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Short Abstract

Orbit maintenance is the series of burns performed during a mission to ensure
the orbit satisfies mission constraints. Low-altitude missions often require
non-trivial orbit maintenance dV due to sizable orbital perturbations and
minimum altitude thresholds. A strategy is presented for minimizing this
dV using impulsive burn parameter optimization. An initial estimate for the
burn parameters is generated by considering a feasible solution to the orbit
maintenance problem. An example demonstrates the dV savings from the
feasible solution to the optimal solution.

Long Abstract

Orbit maintenance refers to the series of burns that must be performed dur-
ing a mission to ensure the vehicle’s orbit satisfies all mission constraints.
Low-altitude missions often require non-trivial orbit maintenance ∆V due
to sizable orbital perturbations and their proximities to minimum altitude
thresholds. Minimizing this ∆V while meeting mission constraints is clearly
desirable for mission planning purposes. This analysis presents a strategy
for accomplishing these goals using impulsive burn parameter optimization.
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The only mission constraints considered are a minimum altitude threshold
and the final orbit conditions.

An initial estimate for the burn parameters is generated by considering a
feasible solution to the orbit maintenance problem that satisfies the mission
constraints. The orbit is propagated forward from its specified conditions
at t0 until the minimum altitude threshold has been violated. An impulsive
burn is then performed at the following apoapse to raise periapse back to a
fixed altitude. This process is repeated as necessary until tf , at which point
a minimum ∆V two-impulse orbit transfer is computed to meet the specified
final orbit conditions. This solution reflects a common approach to orbit
maintenance for the minimum altitude threshold case and provides a ∆V
baseline for comparison.

The parameters of each impulse from the feasible solution (tburn, ∆Vx, ∆Vy,
∆Vz) become the initial estimate to a parameter optimization problem (POP).
The objective of the POP is to minimize total orbit maintenance ∆V. The
specified final orbit conditions are expressed as equality constraints at tf .
The minimum altitude threshold, however, is an inequality constraint that
must be met along the entire path. To work within the context of a POP, the
path inequality constraint is converted to a point inequality constraint that
is imposed at the periapse preceding each burn. Since these points occur just
prior to violating the minimum altitude threshold, by definition they repre-
sent the lowest altitude points along the path. If the inequality constraint
is satisfied at these points, then by definition it will be satisfied along the
entire path. A sequential quadratic programming algorithm is then employed
to vary the burn parameters (burn times and ∆V components) until a lo-
cal ∆V minimum is found that also satisfies the constraints to within their
tolerances.

An example is provided that implements this strategy and demonstrates the
savings in orbit maintenance ∆V from the aforementioned baseline. The
example simulates a vehicle in a low Lunar orbit subject to an 8x8 gravity
field. The vehicle begins in a 100 km altitude circular polar orbit. It must
stay above 80 km throughout the mission, and return to the initial conditions
(100 km altitude, circular, polar) at the end of 60 days. The feasible solu-
tion requires 32.256 m/s of orbit maintenance ∆V to meet these constraints.
When implemented, the presented strategy reduces this ∆V to 27.028 m/s
for a savings of approximately 16%.
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This strategy provides mission planners with a tool for minimizing orbit
maintenance ∆V for low altitude missions. The framework of generating a
feasible solution for orbit maintenance and then optimizing this solution in a
POP can easily be generalized to missions with multiple and/or more com-
plicated constraints, such as crewed missions around the Earth, or mapping
missions such as the Lunar Reconnaissance Orbiter (LRO).
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A MINIMUM ∆V ORBIT MAINTENANCE STRATEGY FOR
LOW-ALTITUDE MISSIONS USING BURN PARAMETER

OPTIMIZATION

Aaron J. Brown∗

Orbit maintenance is the series of burns performed during a mission to ensure the
orbit satisfies mission constraints. Low-altitude missions often require non-trivial
orbit maintenance ∆V due to sizable orbital perturbations and minimum altitude
thresholds. A strategy is presented for minimizing this ∆V using impulsive burn
parameter optimization. An initial estimate for the burn parameters is generated
by considering a feasible solution to the orbit maintenance problem. An low-
lunar orbit example demonstrates the ∆V savings from the feasible solution to
the optimal solution. The strategy’s extensibility to more complex missions is
discussed, as well as the limitations of its use.

