecast evaluation measures at air
traffic centers are presented in section 3. Section 4
reports the results on CWAM forecast evaluations for
sectors. An approach for improving sector weather
forecast coverage accuracy by using forecast in
multiple sectors is presented in section 5. Finally,
conclusion remarks are provided in Section 6.

2. Forecast Evaluation Methodology
2.1 CWAM Forecast Data

CWAM is developed using the Corridor
Integrated Weather System (CIWS), a product of
MIT Lincoln Laboratory (LL) [11]. CIWS combines
data from dozens of weather radars with satellite
data, surface observations, and numerical weather
models in order to improve the accuracy and
timeliness of storm severity information. It provides
automated, real-time, high spatial resolution (about
1km), three-dimensional forecast information of
storms at a 5S-minute update rate. CIWS data includes
precipitation measured by the vertically integrated
liquid (VIL) and the (storm) echo tops forecast.
CIWS is used for air traffic en route control tactical
planning with 0-120 minute forecast lead time and in
forecast increments of 15 minutes. A study on CIWS
accuracy at forecasting regions of storm reflectivity
has been published recently [2, 12].

Based on CIWS, LL has developed the
Convective Weather Avoidance Model (CWAM).
CWAM models the flight deviation behavior around
severe weather as a function of reflectivity level and
echo tops [13] and translates convective weather
information from CIWS data into Weather
Avoidance Field (WAF) at each flight altitude level.
The WAF provides an estimate of the probability of
aircraft deviation around severe weather in en route
airspace as a function of horizontal location. For each
of the WAF files, the data include high spatial
resolution weather polygons of predicted aircraft
avoidance with different probability thresholds, such
as 60% or 80%, for each of the flight levels from
25000 ft (FL250) up to 45000 ft (FL450), in 1000 ft
increments. The CWAM data include forecasted
WAFs from 0 to 2 hours with a 15 minutes forecast



interval and an update rate of 5 minutes. The weather
information used in this paper is from the initial
Convective Weather Avoidance Model, CWAMI.
CWAM?2 and CWAM3 versions were developed by
LL, the performance of the two models varied
slightly from CWAMI, especially on horizontal
levels [12, 14].

We select a representative CWAM 60% or 80%
deviation probability threshold to covert the
corresponding WAFs into a deterministic forecast
and then use a forecast evaluation approach that is
similar to previous studies of deterministic weather
forecasts. CWAM weather data from June to
September in 2007 is used for this study. CWAM
zero-minute forecast data with 60% and 80% aircraft
avoidance probabilities are used as the actual weather
observation and all forecast measurements are based
on same avoidance probability CWAM forecasts at
30-minute, 60-minute, 90-minute, and 120-minute
time horizons.

2.2 Standard Forecast Verification Measures

The quality assessment on the performance of
convective weather forecast products has been
ongoing for many years. Over the past decades, a
number of studies have been conducted to evaluate
the forecast accuracy of the aviation convective
weather products using traditional standard forecast
verification measures. The standard statistical
verification measures are computed from a basic 2X2
contingency table, Table 1, for a dichotomous
evaluation (e.g., “Yes”/No”). The “Yes”/“No”
forecast/observation pairs are used to create the
statistics in the study.

Table 1 Basic contingency table for dichotomous
(“Yes”/”No”) events. Elements in the cells are the
pixel counts of forecast-observation pairs

Observation
Yes No
Forecast Yes YY YN
No NY NN

The method adopts the concept of binary
classification in which the forecasts and the actual
weather observations are compared pixel by pixel on
a high-resolution grid in the specific horizontal

region for analysis. All grid pixels in the region were
initially assigned either a “Yes” or a “No” value as
follows: for a forecast, a “Yes” pixel on the grid
designates that it has intersection with any part of the
weather forecast polygons, whereas a “No” means
otherwise; for an observation, pixels on the grid with
a “Yes” value indicate the actual weather observation
area, whereas a “No” indicates no weather was
observed. A true positive pixel of forecast is assigned
if the pixel is a “Yes” pixel for both forecast and
observation and a true negative pixel of forecast
assigned if the pixel is a “No” pixel for both forecast
and observation. The True Positive pixel counts,
denoted as YY, are calculated as the total true
positive pixels of forecasts in the region. The True
Negative pixel counts, NN, are computed as the total
true negative pixels of forecasts. The False Positive
(YN) is then equal to the number of total “Yes”
forecast pixels minus the YY. The False Negative
(NY) is the difference between the total observation
“Yes” pixels and the YY. The total number of pixels
in the region on the grid, denoted as N, is the sum of
YY, YN, NY and NN.

Using the dichotomous forecast statistics
generated in Table 1, some frequently used forecast
verification measures are described briefly below.
More information about these measures can be found
in Ref 15-18.

The Probability of Detection for true positives
(PODy) is the proportion of “Yes” observed events
that were correctly forecast. PODy =YY/ (YY + NY).
It has a range of 0 to 1. If N¥Y= 0, then the score goes
to 1, which is the best value possible.

