CONTRIBUTION OF SMALL-SCALE CORRELATED FLUCTUATIONS OF MICROSTRUCTURAL PROPERTIES OF A SPATIALLY EXTENDED GEOPHYSICAL TARGET UNDER THE ASSESSMENT OF RADAR BACKSCATTER

B.S. Yurchak

University of Maryland, Baltimore County, GEST, MD 20771, USA-yurboris@umbc.edu

ABSTRACT

The study of the collective effects of radar scattering from an aggregation of discrete scatterers randomly distributed in a space is important for better understanding the origin of the backscatter from spatially extended geophysical targets (SEGT). We consider the microstructure irregularities of a SEGT as the essential factor that affect radar backscatter. To evaluate their contribution this study uses the “slice” approach: particles close to the front of incident radar wave are considered to reflect incident electromagnetic wave coherently. The radar equation for a SEGT is derived. The equation includes contributions to the total backscatter from correlated small-scale fluctuations of the slice’s reflectivity. The correlation contribution changes in accordance with an earlier proposed idea by Smith (1964) based on physical consideration. The slice approach applied allows parameterizing the features of the SEGT’s inhomogeneities.

Index Terms—Remote sensing, radar scattering

1. INTRODUCTION

The study of the collective effects of radar scattering from an aggregation of discrete scatterers randomly distributed in a space is important for better understanding the origin of the backscatter deviations from the theoretical models (e.g., [1, 2]). In the current paper we analyze a mechanism which can cause the backscatter to deviate from the classical (incoherent) estimate because of the collective effects in spatially extended geophysical targets (SEGT). Description of this mechanism is based on so-called “slice” approach firstly suggested for the meteorological SEGT (clouds, rain) in [3, 4], and enhanced by the author [5] for general SEGT (including thick snow cover), taking into account the statistics of its scattering properties. The approach exploits the partial coherence of the backscatter electric field from particles located close to the wavefront of the incident radar irradiance within a radial distance ($\Delta_r$) that is much less than the radar wavelength ($\lambda$). This fictitious thin volume is a “slice”, Fig.1.

The corresponded radar equation contains parameters that parameterize the irregularities of the SEGT’s microstructure. Here we extend that parameterization with a correlative factor that describes the correlation between slices’ reflectivity and, in particular, interprets an increase or decrease in the backscatter compared to the expected one for some cases.

2. RADAR CROSS SECTION OF THE SEGT IN A “SLICE” APPROACH

The mean radar cross section (MRCS) of the volume component of the backscatter from SEGT under assumption of single scattering by individual particles has the follow general form:

$$\langle \sigma_v \rangle = \left\langle \sum_{i=1}^{N} a_i \exp(-j2kd_i) \right\rangle$$

where $a = \sqrt{\sigma}$ is the “Particle Radar Equivalent Length” (PREL), $\sigma$ is the random RCS of an individual particle, $N$ is the total number of particles within the scattering volume, $k = 2\pi\lambda^{-1}$ is the wavenumber of the incidence radar
irradiance of the wavelength $\lambda$. Under a "slice" approach the instantaneous sum of PRELs of particles located close to the wavefront at the qth position and within the slice radial size $\Delta_{s}<<\lambda$ can be represented as:

$$\sum_{a(q)} a_{i}^{(q)} \exp(-j2k_{i}d_{i}) = b_{q} \exp(-j2k_{q})$$

(2)

where $b_{q} = \sum_{e(q)} a_{i}^{(q)} = \sum_{e(q)} a_{i}^{(q)}$ is the "Slice Radar Equivalent Length" (SREL) which is the sum of all PRELs within a slice; $n_{s}$ is a random number of particles inside a slice, and $d_{q}=q\Delta_{q}$ is a distance of qth slice from the border of the scattering volume nearest to the radar. Thus, the backscattering feature of the radar scattering volume can be represented as the series of $M = H/\Delta_{s} >> 1$ adjoining "pulses" (slices) with random amplitude ($b_{q}$):

$$M = \sum_{q} b_{q} \exp(-j2k_{q})$$

(3)