INTRODUCTION

“Orbit maintenance,” as discussed in this paper, refers to the series of burns that must be per-
formed during a mission to ensure the vehicle’s orbit satisfies all mission constraints. An orbit
maintenance strategy is often devised pre-mission to meet these constraints and dictate exactly what
burns are needed. The problem of determining an appropriate orbit maintenance strategy is cer-
tainly not new, as almost any mission orbiting close to its central body has grappled with this ques-
tion. Such missions include the International Space Station (formerly Space Station Freedom),1

TOPEX/Poseidon,2 the Lunar Reconnaissance Orbiter (LRO),3 and the Mars Reconnaissance Or-
biter (MRO).4

Low-altitude missions in particular often require non-trivial orbit maintenance ∆V due to sizable
orbital perturbations and their proximities to minimum altitude thresholds. These perturbations
come from non-spherical mass distributions in the central body, third-body effects, and atmospheric
drag (when applicable). Minimizing the ∆V spent on orbit maintenance while meeting mission
constraints is clearly desirable for mission planning purposes. This paper presents a strategy for
accomplishing these goals using impulsive burn parameter optimization.

Like the orbit maintenance problem, trajectory optimization problems such as minimum fuel
or minimum time orbit transfers are not new, and have been solved for decades using parameter
optimization. This study aims to bring the realms of orbit maintenance and parameter optimization
together in an effort to generate an optimal solution to the orbit maintenance problem. While this
approach can be taken for any mission in orbit about its central body, this paper will focus on
low-altitude missions because of their potentially high orbit maintenance costs.

∗Aerospace Engineer, Flight Dynamics Division, NASA Johnson Space Center, Mail Code DM34, 2101 NASA Parkway,
Houston, TX 77058.
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A low-lunar orbit example with simple mission constraints is used to demonstrate the strategy’s
effectiveness. In principle, this strategy is extensible to missions such as LRO that have more
complex mission constraints.

ASSUMPTIONS AND EQUATIONS OF MOTION

For this analysis, a low-altitude mission is assumed in which the initial orbit conditions of the
vehicle are specified. The mission constraints under consideration include final orbit conditions
(i.e. endpoint equality constraints), and a constant minimum altitude threshold (i.e. a path inequality
constraint). Figure 1 provides an abstract representation of the mission.
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Figure 1. Abstract Representation of a Low-Altitude Mission

The equations of motion are

r̈ = − µ
r3

r + f (1)

where r is the position, µ is the gravitational constant, and f = f(r, ṙ, t) is the perturbing acceleration
on the vehicle.

DEFINING BURN PARAMETERS AND GENERATING INITIAL ESTIMATES

For low-altitude missions constrained only by a minimum altitude threshold, a standard orbit
maintenance strategy can be applied in order to both define the burn parameters to be optimized
and to generate their initial estimates. If the vehicle’s orbit is perturbed by non-spherical gravity,
drag, or some other force, it’s periapse will tend to decrease over time. Depending on the vehicle’s
initial conditions and the minimum altitude threshold, the periapse may violate this threshold (and
the vehicle may even impact the surface) before possibly trending positive (say, in the case of non-
spherical gravity). In the standard strategy, when the next periapse is predicted to drop below the
minimum altitude threshold, an impulsive, horizontal burn is performed at the apoapse immediately
prior in order to raise periapse back to a specified reference altitude. This procedure is repeated
as necessary over the course of the mission. Each time the next periapse is predicted to violate
the minimum altitude threshold, periapse is boosted to the reference altitude. This periapse-raising
“phase” constitutes Part I of the standard strategy.

In general, the final state at the end of the periapse-raising phase will not meet the final orbit con-
ditions. In Part II of the standard strategy, a minimum-fuel two-burn impulsive transfer is performed
to meet these constraints. This transfer is accomplished by solving a separate parameter optimiza-
tion sub-problem in which the parameters are the times of ignition (TIGs) and ∆V components of
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the two impulses, along with the transfer time between the initial and final orbits. The “initial”
orbit for this sub-problem is given by the final state at the end of the periapse-raising phase, and the
“final” orbit is defined by the final orbit conditions. The transfer orbit is constrained to depart from
the “initial” orbit any time after the end of the periapse-raising phase. Ocampo5 provides several
approaches to solving this sub-problem. In summary, the process of raising periapse to the reference
altitude (Part I) followed by a final two-burn orbit transfer (Part II) constitute the standard strategy.

Following the optimized two-burn transfer, the TIGs and ∆V components of all impulsive burns
performed in the standard strategy become the parameters (X) for a larger burn optimization prob-
lem. The parameter values resulting from the standard strategy are used for the initial estimates
(X0). The standard strategy also provides a baseline value of the objective function, which is the
sum of the impulsive ∆V magnitudes throughout the mission. Qualitatively then, the objective
function tells us how much ∆V was required to “fly” a given strategy, i.e. to maintain the orbit and
not violate any mission constraints.

