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Abstract 

A theoretical basis for the scaling of broadband shock nOIse intensity In 

supersonic jets was formulated considering linear shock-shear wave interaction. 

Modeling of broadband shock noise with the aid of shock-turbulence interaction 

with special reference to linear theories is briefly reviewed. An hypothesis has 

been postulated that the peak angle of incidence (closer to the critical angle) for 

the shear wave primarily governs the generation of sound in the interaction 

process with the noise generation contribution from off-peak incident angles 

being relatively unimportant. The proposed hypothesis satisfactorily explains the 

well-known scaling law for the broadband shock-associated noise in supersonic 

jets. 

1. Introduction 

Noise from subsonic jets is mainly due to turbulent mixing, according to the theoretical model of 

Sir James Lighthill [1 , 2]. The turbulent mixing noise is essentially broadband. In perfectly 

expanded supersonic jets (nozzle exit plane pressure equals the ambient pressure), the large-scale 



mixing noise manifests itself primarily as Mach wave radiation [3, 4] caused by the supersonic 

convection of turbulent eddies with respect to the ambient fluid. In imperfectly expanded 

supersonic jets (nozzle exit pressure different from the ambient pressure) typical of jet and rocket 

exhausts at off-design conditions, additional noise is generated in the form of broadband shock­

associated noise (BBSN) emanating from shock-turbulence interaction [5] and screech tones [6] 

with the tonal (screech) amplitude shown to be occasioned by shock-acoustic wave interaction 

[7]. 

Figure I displays a typical narrowband farfie1d shock noise spectrum, indicating various 

noise components. Here the quantity Sf denotes the Strouhal number (fdj / U j)' f the frequency, 

d j the nozzle exit diameter, U j the jet exit velocity, Pe the nozzle exit pressure, Po the ambient 

pressure, tjJ the angle from the downstream jet axis, M d the nozzle design Mach number, and M j 

the fully expanded jet Mach number. 

In imperfectly expanded supersonic jets, the rapid variation in the pressure across the nozzle 

exit is accompanied by a system of steady compression (oblique shock) and expansion waves 

(Figure 2). The structure of these shock cells was investigated by Emden [8], Prandtl [9], Lord 

Rayleigh [10], Pack [11], and others. In general these shock-expansion units interact with 

instability waves, vortices, turbulence, and other stream disturbances in the viscous shear layer 

that surrounds the inviscid region. The interaction of turbulence with shock waves leads to the 

generation of the broadband shock noise, which is of relatively high intensity and may form a 

significant component of the overall jet noise, depending on the flow conditions. The peak 

(characteristic) frequency of the broadband shock noise is intimately related to (varies inversely 

as) the shock-cell spacing which is roughly uniform over several shock cells [12]. A 
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fundamental understanding of the mechanism by which turbulence interacts with a shock wave is 

thus requisite in the analysis of the complex phenomena of shock noise generation. 

Lighthill [13] and Ribner [14,15] originally suggested that the scattering of eddies by shocks 

could be a strong source of supersonic jet noise. The importance of source coherence, however, 

has not been recognized, so that only incoherent and randomly scattered sound waves had been 

predicted without the peak frequency and directivity relationships. It was Harper-Bourne and 

Fisher [5] who first identified the detailed characteristics ofBBSN with the aid of measurements 

from conical (convergent) nozzles, and indicated the importance of source coherence. The 

characteristics of shock noise were also reviewed and discussed in [16]. Howe and Ffowcs 

Williams [17] also considered that the primary source of broadband shock-associated noise is a 

consequence of the interaction between large scale structures (turbulence) and the shock 

structure. 

Computing shock noise intensity in supersonic jets from first principles (on the basis of 

shock-turbulence interaction) is very difficult. The nature of the relevant noise sources is not 

well understood [18]. This situation is exemplified by the fact that the theories of both Lighthill 

[13] and of Ribner [19, 20] produce shock noise intensity scaling considerably different from that 

indicated by the measurements. 