The spatial distribution of the SREL along the radial direction $b(x)$ within the scattering volume can be represented as a sum of a quasi-regular component $b_{0}(x)$ and a small-scale (compared with the wavelength) fluctuating component $b_{f}(x)$ [6]:

$$b(x) = b_{0}(x) + b_{f}(x)$$

(4)

If assume that the process $b(x)$ is stationary, i.e., $\langle b_{0}(x) \rangle = 0$, $\int b_{0}(x) \exp(-j2kx) dx = 0$, and $Var(b)=const$, it is possible to show [5] that MRCS can be expressed through the normalized correlation function $R(\xi)$ of the fluctuating component of SREL:

$$\langle \sigma_{z} \rangle = \left( \sum_{q=1}^{M} b_{q} \exp(-j2kq\Delta_{q}) \right)^{2} = \left( \frac{1}{\Delta_{s}} \int b(x) \exp(-j2kx) dx \right)^{2}$$

The deviation factor, governed by the Poisson index $\chi = \frac{Var(n)}{\langle n \rangle}$, and by the variation coefficient of PREL $\xi_{a} = \frac{Stdev(a)}{\langle a \rangle}$. If the fluctuations of particle number is pertaining to the Poisson law when $\chi=1$, then for any $\xi_{a}$ the deviation factor $devF=1$, and a classical result of incoherent approach takes place. The PREL variation coefficient ($\xi_{a}$) can be expressed through the parameters of the particle size distribution function (PSDF) [5]:

$$\xi_{a} = \frac{Stdev(r)}{\langle r \rangle}$$

where $\xi_{r}$ is the particle size variation coefficient, and $Sk$ is the skewness coefficient.

Although the deviation factor (8) describes the plus/minus deviations of the MRCS from the classical one, there is also one more additional slice’s statistics that can contributes in the backscatter as well.

3. MEAN RCS TAKING INTO ACCOUNT THE CORRELATION BETWEEN SLICE SCATTERING PROPERTIES

In a general case the SRELs can be correlated due to finite $b$-disturbances spectrum with inner ($l_{o}$) and outer ($l_{i}$) scales. The slice size is assumed to be equal to the minimal scale of SREL’s fluctuations $l_{o}$ (if $l_{o} < \lambda$). In this case equation (5) can be written in the form:

$$\langle \sigma_{z} \rangle = \frac{Var(b)}{\Delta_{s}} \int_{-\Delta_{s}}^{\Delta_{s}} \int_{-\Delta_{s}}^{\Delta_{s}} d\Delta R(\Delta) \exp(-j2k\Delta)$$

(10)

If assume that the correlation interval is much less than the radial size of the scattering volume, (10) can be reduced to:

$$\langle \sigma_{z} \rangle = \frac{Var(b)}{\Delta_{s}} H \int d\Delta R(\Delta) \exp(-j2k\Delta) =$$

$$= M \cdot Var(b) \cdot corrF$$

(11)

where $corrF = \frac{1}{\Delta_{s}} F(\kappa)_{\chi=2k}$ is the correlative factor of the normalized spectral function $F(\kappa)$. Since

$$M \cdot Var(b) = M \langle n \rangle \langle a \rangle^{2} (\xi_{a}^{2} + \chi) =$$

$$= N \langle a \rangle^{2} \cdot devF \cdot (\xi_{a}^{2} + 1) = \langle \sigma_{z} \rangle_{class} \cdot devF$$

the equation (11) can be represented in the form:

$$\langle \sigma_{z} \rangle = \langle \sigma_{z} \rangle_{class} \cdot devF \cdot corrF$$

(12)

Spectral function for process (3) is [8]:

$$devF(\xi_{a}, \chi) = \frac{\xi_{a}^{2} + \chi}{\xi_{a}^{2} + 1}$$
\[ F(\kappa) = \Delta_0^2 |F_0(\kappa_0, \Delta_0)|^2 \sum_{q=-\infty}^{\infty} R(q \Delta_0) \exp(j k q \Delta_0) \]  
(13)

where \( F_0(\kappa_0, \Delta_0) \) is the normalized spectral function of the typical “pulse” of SREL.