To illustrate the standard strategy, consider a hypothetical spacecraft in a low-altitude orbit around
the Moon. The vehicle starts in a circular, polar,100 km altitude orbit, and must return to those same
conditions 60 days later. These conditions are listed in Table 1. During the mission, the vehicle must
stay above a minimum altitude threshold of 80 km.

A realistic application of these conditions would be a crewed mission to the Moon to examine a
polar landing site.6 The vehicle would stay in a low-altitude orbit while a surface module would
land at the site and commence extended surface operations. The vehicle is required to stay in a low-
altitude orbit in order to support surface aborts (if necessary) but also must stay above the minimum
altitude threshold. At the conclusion of surface operations, the vehicle would perform a two-burn
orbit transfer to prepare for ascent and rendezvous of the surface module.

Table 1. Low Lunar Orbit Initial and Final Conditions
Element Initial Condition Final Condition
a (km) 1837.4 1837.4
e 0 0
i (deg) 90 90
Ω (deg) 0 –
ω (deg) 0 –
ν (deg) 0 –

The only orbital perturbation considered is non-spherical lunar gravity, modeled using LP150Q
truncated to degree and order 8. The equations of motion are propagated using an Encke formula-
tion and a modified Nyström numerical integrator.7 During propagation, semi-major axis altitude,
periapse altitude, apoapse altitude, eccentricity, and inclination are sampled at each periapse and
are plotted in Figures 2 through 4. Note in Figures 2 and 3 that the effects of the two interior
periapse-raising burns are clearly visible at approximately 28 and 55 days, respectively. As ex-
pected however, these effects are not visible in Figure 4 since these two burns are not designed to
change inclination.

The standard strategy presents a very feasible solution to this orbit maintenance problem. More-
over, the solution seems not only feasible, but potentially optimal on its own. Each periapse-raising
burn is performed horizontally and at apoapse, which minimizes the ∆V needed to raise periapse
back to the reference altitude. Additionally, the final two-burn transfer has been optimized to provide
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at least a locally minimal ∆V solution. Summing these ∆V magnitudes together would seemingly
provide a minimum or near-minimum orbit maintenance ∆V cost over the entire mission.

Further analysis, however, demonstrates that the orbit maintenance ∆V can be reduced by solving
a larger optimization problem that optimizes all burns simultaneously using the standard strategy as
a starting point, rather than burn-by-burn using the standard strategy alone.

PROBLEM STATEMENT

The larger optimization problem to be solved can be stated as follows. Minimize

J(X) =

N∑
k=1

∆Vk (2)

subject to

ceq(rf , ṙf ) = 0 (3)

h(t) ≥ hmin (4)

The equations of motion are given in Eq. (1), and t0, tf , r0, ṙ0 are specified. In Eq. (2), N is the
number of impulsive burns as determined by the standard strategy. As mentioned previously, this
problem can be parameterized using the TIGs and ∆V components of these burns. The parameter
vector X is therefore

X =
(
t1 ∆V1 t2 ∆V2 · · · tN ∆VN

)T
. (5)

Note in Eq. (5) that ∆V1, . . . ,∆VN are vectors and not scalars. ceq in Eq. (3) are the final
orbit conditions (i.e. endpoint equality constraints). These can include final orbital elements to be
targeted or other functions of the final position and velocity. Eq. (4) is the path inequality constraint
for the constant minimum altitude threshold, hmin.

To work within the context of a parameter optimization problem, the path inequality constraint
is converted to an interior point inequality constraint that is imposed at the periapse preceding each
burn. Recall that in the standard strategy, an impulsive burn is only executed when the altitude of the
next periapse is predicted to drop below the minimum altitude threshold. Therefore in the standard
strategy, the altitude of the periapse preceding the burn will represent the lowest altitude point along
the path, since this was the point just prior to the violation (had no burn been performed). If the
inequality constraint is met at each such point, then in general it will be met along the entire path.∗

Thus Eq. (4) is equivalent to
∗Isolated points may exist along the trajectory in which periapse comes very close to, but does not violate the minimum

altitude threshold. In these cases, the standard strategy dictates that no burn is performed since the threshold was not
violated. In the subsequent optimization, however, the components of one or more burns preceding these points may
change, and ultimately cause these points to now violate the threshold. No inequality constraints however will exist
at these points to protect against this violation, since there were no burns in the standard strategy to “trigger” these
constraints. To work around these isolated cases, it is sufficient to note where they exist in the standard strategy, and
then to generate the optimal solution. If any of these points (that did not violate the threshold in the standard strategy)
now violate the threshold in the optimal solution, inequality constraints can be manually added to cineq and the optimal
solution can be re-generated. In the new solution, these points will no longer violate the minimum altitude threshold.
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cineq =


hmin − hp1
hmin − hp2

...
hmin − hpN

 ≤ 0 (6)

where hpk is the altitude of the periapse preceding burn k.