The Probability of Detection for true negatives
(PODn) is the proportion of “No” observed events
that were correctly forecast. PODn = NN / (NN +
YN). Its values also range from 0 to 1. If YN= 0, then
the score goes to 1, the best one can expect.

The False Alarm Ratio (FAR) is the proportion
of “Yes” values incorrectly forecasted. FAR = YN/
(YY + YN). It has a range from O to 1. If YY= 0, then
the score goes 1, which is the worst value possible.
For a perfect forecast, PODy=1 and FAR=0 (or
PODn=1).

The Critical Success Index (CSI) is the
proportion of true positives that were either forecast
or observed. CSI = YY/ (YY + NY + YN). Its values
range from 0 to 1 with a value of 1 indicating a



perfect forecast score. The CSI is more complete
measure than PODy, PODn, or FAR. It depends on
both false positives and false negatives, namely the
CSI is sensitive to the accuracy of both forecast
weather intensity and locations.

The Gilbert Skill Score (Gilbert) is the CSI
corrected for the number of true positives expected
by random chance. Gilbert = (YY-C)/(YY-C+ YN
+ NY), where C is the number of true positives
expected by chance. The probability of true positives
expected by random chance is (YY + YN)*(YY + NY)
/N. So that, C = (YY + YN)*(YY + NY) /N.

The True Skill Statistic (7.SS) is a measure of the
ability of the forecast to discriminate between "Yes"
and "No" observations. 7SS = PODy + PODn — 1.

The Heidke Skill Score (Heidke) is the percent
correct (true positives and true negatives of forecast)
adjusted by the number expected by random chance.
Heidke = (YY + NN - B) / (N — B), where B is the
number of true positives and true negatives expected
by chance. B= [(YY + YN)*(YY + NY) + (NN +
YN)*(NN + NY)] / N.

Bias Rate (BR) is defined as the ratio of the
number of “Yes” forecasts to the average number of
“Yes” forecasts and “Yes” observations: BR = (YY +
YN) /(2*YY + NY+YN). The BR value ranges from 0
to 2, it is a measure of over- (>1) or under-forecasting
(<I). An unbiased forecast has a BR value of 1.

FWC is the ratio of the forecast domain area
where convection is expected to occur and the region
area. FWC = (YY + YN) / N. This measure does not
depend on the observations.

OWC is the ratio of the weather observation area
and the region area. OWC = (YY + NY) / N. This
measure does not depend on the forecast.

2.3 Forecast Evaluation Measures for

Intensity and Location

The forecast evaluation developed in this paper
focuses on the capacity prediction accuracy for
centers and sectors during severe weather. The
existing models for translating en route convective
weather forecasts into weather impacted airspace
capacities rely on the accuracy of forecast of the
weather intensities and weather locations [5-6, 19-22,
24]. The standard wverification measures give

statistical tools to evaluate the forecast and compare
different forecast products. However, the measures
do not provide quantitative values on the accuracy of
forecast intensity and location in terms of errors. The
forecast evaluation methods described in this
subsection are used to verify the accuracy of forecast
of the weather intensity and location quantitatively at
center and sector levels.

For many years, sector weather coverage has
been used as a measure of weather intensity to

estimate reduction in airspace capacity. The
evaluation measures of convective weather
observation coverage (OWC), weather forecast

coverage (FWC), and Forecast Bias rate (BR) are
used to score the forecast accuracy on weather
intensity qualitatively. Higher values of weather
coverage indicate worse weather in a sector. To
evaluate the  forecast intensity  accuracies
quantitatively, the correlation between FWC and
OWC is used to calculate the forecast intensity errors.
The correlation might provide not only the
knowledge on the forecast intensity accuracies in the
airspaces but also the prediction accuracy of the
airspace capacity using forecast weather coverage
method.

To study the impact of forecast location
accuracy on airspace sector capacity predictions
alone, we can examine the cases in which forecast
weather intensity is assumed to be as same as the
actual weather intensity in the airspace. Under this
condition (BR = 1), YN is as same as NY. Forecast
location error rate for 1-mile at least can be estimated
by YN/(YY+YN) or approximately defined by
(YN+ NY)2.00/(YY + (YN+ NY)2.0) = (1-
CSI)/(1+CSI) if BR is close to 1.

Since comparison of high resolution (1-mile)
forecast pixels to observation pixels can be affected
by small variations in weather location that are not of
concern to air traffic management operation, a
revised YY, denoted as YY,, was used to evaluate
the forecast accuracy for the horizontal location.
Based on the same forecast and observation weather
“Yes” /“No” grids, the true positive counts, Y'Y, of
binary classification were re-calculated using a
distance threshold of 20 miles between the forecast
and observation “Yes” pixels in a given airspace (a
center or a sector). A true positive forecast was
assigned to a “Yes” forecast pixel if any observation
“Yes” pixels in the same sector or center could be



detected within 20 miles of its location. Likewise, a
true positive observation was assigned to a “Yes”
observation pixel if its distance to any forecast pixels
in the same sector or center is within 20 miles. The
true positive counts, Y'Y, is defined as the minimum
of the total true positive pixels of forecasts and the
total true positive pixels of observations in a center or
a sector to avoid double counting. Obviously, YY is
never greater than YY,. The corresponding false
positive YN, is equal to the number of total “Yes”
forecast pixels in the sector or center minus Y'Y y.
The false negative NY, is the difference between the
total observation “Yes” pixels in the sector or center
and YYQ().