Assuming the radial distribution of SREL within the scattering volume as a consequence of adjoining rectangular “pulses” of width \( \Delta_0 \) with the exponential correlation function \( R(\Delta) = \exp[-(|\Delta - \Delta_0|)^2] \), the following expression can be derived for the correlative factor:

\[ \text{corrF} = \frac{\sin(k \Delta_0)}{k \Delta_0} \left( \frac{1 - \exp \left( -2 \frac{\Delta_0}{\Delta_0} \right)}{1 - 2 \exp \left( -2 \frac{\Delta_0}{\Delta_0} \right) \cos(2k \Delta_0) + \exp \left( -2 \frac{\Delta_0}{\Delta_0} \right)} \right) \]  
(14)

The plot of (14) is depicted in Fig.2 for different ratios of \( (\Delta_0/\Delta_0) \).

As follows from this plot the correlative factor for thin slices \( (\Delta_0<\mu/16) \) and a small correlation radius arises because of the small differences in the distance between slices, which cause a constructive interference. Since in the case of atmospheric turbulence, \( \Delta_0 = \lambda_0 = \sqrt{\nu/\epsilon} \) (\( \nu \) is the kinematic viscosity of air, and \( \epsilon \) is the energy dissipation per unit of mass), this case corresponds to the moderate and high turbulence. The upper curve is only a theoretical limit that never can be reached in practice because it relates to the infinitesimal scales of fluctuations, which cannot be less than the inner scale \( (\lambda_0) \) of SREL’s disturbance. Subsequent increases in the correlation interval causes the contribution of the destructive interference, which makes the backscatter decrease. P.L. Smith [4] predicted qualitatively this behavior based on the interference theory. With a slice size of \( \sim \lambda/8 \) suggested in [6] (low turbulence), the correlative factor slows monotonously beginning at 0 dB, \( \text{corrF} \approx -10 \) dB at \( \Delta_0 = \lambda_0 \) for example. This value is close to the observable deviation of the backscatter from the atmospheric fog [6]. The arising feature of the correlative factor together with the probably high value of the Poisson index [9] can be applied for interpretation of the experimental data obtained during the radar probing of clouds accompanied with simultaneous measurements of the particle size spectra in situ [10]. In this experiment, the estimations of radar reflectivity based on the standard weather equation were found notably higher than expected values calculated according to the spectrometer data.

4. CONCLUDING REMARKS

The radar backscatter features have been considered within the frames of the slice approach taking into account the correlation between slice radar equivalent lengths. The correlation contribution has been evaluated based on the derived correlative factor. In particular, for a random scattering medium with correlation radius less than the wavelength this factor describes the backscatter changes in accordance with an earlier proposed idea based on physical consideration [4]. The slice approach allows interpreting the variety of radar backscatter deviations from the classical model based on the inventory of contribution of the statistical features of the fine-scale microstructural fluctuations. The statistics of a slice radar equivalent length (SREL), commonly unknown for spatially extended geophysical targets (SEGT), should be investigated in future researches. The correlative factor obtained together with the deviation factor [5] parameterizes the “rate of inhomogeneity” of a SEGT. The “classical” result (the total RCS is a sum of the RCSs of individual particles) takes place upon 2 conditions: (1) the fluctuations of particle number at small-scale should be pertaining to the Poisson law, and (2) SREL fluctuations should be not correlated. The assessment of these factors and conditions inherent to different kinds of a SEGT will improve the accuracy and reliability of the radar remote sensing.