It is the purpose of this work to investigate the scaling of broadband shock noise intensity 

from considerations based on linear theory for shock-vorticity interaction. It is demonstrated here 

that the scattering of turbulence by the leading shock wave is related to the measured shock noise 

intensity scaling. Flight effects are excluded from consideration here. Also screech effects are 

not relevant to this investigation. This work is primarily based on Ref. 21. 
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2. Measurements and Characteristics of Broadband Shock Noise 

Harper-Bourne and Fisher [5] were the first to identify significant features of shock-noise in 

considerable detail based on their static jet measurements from conical nozzles. The intensity of 

BBSN is shown to be primarily a function of the nozzle (operating) pressure ratio NPR = PI/PO' 

where PI is the stagnation (reservoir) pressure. For a given radiation direction, the measured 

overall sound intensity I has been observed to scale as 

where 

with the isentropic relation between PI/PO and M j expressed by 

( 
-1 )Y/(Y-l) 

~= I+~M2 
Po 2 } 

(I a) 

(Ib) 

(I c) 

In the preceding relations, the quantity Mjrepresents the fully expanded jet Mach number, ris 

the isentropic exponent (ratio of specific heats), and the parameter p2 characterizes the pressure 

jump across a normal shock at approach Mach number M j • 

Figure 3 presents the data for the overall sound power level (OASPL) at 90 deg to the jet 

axis, normalized to r / d j = 1 , are shown for two different nozzle diameters (d j = 25 mm, and 35 

mm) and at a stagnation temperature 1; = 290 K, with r denoting the measurement location. 

Equation (Ia) is plotted as a dashed line, and the estimated mixing noise based on extrapolation 

of low speed data at 1; = 290K is plotted as a dotted line. Harper-Bourne and Fisher [5] found 

that the parameter p correlated BBSN quite well up certain values of p (or NPR), say 

0.5 < p < 1.2. At large NPR or p, the data begins to deviate from this law because of the 
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presence of a Mach disc, which significantly alters the shock-cell structure. As the Mach disc 

forms, the large central portion of subsonic flow formed downstream of the Mach disc 

considerably reduces the noise generation. The data also reveals that at a high fJ the turbulent 

mixing noise level is much lower than the underexpanded noise levels. As fJ decreases, the 

mixing noise contribution relative to the total noise becomes increasingly significant. 

Experiments by Tanna [22] and of Seiner and Norum [23] provided further insight into the 

characteristics of shock noise. These data include measurements form convergent-divergent (C­

D) nozzles, and covered a broad range of jet conditions (NPR and jet temperature ratio r; ITo 

where r; and To are respectively the stagnation temperature and the ambient temperature). Both 

Tanna's data [22], covering fJ:S 1 (Mj :S 1.41, or PI I Po :S 3.S), and the data of Seiner and 

Norum [23] (covering the design Mach number Md = 1.S and 2, and M j = 1 to 2.37 or fJ= 0 to 

2.1S) suggest trends similar to those indicated by the data of Harper-Bourne and Fisher [S] to the 

extent that the overall intensity of shock-associated noise is principally a function of jet pressure 

ratio, scales as I oc p4, and is independent of jet temperature ratio ( efflux temperature) and 

emission angle. The data by Krothapalli et al. [18] for broadband shock noise for M j in the range 

of 1.24 to 1.66 suggest that the shock noise intensity follows the fJ4 dependence for both the 

stationary ambient and in forward flight. 

Directivity and spectral characteristics of BBSN were investigated experimentally by Tanna 

[22], Norum [24], Pao and Seiner [2S], Krothapalli [18], and 10thi and Srinivasan [2S]. Detailed 

measurements by Norum [24] suggests that the shock noise is fairly directional at lower values 

of fJ and approaches omidirectionality. Test data by Tanna [22] reveal that the peak frequency 

(which represents an important characteristic) with the angle of observation. Pao and Seiner [2S] 
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indicate that the power spectral density (dB/Hz) increases as w4 below the peak frequency, and 

decays as w-2 beyond the peak frequency. Measurements by 10thi and Srinivasan [26] suggest 

that at higher pressure ratio exceeding about two, noncircular jets are quieter relative to circular 

jets by as much as 10 dB. 