The forecast Location Error Rate, LER, is
defined as

LER = (YN20+ NY20) / (2*YY20 + YN20+ NYQ()) (1)

When the airspace FB is 1, then YN,;= NYand
LER =YN2()/ (YY20 + YNZ()) = NYZ()/ (YY20 + NYZ()).
So the LERs give the errors on the forecasted
horizontal locations if FB is close to 1. For example,
given the sector FB of 1, a LER of 0.2 means about
20% of the weather forecast in the airspace occurred
at locations more than 20 miles from the actual
observed weather. The LER value ranges from 0 to 1.
A LER value of 0 indicates that forecasts match
actual observations within 20 miles and a LER value
of 1 means that the all forecasts are more than 20
miles from weather observations. The LER values
give the inaccuracy of the forecast horizontal location
to the observation in the airspace. For evaluations of
the forecast location accuracies using airspace FLE,
only those data where the BR values are in the range
of 0.9 and 1.1 were collected and analyzed in this
study. This BR requirement is to ensure that the
forecast weather intensity is close to the actual
weather intensity in the airspace so that LER would
depend on the location accuracy only.

2.4 Correlation Analysis

Correlation analysis between forecast and actual
weather coverage was used to evaluate the center and
sector forecast accuracy on weather intensity. The
strength of the linear relationship between the
weather forecast and actual weather observation is
described by the Pearson correlation coefficient » and
95% confidence lower and upper bounds. The
confidence bounds of the correlation are based on an
asymptotic normal distribution of 0.5*log((1+ r)/(1-

r)) assumption, with an approximate variance equal
to 1/(n-3). The r;and r, denote lower and upper
bounds for a 95% confidence interval, respectively.
These bounds would be accurate for large samples
when the two variables have multivariate normal
distributions. A Pearson correlation greater than .8 is
generally considered as strong whereas a correlation
of less than .5 is generally treated as weak. As an
example, if » = .80, then  * = .64, which means that
64% of the total variation in the actual weather can
be explained by the forecast using a linear
relationship. The other 36% of the total variation of
actual weather remains unexplained by forecast. In
this paper, 1- 7* has been used to measure the weather
intensity error for the forecast quantitatively.

The Spearman’s rank correlation coefficient p
was also used for evaluating the nonlinear
relationship between forecast and observation. The
95% confidence interval (CI) around the sample
Spearman correlation was constructed and derived
from 5000 "non-parametric" bootstrap samples of
observed frequency distribution of the estimates.

3. Evaluations of CWAM Forecast for
Centers

The forecast analysis is based on the CWAM
data collected from the five centers in northeast
region of US. The five centers are Chicago (ZAU),
Washington (ZDC), Indianapolis (ZID), New York
(ZNY), and Cleveland center (ZOB).

3.1 Standard Forecast Verification Measures

The average summaries of standard verification
measures are computed using CWAM data on ten
bad weather days (6/12, 7/09, 7/10, 7/11, 7/17, 7/18,
7/19, 7/19 and 8/9) during the convective season of
2007. The verification measure scores are listed in
Table 2 and Table 3 for 60-minute and 120-minute
forecasts respectively. The measures are calculated
using the same 60% avoidance probability at FL300
on the grid of 1X1 mile pixels.

These 2 tables indict two general trends. First,
there is over-forecasting in all cases (BR>1). Second,
for any particular center, both the forecast weather
coverage (FWC) and Bias Rate (BR) show little
change in different time horizons. For all other
verification measures, the scores in Table 3 are worse
than that in Table 2, meaning that short term forecast



are more accurate as compared to long term ones.
That is, we have a better estimate about what the
weather will be in 1 hour than that in 2 hours.

Table 4 displays the standard verification
measure average scores computed using the 120-
minute forecast with the 80% aircraft deviation
threshold. Compared to Table 3, the scores are worse.

Table 2 Verification statistical table for 60-minute forecast

Center PODy PODn FAR CSI | Gilbert TS8Ss Heidke BR Fwc
ZAU 735 .930 434 473 418 .666 .560 1.17 .169
7ZDC .653 .963 .506 387 361 618 .509 1.15 .074
ZI1D .643 948 528 .370 335 .593 A77 1.17 .097
ZNY 635 928 .499 .386 337 .565 479 1.14 132
Z0B .655 .952 .560 351 324 .608 465 1.22 .083

Table 3 Verification statistical table for 120-minute forecast

Center PODy PODn FAR CSI | Gilbert TSS Heidke BR FwcC
ZAU 614 .889 541 .349 278 .504 406 1.17 .191
ZDC 477 .947 .635 247 216 425 .336 1.13 .079
ZI1D 435 931 .651 233 .192 367 296 1.11 .100
ZNY 462 913 .598 266 211 376 321 1.07 129
7Z0B 478 .936 .674 232 .200 416 311 1.21 .090