5. ACKNOWLEDGEMENT

This work was supported by NASA’s Cryospheric Science Program

6. REFERENCES


CONTRIBUTION OF SMALL-SCALE CORRELATED FLUCTUATIONS OF MICROSTRUCTURAL PROPERTIES OF A SPATIALLY EXTENDED GEOGRAPHICAL TARGET UNDER THE ASSESSMENT OF RADAR BACKSCATTER

B.S. Yurchak

University of Maryland, Baltimore County, Goddard Earth Sciences & Technology Center (GEST), NASA/GSFC; yurchak@umbc.edu, Greenbelt, MD 20771

Abstract The study of the collective effects of radar scattering from an aggregation of discrete scatterers randomly distributed in a space is important for better understanding of the origin of backscatter deviations from spatially extended geographical targets (SEGt). We consider the microstructure irregularities of a SEGt as the essential factor that affects radar backscatter. To evaluate their contribution this study uses the "slice" approach. Each slice close to the front of incident radar wave are considered to be approximately at the same distance from the radar. Therefore, these particles reflect incident electromagnetic wave coherently. Each slice is much narrower than the radar wavelength in the wave propagation direction. The radar equation for a SEGt, which is based on the slice model of backscatter volume, is derived. The equation includes contributions to the total backscatter from correlated small-scale fluctuations of the slice’s reflectivity. The average power of an echo signal is proportional to the sixth moment of the particles’ size distribution function (classical case), only for the case of Poisson fluctuations of particle concentration within the slices and uncorrelated small-scale reflectivity fluctuations within a backscatter volume. The correlation contribution changes in accordance with an earlier proposed idea by Smith (1964) based on physical consideration. The slice approach allows parameterizing the features of the SEGt’s inhomogeneities.

1. SLICE APPROACH

1.1. INITIAL CONDITIONS

The mean radar cross section [\( \sigma_0 \)] of the volume component of backscatter from the Spatially Extended Geographical Target (SEGt) is under consideration. The backscattering is assumed to be due to the summation of single scattering by individual particles

\[ \sigma_0 = \sum_\text{part} \frac{\sigma_0}{\text{part}} \]

where \( \sigma_0 \) is the total number of particles in the scattering volume, \( \lambda_0 \) is the distance between the particles from the radar, \( a_i \) is the particle size in the "Particle Radar Scattering Length" (PRLT), \( a_i \) is the radar cross section (RCS) of the particle, and \( 4\pi a_i^2 \) is the cross-sectional area of the particle. The RPLT approach is applicable to the individual scatterers, and thus, the backscatter occurs with phase changes by \( \pm \pi \). Alternation within the scattering volume is neglected.

1.2. REPRESENTATION UNDER A "SLICE" APPROACH

The particles located close to the front of the incident radar wave are considered to be approximately the same distance from the radar, and reflect the incident electromagnetic wave coherently (Munk & Smith, 1955). One can consider that these particles are uncorrelated in a function that volume (a "slice") is on its base consistent with the surface of the spherical wavefront, bounded on the side by the wave radius of the antenna pattern, and radial length \( r \). 1, Fig.1. Thus, the scattering volume with the radial size \( r \) can be represented by \( \frac{4\pi r^2}{\lambda_0} \) of these slices adjacent.

The instantaneous sum of RCS of particles located close to the wavefront in the upper part and within the slice size \( r \) can be represented in the form

\[ \sum_{\text{particles}} \frac{\sigma_0}{\text{part}} = \int_{\text{slice}} \frac{\sigma_0}{\text{part}} \, dV 
\]

and is the "Slice Radar Scattering Length" (SPRL) of the slice of all PRSL within the slice at a random number of particles inside a slice, and \( \sum_{\text{particles}} \frac{\sigma_0}{\text{part}} \) is a distance of \( \lambda_0 \) size in the slice. The slice size \( \lambda_0 \) can be regarded as equivalent to the spatial width of the slice (Munk & Smith, 1955). Thus, the backscattering features of the radar scattering volume can be represented as a sum of \( \lambda_0 \) scattering processes with random amplitude \( \sigma_0 \).

As one can assume (13), and the number of slices \( \lambda_0 \), the general equation (14) can be written in the same form

\[ \sum_{\text{particles}} \frac{\sigma_0}{\text{part}} = \int_{\text{slice}} \frac{\sigma_0}{\text{part}} \, dV 
\]

where \( \lambda_0 \) is the particle size distribution function, and \( \lambda_0 \) is the inhomogeneity coefficient.