3. Studies on Shock-Turbulence Interaction 

3.1. Linear Theories. Broadly speaking, the decomposition of a general fluctuation into acoustic, 

vorticity and entropy waves is well-known (Kovasznay [27]). In general any plane wave 

(acoustic, vorticity/shear, or entropy) interacting with a shock undergoes transformation, and at 

the same time generates the other two waves (Zang et at. [28]). In a uniformly moving fluid a 

general fluctuation can be decomposed into acoustic, entropy, and vorticity waves 

(perturbations). The acoustic waves (isentropic pressure fluctuations) propagate with the acoustic 

speed crelative to the moving fluid, while the vorticity and the entropy waves are convected 

with the fluid. Linear analyses of a single wave (shear/vorticity, acoustic, or entropy) interaction 

with a shock wave were carried out by Blokhintzev [29], Burgers [30], Ribner [14, 15, 19,20], 

Moore [31], McKenzie and Westphal [32]. With regard to broadband shock noise, we are 

primarily concerned here with the generation of acoustic waves by the interaction of a shock 

wave with an incident vorticity wave (Figure 4) in our endeavor to investigate shock-turbulence 

interaction. 

According to the linear theory, for sufficiently high angles of incidence for the wave ahead of 

the shock, the incident wave vector k has a nonzero imaginary part. Under such circumstances 

the refracted (or generated) acoustic wave is not an infinite plane wave; instead, it exhibits an 

exponential decay as it propagates downstream behind the shock. The incidence angle that 

separates the plane wave acoustic response from the decaying ones is termed the critical angle. 
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The critical angle is close to 90 deg. for incident acoustic waves, and roughly 60 deg. for incident 

vorticity and entropy waves [28]. Linear theory predicts that most transmission and generation 

coefficients are peaked near the critical angle. From a theoretical point of view, the actual 

transmission/generation coefficients are independent of the incident wavelength in the linear 

limit [28]. 

A turbulent velocity field can be represented as a superposition or spectrum of elementary 

waves distributed among all orientations and wavelengths in accordance with Fourier's integral 

theorem. The waves are transverse for weak turbulence because of the constraint of 

incompressibility (even though convected at high speed). Thus a single wave can be interpreted 

physically as a plane sinusoidal wave of shearing motion (Batchelor [33]). According to linear 

Interaction Analysis (LlA), the vorticity waves incident at angles beyond a critical angle 

(7) 

generate acoustic waves which decay as they propagate downstream. In (7), M J refers to Mach 

number upstream of the shock. 

Lighthill [l3] and Ribner [14, 15, 19] conducted theoretical analysis on acoustic noise 

generation by shock wave/turbulence interaction. In both Ribner's and Lighthill's theories the 

turbulence is treated in effect as aJrozen spatial pattern with neglect of temporal fluctuations. 

Ribner's Analysis 

Ribner [l3] studied in detail the interaction between a vorticity wave and a shock wave. Ribner 

[14, 19] extended this analysis to consider a spectrum of incident vorticity waves (in three 

dimensions) and computed, for an isotropic incident spectrum, detailed statistics of the 

downstream flowfield with emphasis on the generated noise. The basic building blocks of 

Ribner's linear theory are oblique plane sinusoidal waves of vorticity (shear waves), see Figure 
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6. These represent single spectral (monochromatic) waves composed of (in 3-D) an 

instantaneous snapshot of arbitrary flow. The waves are considered to interact independently 

with the shock, and then the waves are superposed to represent turbulence upstream and 

downstream of the shock. The detailed statistical formalism was worked out in Ribner [15] and 

partly summarized by Ribner [20]. 

The mean spectral sound pressure is expressed by [19] 

p"2 = 1Ip(BW[uu]d3k (8a) 
o 

where P(B) is the transfer function for sound wave generation, and the special symbol [uu] 

stands for the longitudinal spectral density of < u 2 > in wave-number space k, where k is a 

three-dimensional vector [20]. The wave number is defined by 

k = Ikl = 27l / A = OJ / c (8b) 

where A is the acoustic wavelength and OJ the circular frequency. Considering that the initial 

turbulence is isotropic, Ribner [14, 15] tabulated the transfer function p(e) and the critical 

angle. Calculations of the linear theory were performed for an upstream Mach number range of 

1 < M[ < 10. For a one percent turbulence, the post shock noise level is predicted to exceed 140 

dB for all preshock Mach numbers above 1.05. 