Table 4 Verification statistical summaries for 120-minute forecast (80%)

Center PODy PODn FAR CSI | Gilbert MY Heidke BR FWC
ZAU .566 .908 .629 282 233 475 351 1.24 141
ZDC 435 952 733 .184 .162 .389 .266 1.24 .061
Z1D .392 931 .764 .162 132 325 218 1.24 085
ZNY 445 911 .696 213 171 357 269 1.18 114
7Z0B .443 .942 768 .170 .149 .386 .240 1.31 073

Table 5 Verification statistical summary for ZDC using different pixel size grids
Pixel Size PODy | PODn | FAR | CSI | Gilbert | TSS | Heidke BR FwcC | owcC
1X1 Mile A77 .947 635 | 247 216 425 336 1.13 .079 .063
10X10 Mile .536 931 579 | 297 253 469 .386 1.12 108 .088
20X20 Mile .585 918 532 | 341 285 .504 425 1.11 137 113

Table 5 lists the standard verification measures
for ZDC center using 120-minute forecast with 60%
threshold on the grids with different pixel sizes. For
large pixel size (10X10 or 20X20 miles) case, the
“Yes” /“No” pixels are assigned using the score box
definitions from Figure 2-3 in Ref. 2: a large “Yes”
pixel (e.g. for 20X20 mile grid) is assigned if the
numbers of 1X1 mile “Yes” pixels in the large size

pixel are greater than 16 (about 4% of the total 1X1
mile pixels); a “No” means otherwise. As the pixel
size increases, the standard verification measure
scores improve. Since the OWC are higher for the
larger size grid, the actual observation coverage
accuracy for the forecast verification is somewhat
reduced if the resolution of CWAM observation is
about 1 mile. For the subsequent comparisons
investigated in this study, we limit our CWAM
forecast evaluations on the 1-mile scale.



3.2 Forecast Accuracy on Weather Intensity

The results of weather intensity forecast
accuracy for ZDC are described in this subsection.

3.2.1 Center Bias Rate

Figure 1 displays the ZDC center BR histograms
at FL300 (CWAM with avoidance probability of 60%
and 80%) for 30-minute, 60-minute, 90-minute, and
120-minute forecasts. The center BR for longer
forecast times are spread more widely from 1,
indicating deterioration in forecast intensity accuracy.
It also shows that the forecast intensity accuracy for
60% is better than that for 80%.
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3.2.2 Correlation between FWC and OWC

The correlations between forecast and observed
weather coverage of ZDC at FL300 using CWAM
with avoidance probability of 60% and 80% for
different forecast time horizons are listed in Table 6
and Table 7, respectively. The Pearson correlations
are displayed by the correlation coefficient r, 95%
confidence lower, 7, and upper bounds, r,, and 1- P
The Spearman’s rank correlations p and 95%

confidence intervals of the rank correlations are also
listed in these tables.
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Figure 1 Center ZDC BR histograms for different CWAM forecast times with 60% and 80%

avoidance probability, respectively

Table 6 Correlations between the center ZDC observed and forecast weather coverage at FL.300
(avoidance probability of 60%)

Forecast r r r, 1- Spearman’s p 95% CI
30 min. 977 974 .980 .045 .966 .005
60 min. .937 .929 .944 122 .923 .010
90 min. .887 873 .899 214 872 .016
120 min. 815 794 .835 335 814 .021

Table 7 Correlations between the center ZDC observed and forecast weather coverage at FL.300
(avoidance probability of 80%)

Forecast r r r, 1- Spearman’s p 95% CI
30 min. 956 .950 961 .087 .942 .007
60 min. .909 .898 919 .173 .896 .012
90 min. 858 .841 .873 264 .842 .018
120 min. 788 764 .810 379 792 .022




Table 6 shows that about 5%, 12%, 21%, and 34% of
the total variation of actual weather intensity (using
1- r2) are unexplained for 30-minute, 60-minute, 90-
minute, and 120-minute forecasts with a 60% aircraft
avoidance probability, respectively. The correlation,
even though all strong (>0.8), tends to be
significantly weaker (at a 95% confidence level) as
forecast time horizons increase. The strong
correlations reflect a strong degree of linear
relationship between forecast and observation
weather coverage.

Table 7 shows that about 9%, 17%, 26%, and
38% forecast intensity errors for the forecast times of
30-minutes, 60-minutes, 90-minutes, and 120-minute
using 80% avoidance probability, respectively. From
the two tables, one can observe that longer term
forecasts produce weaker -correlations between
forecast and observation coverage, also the lower
avoidance probabilities are associated with the better
correlations, even though all the correlations are
seemingly strong. This also holds for other centers
we studied.