1.3. BACKSCATTER AS A FUNCTION OF THE SEGt STATISTICS

The spatial distribution of \( \sigma_0 \) along the radial direction \( \lambda_0 \) within the scattering volume can be represented as a sum of a quasistatic component \( \lambda_0 \) and a small-scale (compared with the wavelengths fluctuating component \( \lambda_0 \) of the SEGt.

\[ \sigma_0 = \sigma_0(\lambda_0) + \sigma_0(\lambda_0) \]

where \( \sigma_0(\lambda_0) \) is the variance of a sum of a variable number of variable values [Brink, 1967].

2. UNCORRELATED SEPT FLUCTUATIONS

If the fluctuations of \( \sigma_0 \) are uncorrelated, i.e.,

\[ \frac{\sigma_0}{\text{part}} = \int_{\text{slice}} \frac{\sigma_0}{\text{part}} \, dV 
\]

It is possible to show (Yurchak, 2009) that

\[ \sigma_0 = \sigma_0 + \sigma_0 \]

and

\[ \sigma_0 = \sigma_0 + \sigma_0 \]

where \( \sigma_0 = \sigma_0(\lambda_0) \) is the so-called Poisson model value.

The equation is in accordance with the Poisson law (10), and taking into account known relationship

\[ \frac{\sigma_0}{\text{part}} = \frac{\sigma_0}{\text{part}} \]

we can obtain (11) (12) and (13) with Eq. (10)

\[ \frac{\sigma_0}{\text{part}} = \frac{\sigma_0}{\text{part}} \]

where \( \sigma_0 = \sigma_0(\lambda_0) \) is the normalized spectral function of the classical case of SEGt. It is the function of the size of the SEGt and this function is defined as a slice of SEGt, and

\[ \sigma_0 = \sigma_0(\lambda_0) \]

where

\[ \sigma_0 = \sigma_0(\lambda_0) \]

is the particle size distribution function, and\( \lambda_0 \) is the inhomogeneity coefficient.

3. CORRELATED SEPT FLUCTUATIONS

If the fluctuations of \( \sigma_0 \) are correlated, Eq. (10) can be reduced to the formula (Yurchak, 1994)

\[ \sigma_0 = \sigma_0 + \sigma_0 \]

where \( \sigma_0 = \sigma_0(\lambda_0) \) is the so-called Poisson model value.

For processes (11) and (12) one can write (13) and (14) based on Eq. (10)

\[ \frac{\sigma_0}{\text{part}} = \frac{\sigma_0}{\text{part}} \]

where

\[ \sigma_0 = \sigma_0(\lambda_0) \]

and

\[ \sigma_0 = \sigma_0(\lambda_0) \]

Thus, the correlation factor can be obtained in the form (15)

\[ \sigma_0 = \sigma_0(\lambda_0) \]

Fig. 3. Correlation factor, whose value is equal to the factor of the SEGt's inhomogeneity.

The upper curve is only a theoretical limit that never can be reached in practice because it is influenced by the statistical scales of fluctuations, which cannot be less than the outer scale of the SEGt's distribution. In the case of atmospheric turbulence, \( \sigma_0 \) is the energy dissipation rate of the flow. The correlation factor for this scale \( \sigma_0 \) is small, and small correlation radius (moderate and high turbulence) arises because of small differences of the distance between slices, which can cause a constructive interference. Subsequent increase in the correlation interval causes the contribution of the destructive interference, which makes the backscatter decrease. Smith (1964) predicted qualitatively this behavior based on the inhomogeneity theory. With \( \sigma_0 \) equal to the SEGt's inhomogeneity, the correlation factor changes accordingly beginning at \( \sigma_0 \), and reaches a value at \( \sigma_0 \).

CORRELATING REMARKS: Computing (15) with the SEGt's size (the classical case) we find that the latter should be associated with the correlation radius (Fig. 3) and the correlation factor (15).