Lighthills's Theory 

Lighthill [13] considered the generation of sound due to the interaction of turbulence with 

very weak shock waves (acoustic-like waves), by aid of his general theory of sound generated 

aerodynamically [I, 2]. The weak shock is represented by an acoustic step function. In 

Lighthill's theory the assumptions are more restrictive than in Ribner's analysis in the sense that 

both the shock and the turbulence are weak. As a result, the rippling motion of the shock as well 
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as the differences in the turbulence intensity across the shock are suppressed. The ratio of freely 

scattered acoustic energy to the kinetic energy of turbulence traversed by the shock wave is 

expressed relative to aframe moving with thefluid, whereas Ribner's analysis deals with aframe 

attached to the shock. For a direct comparison, Ribner [19]convert~d the results of Lighthill [13] 

to the shock-fixed reference frame. 

Figure 5 shows a comparison of the scattered sound intensity (in SPL) between Ribner's 

result [19] and that of Lighthill [13], as presented by Ribner [19]. Significant discrepancy is 

noted between the two results. A critical discussion of this comparison is provided by Ribner 

[19]. Note that the results ofRibner and Lighthill shown here are not to scale. 

3.2. Nonlinear Euler Simulations. Since the shock weakens as the Mach number tends to unity, 

the shock front will undergo greater distortions from an incident wave of fixed amplitude. Thus, 

nonlinear effects ought to be increasingly important for lower Mach numbers (Zang et al. [28]). 

Zang et al. [28] validated the linear analysis of McKenzie and Westphal [32] by comparisons 

with their numerical solution of nonlinear 2D Euler equations. Although restricted in terms of the 

incident angle of the disturbance, it was shown that the linear analysis was valid over a 

surprisingly large range of shock strengths and disturbance amplitudes (Figure 6). In this plot 

6p2 represents the amplitude of the acoustic pressure generated downstream of the shock, bu, the 

amplitude of the incident vorticity wave, p, the mean pressure upstream of the shock, c, the 

sound speed upstream of the shock. The comparisons suggest that the linear theory is fairly 

accurate for a wide range of incident angles up to the critical angle. Although comparisons were 

made for both the incident and the vorticity waves, only the comparisons for the incident 

vorticity waves are indicated in Figure 6. 
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3.3 Instability wave Theories. Tam [34] formulated a stochastic model theory of the BBSN of 

axisymmetric supersonic jets by considering the dynamics of weakly nonlinear interaction 

between the downstream propagating linear instability waves in the mixing layer and shock-cell 

structures. On account of the solution complexity, a semi-empirical (less-general) shock-noise 

model was arrived at, valid for slightly impeifectly expanded supersonic jets. An increase in the 

spectral peak associated with the BBSN is attributed to the convective amplification of the 

sources. The theory was extended [35] to moderately imperfectly expanded jets with the aid of 

empirical modifications to the amplitude of the waveguide modes of the shock cell. The specific 

role of instability wave-shock cell interaction is discussed in the reviews [36-38] on supersonic 

jet noise. 

3.4. DNS Simulations. The simplest circumstance in which turbulence interacts with a shock 

wave is the case of isotropic turbulence interacting with a normal shock (transverse vorticity 

amplification). Lee et al. [39, 40] and Mahesh et al. [41] performed DNS simulation of the 

interaction of 3-D isotropic turbulence up to M\ = 3 . Detailed comparisons of DNS results to 

Ribner's linear analysis [15, 20] were made. DNS calculations [39, 40] and numerical 

simulations by Rotman [42] show that the vorticity amplification predictions are in good 

agreement with the linear theory. Satisfactory agreement between the DNS simulations [41] and 

the linear theory is noticed with regard to amplification (of turbulent kinetic energy) and 

anisotropy downstream of the shock (representing the ratio of longitudinal to transverse velocity 

fluctuation). 