3.3 Forecast Accuracy on Horizontal Weather
Positions

3.3.1 Center CSI

Figure 2 displays the ZDC center CSI
histograms at FL300 for CWAM forecasts with
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avoidance probability of 60% and 80% and 30-
minute, 60-minute, 90-minute, and 120-minute time
intervals. When the CSI value is closer to 1, it
indicates better forecast intensity and location
accuracies qualitatively. This figure clearly reveals
the same pattern as shown in section 3.2.2, i.e., with
longer-term forecasts producing worse CSI scores,
worse forecast in weather intensity and location
accuracy. These conclusions apply to the forecasts of
other centers as well.

3.3.2 Center Forecast Location Error Rate

Table 8 lists the average values of ZDC center
Forecast Location Error Rate, denoted as LER, at
FL300 for forecasts of 30-minute, 60-minute, 90-
minute, and 120-minute time intervals with 60% and
80% aircraft avoidance probabilities, respectively. As
mentioned before, the data were filtered by the
requirement of 0.9<BR<1.1.

The table shows that, on average, about 9%,
13%, 18%, and 25% of forecast locations were off by
more than 20 miles from actual observations for
forecast times of 30-minute, 60-minute, 90-minute,
and 120-minute, respectively, using 60% aircraft
avoidance probability. It also reveals that the drift
between forecast and actual weather is higher for
80% avoidance probability than that for the 60%
case.
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Figure 2 Center ZDC CSI histograms for different CWAM forecast times with 60% and 80%

avoidance probability respectively

Table 8 Average of center ZDC LER (20 miles apart at least)

60% Prob. | 80% Prob.
30-minute 0.088 0.111
60-minute 0.130 0.195




90-minute

0.183

0.244

120-minute

0.253

0.332

4. Forecast Evaluation at Sector-level

The forecast analysis for several high-altitude
sectors that have high demand and are impacted by
high-frequency weather events is described in the
follow subsections. The list of sectors follows:
Chicago Center sector 83 (ZAUS83), Washington
Center sector 32 (ZDC32), Indianapolis Center sector
66(Z1D66), New York Center sector 42 (ZNY42),
and Cleveland Center sector 66 (ZOB66).

4.1 Standard Forecast Verification Measures

The analysis is conducted using 60% avoidance
probability CWAM data at FL300. The result is a
summary of verification measure scores based on the
data collected in August, 2007. The measures for 60-
minute and 120-minute forecasts are calculated on
the 1X1 mile grid and listed in Table 9 and Table 10
respectively.

The results show the same pattern reported in
section 3.1 for centers, i.e., for any particular sector,
60-minute and 120-minute forecasts produce very
similar average values of the forecast weather
coverage (FWC) and Bias Rate (BR), and over-
forecasting for all sectors. For all other measures, the
scores in Table 10 are worse than that in Table 9. The
forecast quality is getting worse as the forecast time
getting longer.

Table 11 shows the average verification measure
scores computed using the CWAM 120-minute
forecast with 80% deviation threshold at FL300 flight
level. Compared with Table 10, the scores are worse
in most cases.

Table 12 lists the verification measures for
ZDC32 from the same 120-minute CWAM forecast
with 60% threshold using grids with different pixel
sizes. As the pixel size increases, the OWC and CSI
measure scores increase significantly.

Table 9 Verification statistical table for 60-minute forecast

Sector PODy PODn FAR (0\Y} Gilbert | TSS | Heidke BR FwC
ZAUS83 733 798 403 498 .340 .533 468 1.13 .366
ZDC32 618 911 448 412 .346 531 476 1.09 174
Z1D66 .590 .893 Sl 359 285 484 406 1.10 204
ZNY42 .657 .821 388 478 319 480 436 1.03 339
Z0B66 .605 .882 457 .394 298 489 426 1.08 229
Table 10 Verification statistical table for 120-minute forecast
Sector PODy PODn FAR (0\Y} Gilbert | TSS | Heidke BR FWwC
ZAUS83 .601 745 478 391 209 .347 .303 1.09 .369
7ZDC32 461 .891 528 .290 215 354 317 1.01 .169
Z1D66 450 .845 581 244 156 297 239 1.04 204
ZNY42 .569 764 449 .390 .198 335 293 1.03 339
Z0B66 475 .837 531 283 .169 313 262 1.03 229
Table 11 Verification statistical table for 120 minute forecast (80%)

Sector PODy PODn FAR (0\Y} Gilbert | TSS | Heidke BR FwcC
ZAUS83 .580 733 531 355 178 314 266 1.16 367
ZDC32 434 .900 .586 .249 .190 336 .289 1.04 .139
Z1D66 405 .862 .640 .200 127 269 .198 1.09 176




ZNY42 .586 744 453 .396 206 331 .303 1.04 .360
Z0B66 472 .828 .567 273 .164 301 254 1.07 228
Table 12 Verification statistical table for ZDC32 using different pixel size grids
Size PODy PODn | FAR | CSI | Gilbert | TSS | Heidke | BR | OWC | FWC
1 Mile 461 891 528 |.290 | 215 354 317 1.01 | .167 .169
10 Mile .548 781 456 | 369 221 331 332 1.02 | .279 284
20 Mile 592 730 426 | .409 211 322 .340 1.03 | .356 376

4.2 Forecast Accuracy on Weather Intensity
4.2.1 Sector Bias Rate

Figure 3 displays the ZDC32 sector BR
histograms at FL300 (CWAM avoidance probability
of 60% and 80%) for 30-minute, 60-minute, 90-
minute, and 120-minute forecasts. The figure
indicates the worsened intensity forecast accuracies
for longer forecast time horizons. It also illustrates
that the forecast intensity accuracy for 60%
avoidance probability is better than that for 80%
avoidance probability. These patterns also hold for
other sectors.