Since J is an explicit function of X, the gradient of J is straightforward.

(
∂J

∂X

)T

=

(
0

∆VT
1

∆V1
0

∆VT
2

∆V2
· · · 0

∆VT
N

∆VN

)T

. (7)

If ∆Vk = 0, then the gradient is simply 0 for burn k. In contrast to J , the gradient of c (i.e. (∂c/∂X)T),
where c =

(
cT
eq cT

ineq

)T
, is not an explicit function of X and must be approximated using finite

differences.

Finally, suitable scale factors S are chosen for X, J , and c to aid convergence in the optimization
process. Define

Xscl =
X
SX

, Jscl =
J

SJ
, cscl =

c
Sc

(8)

to be the “scaled” versions of X, J , and c. SX, SJ , and Sc are then chosen so that the scaled
gradients

∂Jscl
∂Xscl

=
∂J

∂X
SX

SJ
,

∂cscl
∂Xscl

=
∂c
∂X

SX

Sc
(9)

when evaluated at t0 have orders of magnitude as close to±1 as possible. This ensures that changes
in J and c will not be too steep (i.e. sensitive) nor too shallow (i.e. insensitive) as the optimizer
varies X.

SOLUTION AND RESULTS

The optimization problem is solved using a sequential quadratic programming (SQP) algorithm
implemented in MATLAB’s fmincon function. The implementation is based on Chapter 18 of No-
cedal and Wright.8 At the solution point, fmincon returns the final parameter estimates, Xf . Evi-
dence that the solution is in fact a local minimum can be found in Figure 5, which plots the objective
function history.

Further evidence can be obtained by examining the first differential necessary conditions for a min-
imum. Let νeq and νineq be the vectors of Lagrange multipliers associated with the equality and
inequality constraints, respectively. An auxiliary Lagrangian function is then given by

L(X,ν) = J(X) + νTeqceq + νTineqcineq. (10)
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Figure 5. Objective Value vs. Iteration

With this definition, the first differential necessary conditions for a minimum are(
∂L

∂X

)T

= 0 (11)

ceq = 0 (12)

cineq ≤ 0 (13)

νineq ≥ 0 (14)

Though not shown here, these conditions are met to within the algorithm’s tolerances at the solution
point.

The initial and final parameter estimates (X0 and Xf ) for the periapse-raising burns and the final
orbit transfer burns are given in Tables 2 and 3. In these tables, the ∆Vs are expressed in a Local
Vertical Local Horizontal (LVLH) coordinate system in which the Y axis points along the angular
momentum vector, the Z axis points nadir, and the X axis completes the right-handed system. Semi-
major axis altitude, periapse altitude, apoapse altitude, eccentricity, and inclination using both the
standard strategy and parameter optimization are plotted in Figures 6 through 8. As shown in
Figure 6, using parameter optimization with the standard strategy as a starting point reduces the
orbit maintenance ∆V from 32.240 m/s to 27.028 m/s, reflecting a 16% savings over using the
standard strategy alone.

The data suggest that the optimizer realized these savings through three primary adjustments.

1. Out-of-plane ∆V (i.e. ∆Vy) was added to Burns 1 and 2 in order to adjust the inclination
downstream and reduce the out-of-plane ∆V required in Burn 4.

2. Burn 3 was almost completed eliminated.
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3. ∆Vx was subtracted from Burn 2. This adjusted the periapse altitude downstream such that
no periapse correction was necessary to meet the final constraints.

Table 2. Initial Parameter Estimates (X0)

Periapse-Raising Burns Final Two-Burn Orbit Transfer
Burn 1 Burn 2 Burn 3 Burn 4

Ignition (days) 27.723 55.670 60.078 60.118
LVLH ∆Vx (m/s) 4.393 4.359 −0.736 −7.958
LVLH ∆Vy (m/s) −7.279x10−10 −4.902x10−9 −2.133 19.652
LVLH ∆Vz (m/s) −5.488x10−8 −1.448x10−4 −0.123 1.047
|∆V| (m/s) 4.393 4.359 2.260 21.228

Table 3. Final Parameter Estimates (Xf )