4.2.2 Correlation between FWC and OWC

The correlations between forecast and
observation weather coverage of ZDC32 sector at
FL300 using CWAM with 60% and 80% avoidance
probability for different forecast times are listed in
Table 13 and Table 14, respectively.

Once again, the same trend is observed in these
tables, namely that longer-term forecasts and higher
avoidance probabilities produce a lower correlation
between forecast and observation coverage.
However, when compared with Washington Center
(ZDC) in Table 6 and 7, both the linear and nonlinear
correlations are poorer. For sector ZDC32, about
32% and 39% of the total variation of actual weather
intensity are unexplained by the 1-hour forecast using
60% and 80% aircraft avoidance probabilities,
respectively.

The correlations between 60-minute forecasts
and observation weather coverage using CWAM
60% and 80% avoidance probabilities for several
other high-demands and high-altitude sectors are
listed in Table 6 and 7, respectively. Poor forecast
intensity accuracy occurred for these sectors as well.

This underscores the challenge to provide accurate
and useful weather forecasts for smaller areas.

4.3 CWAM Forecast Accuracy on Weather
Horizontal Positions for Sectors

4.3.1 Sector CSI

Figure 4 displays the ZDC32 sector CSI
histograms at FL300 for CWAM (60% and 80%
avoidance probability) forecast times of 30-minute,
60-minute, 90-minute, and 120-minute. The figure
shows again that as the time horizon extends out, the
forecasts of weather intensity and location accuracy
become worse. The same conclusions are true for
other sectors as well.

4.3.2 Sector Forecast Horizontal Location
Error Rate

Table 17 lists the average of ZDC32 sector
forecast Location Error Rate (LER) values for
CWAM (avoidance probability of 60% and 80% at
FL300) forecast times of 30-minute, 60-minute, 90-
minute, and 120-minute. As stated before, the data
were filtered to include only those having sector FB
values between 0.9 and 1.1 only.

The table illustrates that on average, about 7%,
10%, 14%, and 15% of forecast locations differ from
the actual observations by more than 20 miles in
ZDC32 for forecast times of 30-minutes, 60-minutes,
90-minutes, and 120-minutes, respectively, using
CWAM avoidance probabilities of 60%. The average
forecast location errors are smaller than the
corresponding errors in Table 8 for ZDC center. This
is understandable because the location errors of
forecast and actual weather are limited by the sector
boundary.

The average forecast location error LER of
several other sectors using 60-minute forecast and
observation data with the sector /B values between



0.9 and 1.1 are listed in Table 18 for 60% and 80%
aircraft avoidance probabilities, respectively. The
table shows forecast locations differed from the
actual weather by more than 20 miles ranged from §
to 14% for 60% avoidance probability forecast.

4.4 Quality Assessment of CWAM Forecast
Times

To illustrate the differences between the
convective forecast times and actual weather times,
sector weather intensities were traced by both 120-
minute forecast weather coverage (FWC) and the
actual observation (OWC) at FL300. Figures 5 and 6
show the time series of the weather coverage of
sector ZAUB3, ZD(C32, ZID66, and ZOB66 with
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CWAM flight avoidance probabilities of 60% and
80% respectively. In these figures, Eastern Daylight
Time (EDT) is displayed in minutes on the x-axis,
ranging from 0 to 1440; the sector weather intensities
for forecast FWC (red lines) and observed weather
OWC (blue line) are on the y-axis, ranging from 0 to
1.

The time distributions in the figures show the
forecasts differ from the actual weather, sometimes
the two have a time-lagged correlation; and for the
cases examined, one tendency seems clear, i.e., the
forecast is always more severe than the actual
weather is.
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Figure 3 Sector ZDC32 BR histograms for different CWAM forecast times with 60% and 80%

avoidance probability, respectively.

Table 13 Correlations between the sector ZDC32 observed and forecast weather coverage (aircraft
avoidance probability of 60%)

Forecast r r Iy 1- ¥ Spearman’s p 95% CI
30 min. 915 .905 923 .164 .845 .019
60 min. .822 .803 .840 .324 726 .031
90 min. 7126 .698 752 473 .609 .043
120 min. .603 .565 .638 .637 481 .048

Table 14 Correlations between the sector ZDC32 observed and forecast weather coverage (aircraft
avoidance probability of 80%)

Forecast r 7 ru 1-# Spearman’s p 95% CI
30 min. .885 .870 .898 217 796 .027
60 min. 783 757 .807 .386 .668 .039
90 min. .682 .647 715 .534 .554 .048
120 min. .539 492 .583 710 402 .057




Table 15 Correlations between observed and 60-minute forecast weather coverage for sectors at

FL300 (avoidance probability of 60%)

Forecast r 7 ru 1-# Spearman’s p 95% CI
ZAUS83 827 818 .837 316 .660 .023
Z1D66 724 709 739 475 .627 .023
Z1D87 784 772 795 .386 .621 .022
ZNY42 706 .689 722 .502 551 .028
Z0B66 794 783 .804 .370 .631 .022
ZTL50 710 .696 723 496 .598 .020

Table 16 Correlations between observed and forecast weather coverage for sectors at FL300

(avoidance probability of 80%)

Forecast r r r, 1- Spearman’s p 95% CI
ZAUS83 762 748 776 419 541 .030
Z1D66 .588 .564 .612 .654 447 .034
Z1D87 .601 .579 .623 .639 428 .032
ZNY42 525 496 552 725 402 .037
Z0B66 .663 .644 .681 561 489 .031
ZTL50 .530 .508 .552 719 436 .028
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Figure 4 Sector ZDC CSI histograms for different CWAM forecast times with 60% and 80%

avoidance probability, respectively.

Table 17 Average of Sector ZDC32 LER (20 miles

apart at least)

Table 18 Sector ZDC32 location error rates for 20
miles apart at least (0.9<FB<l1.1)

Prob. Of 60% | Prob. Of 80%
30-minute 0.068 0.081
60-minute 0.101 0.110
90-minute 0.143 0.148
120-minute 0.150 0.193

Prob. Of 60% | Prob. Of 80%
ZAU83 0.078 0.078
ZID66 0.141 0.160
ZID87 0.087 0.137
ZNY42 0.101 0.102
Z0OB66 0.108 0.118
ZTL50 0.135 0.207
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5. Sector Observed Weather Coverage
Predicted by Multiple Sector Forecasts

5.1 Sector Weather Coverage Index

Airspace convective weather coverage has been
used by traffic controllers to estimate the traffic
reduction for many years. The 3D convective weather
coverage was originally proposed by taking into
account the forecasted echo tops at different flight
levels in CWAM [23]. The CWAM weather area at a
flight level with a given aircraft deviation probability
threshold in a sector was used for the weather
coverage at that altitude. At each level, the ratio of
the coverage in a sector to the sector area, S, can be
calculated. The 3-D sector convective Weather
Coverage Index (WCI) is then the average of weather
coverage for all flight levels inside a sector:

nFL

WCI = Z w, xS, @)
=
Herew, =1/nFL is a constant, and nFL is the

total number of flight levels separated by 1000 ft in
the sector. The WCI’s range is from O to 1, where 0

means no weather in the sector and the value of 1
indicates a complete coverage by weather.

The WCI can be used as a model to translate
weather forecast into air traffic and sector capacity.
The errors of sector capacity predictions are mainly
caused by the inaccuracy of forecast which can be
estimated by the correlations between weather
forecast coverage, WClI;, and observation coverage,
WCI,, for a sector [24]. Table 19 and 20 list the
Pearson correlations for different forecast time
horizons and sectors with aircraft avoidance
probability of 60% and 80%. The results correspond
to our previous findings that longer-term forecasts
have lower WCI correlations, and that lower
avoidance probabilities have WCI higher correlation.
The correlation between WCI; and WCI, ranged from
0.6 to 0.7 for 2 hour predictions with 60% aircraft
avoidance probability. That means more than 50% of
120-minute forecasts may not have the precision to
be really useful. Therefore, in order to use WCI
weather translation models in TFM operations one
has to improve the prediction for the sector
observation weather coverage, especially for 120-
minute horizons.

Table 19 Correlations between observed and forecast WCI for sectors (avoidance probability of 60%)

Forecast 30-minute 60-minute 90-minute 120-minute
ZAUS83 91 .86 .80 72
ZDC32 .88 .81 72 .61
ZID66 .86 .79 .70 .58
Z1D87 91 .86 78 .69
Z0OB66 .90 .85 .80 71
ZTL50 .84 74 .62 A48

Table 20 Correlations between observed and forecast WCI for sectors (avoidance probability of 80%)

Forecast 30-minute 60-minute 90-minute 120-minute
ZAUS83 .85 .80 74 .66
ZDC32 .78 1 .62 51
ZID66 .76 .68 .59 A48
Z1D87 .84 78 .70 .59
Z0OB66 .83 .76 .70 .60
ZTL50 .70 .59 A5 32




5.2 An Approach to Improve Sector Observed
WCI Prediction

The forecast evaluation of airspace intensity
errors from section 3 and 4 indicates that the
correlation between weather forecast and observation
coverage for a center is much better than that for an
individual sector. Hence the prediction of a sector
actual observation WCI, could be improved by using
not only the sector forecast coverage but also to take
into account of the forecast coverage for adjacent
sectors.