Periapse-Raising Burns Final Two-Burn Orbit Transfer
Burn 1 Burn 2 Burn 3 Burn 4

Ignition (days) 27.724 55.669 60.067 60.107
LVLH ∆Vx (m/s) 4.321 3.568 5.051x10−5 −7.742
LVLH ∆Vy (m/s) −6.318 −5.192 −5.807x10−5 10.444
LVLH ∆Vz (m/s) −0.465 −0.575 −1.423x10−5 0.924
|∆V| (m/s) 7.668 6.326 7.826x10−5 13.034

EXTENSIBILITY TO COMPLEX MISSIONS

The low-lunar orbit example shows this approach to be effective for missions with simple con-
straints. It may also benefit missions with more complex constraints such as LRO. The standard
strategy, or stationkeeping algorithm chosen for LRO must meet five constraints:

1. Maintain ground station contact during stationkeeping maneuvers.

2. Control altitude to within 20 km of the mean 50 km altitude.

3. Control periselene to spend at least 48% of the time in each of the northern and southern
hemispheres.

4. Match orbit eccentricity at the beginning and the end of each lunar siderial period.

5. Minimize stationkeeping ∆V.

In the analysis for LRO, four different stationkeeping options were proposed that meet the first
four constraints. Two of the options were eliminated by the fifth constraint, with the remaining
two having nearly identical ∆V costs. The option with the smaller altitude variation during each
siderial period was chosen as the final stationkeeping algorithm. When simulated, the vehicle coasts
through a full siderial period, and then performs a pair of stationkeeping maneuvers to rotate the
line of apsides and reset the eccentricity (e) vs. argument of periapse (ω) pattern. 10.81 m/s of ∆V
per siderial period are required for the stationkeeping maneuvers.
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Though a detailed analysis is not addressed in this paper, the mapping from the simple low-lunar
orbit mission to the more complex LRO mission is clear. The stationkeeping algorithm chosen for
LRO is used to determine the burns needed over the course of the mission, which then form the
initial estimate of the burn parameters. The burns can then be optimized to reduce stationkeeping
∆V, subject to the first four LRO constraints.

APPROACH LIMITATIONS

While burn parameter optimization can be used to reduce orbit maintenance ∆V, there are lim-
itations to this approach. First, employing an SQP algorithm or other line-search technique will
yield only locally optimal solutions. The solutions will be local to the initial estimate of the burn
parameters, which in this case is defined by the standard strategy. These solutions may or may not
be globally optimal, which can only be determined using global optimization techniques such as
genetic algorithms. Such analysis is beyond the scope of this paper.

Second, the standard strategy itself represents only one approach to generating an initial estimate.
Myriad other equally valid approaches exist, such as performing smaller but more frequent burns
throughout the mission. A related variant would be to choose a different and potentially time-
varying reference altitude for the periapse-raising burns. Finally, burns could be executed based on
other criteria, and not solely on violations of the minimum altitude threshold. A separate analysis
(also beyond the scope of this paper) would be required to determine the best (or at least a better)
approach to generating an initial estimate.

Third, this approach works well as long as the total number of burns is relatively small. Each time
a new burn added, the parameter set grows by four (t, ∆Vx, ∆Vy, ∆Vz), and finite difference
gradient computations become more expensive. In the low-lunar orbit example, the gradient of c is
a (16 x 7) matrix (16 parameters, 4 path inequality constraints, and 3 endpoint equality constraints)
and is relatively inexpensive to evaluate. If there were, say, 50 burns, the gradient matrix would be
(200 x 53) (200 parameters, 50 path inequality constraints, and 3 endpoint equality constraints), and
would be much more expensive to evaluate.

CONCLUSIONS

This study presented a strategy for obtaining a minimum ∆V solution to the orbit maintenance
problem using burn parameter optimization. This strategy is well-suited for low-altitude missions in
particular given their potentially high ∆V costs for orbit maintenance. A low-lunar orbit example
was analyzed using this strategy, and a 16% savings in ∆V was realized over using a standard
strategy alone.

The general approach for a given mission is to use a pre-existing orbit maintenance strategy to
generate an initial estimate of the burn parameters and a baseline ∆V cost. The burn parameters
(X) are then fed into a parameter optimization algorithm that varies X to minimize the total orbit
maintenance ∆V while meeting mission constraints. Upon convergence, the final estimate of the
burn parameters provides at least a locally optimal solution to the orbit maintenance problem.

Though not analyzed here, in principle this approach can be applied to more complex missions
such as LRO. It is not without limitations however, as the standard strategy provides only one
approach to generating an initial estimate of the burn parameters. Furthermore, as the number of
burns to be optimized increases, the approach becomes more computationally expensive.
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