The sector observed actual 3D weather coverage
was determined by the Multiple Linear Regression
(MLR) model using multiple sectors () 3D forecast
coverage as,

WCI, = EapWCpr + 3)
p=1

Here a, and f§ can be derived by MLR on

training data that include both of the sector WCI, and
n sector WCI;. Consequently, using WCI; from the
test data, the correlation between sector WCI, and the

prediction of EapWCpr + f can be compared
r=1

with the correlations between WCI,and WCI; for the
same sector using the same test data. To validate the
results, tenfold cross-validation and paired t-test were
used in this paper to compare the two prediction
methods.

In tenfold cross-validation the data was first
partitioned into 10 equally (or nearly equally) sized
segments or folds. Subsequently, 10 iterations of
training and validation were performed such that
within each iteration a different fold of the data was
held out for validation test while the remaining 9
folds were used for MLR process training to compute

a, and [ . The constructed MLR model and using

single sector forecast were then applied to make
predictions about the sector actual weather coverage.
The accuracy of each was defined by the correlation
analysis between the predictions and the observations
in the test fold. The paired statistical hypothesis tests,
paired Student’s t-test, were performed for the
assessment of the statistical significances for the

difference of two methods obtained through cross-
validation.

To illustrate this approach, the results for
ZDC32 are shown below. The WCI, of ZDC32 and
2-hour forecast WCI; of ZDC32 with 8 adjacent
sectors (ZDC04, ZDC12, ZDC16, ZDC36, ZDC52,
ZTL33, ZTLA42, and ZTL43) were collected using
CWAM data with 60% aircraft avoidance probability
from July to August in 2007. Tenfold group cross-
validation was used for the MLR model validation.
The data were randomly divided into 10 groups with
similar sample sizes. In cross-validation, a MLR
model was constructed, each time by dropping a
different group of the data and applying the MLR to
the remaining 9 groups of data. The one being
dropped was used to test the MLR model. At the end
of this procedure, 10 predictions assembled from the
dropped cases are compared with the observed target,
ZDC32 WCI,, and the correlations between the MLR
predictions and the targets were computed. The
correlation between ZDC32 WCI;and ZDC32 W(CI,
was also calculated for the 10 individual testing
groups (labeled as “Single” in the following tables).
For a tenfold cross-validation, the correlation results
are listed in Table 21.

As expected the results show that the
correlations between the ZDC32 observation weather
coverage and nine sector 2-hour forecast MLR
predictions are all better than the ones using single
ZDC32 2-hour forecast for all 10 cases. Using paired
sample t-test to test a null hypothesis that the sample
comes from the same normal distribution, resulted in
a p-value is about 0.000008. This test rejects the null
hypothesis at the default 0.05 significance level,
namely the MLR prediction of the actual weather
coverage is notably better than that by using the
ZDC32 forecast along at least at the 95% confidence
level. To ensure the randomness of 10 group
selection, the process was repeated for 100 times. All
p-values are much less than 0.05 with an average of
0.00016; the repeated experiments for different
tenfold cross-validation produced the similar results,
which certifies our previous conclusion, even with
50% errors from exact p-value [25]. However the
correlation using adjacent sector forecast coverage
MLR model is still not strong; the improvement for
the correlation is only about 6%.



Table 21 Tenfold correlation result of MLR and single forecast for ZDC32

Group 1 2 3 4 5 6 7 8 9 10 Mean
MLR .605 .693 728 | .661 669 | 717 | 618 .658 .685 .629 0.666
Single | .574 | .637 672 | 629 | .608 | .690 | .568 611 .647 .610 0.625

6. Concluding Remarks

This paper presents standard forecast
verification measure scores for weather intensities
and locations at center and sector levels. It also
presents an approach to improve the prediction of
sector weather coverage by multiple sector forecasts.
The weather intensity (weather severity) assessment
was carried out by using the correlations between
forecast and actual weather observation airspace
coverage. The weather forecast horizontal location
accuracy was evaluated by forecast location errors.
The improvement on prediction of weather coverage
was determined by the correlation between actual
sector weather coverage and prediction. The forecast
evaluation and analysis was accomplished by using
actual and forecast Convective Weather Avoidance
Model data from June through September of 2007.

For forecast times under one-hour, the errors in
forecast of weather intensity and location in centers
are relatively low. The study showed that the 1-hours
forecast intensity and horizontal location errors were
about 0.12 and 0.13 for 60% aircraft avoidance
probability forecast. We found that the correlations
between sector 1-hour forecast and actual weather
coverage were not strong, the sector forecast intensity
errors ranging from 0.3 to 0.5 for 60% avoidance
probability and 0.4 to 0.7 for 80%; the horizontal
location errors were relatively small, under 0.15 for
60% avoidance probability and under 0.2 for 80%.

The paper also introduces an approach to
estimate the sector three-dimensional actual weather
coverage by using multiple sector forecasts which
turned out to produce better prediction. Using MLR
model for this approach, the correlations between
actual observation and the model prediction can be
significantly improved by several percents at 95%
confidence level.
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