Although DNS solutions provide the most accurate representation of the shock/turbulence 

interaction, they seem to be impractical for conditions involving strong shock waves and high 
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Reynolds number turbulence on account of resolution requirements of shock waves and 

turbulence. 

3.5. Experimental Data. With regard to experimental data, it IS found that in general 

compression enhances turbulence and expansion suppresses it. Measurements by Barre et al. [43] 

at M\ = 3 suggest that the shock wave increases the longitudinal fluctuating velocity in 

agreement with Ribner's theory [19]. As indicated by Ribner [44], the measured amplification 

ratio of mean square longitudinal component of turbulence velocity (ui / U\2) is close to the 

theoretical value of about 1.5 as predicted by Ribner's theory [14, 15] at M\ = 3. Density 

fluctuations in high speed jets were investigated by Panda et al. [45]. 

There are also important studies dealing with the fundamental interaction between vorticity 

and an isolated shock. The interaction of a shock with a longitudinal vortex was treated by 

Erlebacher et al. [46] on the basis of analytical (linear and nonlinear) theories and numerical 

simulations. Grasso and Pirozzoli [47] solved 2-D Euler equations with the aid ofa higher-order 

finite volume weighted-ENO scheme in their study of sound generation in the interaction of a 

shock wave with a cylindrical vortex. In this connection, they also derived a Green's function for 

the acoustic analogy for a general vortex structure to analytically characterize the shock-vortex 

interaction. Direct noise computation in subsonic and supersonic jets was reviewed by Bailly et 

al. [48]. Avital et al. [49] investigated Mach wave radiation by mixing layers. 

4. Proposed Model 

The discrepancy between the theories of Lighthill [13] and of Ribner [19] in comparison with the 

experimental data for the scaling of shock noise intensity (as evident from Figure 5) requires 

further investigation. This discrepancy is attributed to the fact that in their theories the turbulence 

is treated effectively as a frozen spatial pattern without regard to the temporal fluctuations. There 
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is thus a deficiency in applying linear theory to real turbulence, which consists of traI1sient 

phenomena and not steady plane waves [28] . Also, three-dimensional simulation is needed to 

accommodate vortex stretching [28] . 

The irregularity and disorderliness characterizing turbulence involve the impermanance of 

the various frequencies and of the various periodicities and scale (Hinze [50]). Strictly speaking, 

the instantaneous physical interaction process (shock/vorticity) cannot not represented by time-

averaging. In view of these circumstances it is plausible that the peak angle of incidence is 

representative of the shock-shear wave interaction insofar as the scaling of the BBSN is 

concerned. Accordingly it is postulated here that the shock-vorticity interaction at the peak 

incidence governs the generation of sound. Also it is assumed that the interaction of turbulence 

with the leading sh6ck cell forms the maximum contribution to the intensity of sound, and that 

the sound contribution due to the interactions at the subsequent shock cells is of secondary nature 

( subsidiary importance). 

With the above postulate, the linear acoustic response (acoustic pressure rise) for shock-

vortex interaction (vorticity waves incident on a shock) is computed for various upstream Mach 

numbers. In this context, as pointed out by Zhang et aL [28] that among the linear analyses, the 

work by McKenzie and Westphal [32] is more accessible and tractable than the earlier 

pioneering studies of Ribner [14,- 15] and others, while yielding equivalent results. In 

consequence our calculations will be based on the work of [32]. For normal shocks and an ideal 

gas, the relation for the acoustic response in dimensionless form becomes relatively simple, and 

is expressed by (see ref. 32, Equation 42): 

<P2 _ - 4yM\ (M\2 -1 )sin fJ\ [1- (u2 / u\ ) tan 2 fJi ] 

(p\ / c\)bu\ - (y + l)D 
(9a) 

where 
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(9b) 

(9c) 

u2 PI (Y_I)MI2 +2 
-;;: = P2 = (y + I)MI2 

(9d) 

(ge) 

(9f) 

In the preceding equations P denotes the density, and the subscripts 1 and 2 denote the upstream 

and downstream of the normal shock respectively. 

On the basis of Equation (9), the acoustic response has been computed as a function of the 

incident angle for several upstream Mach numbers from 1.2 to 8 are shown in Figure 7. The 

results point out that the peak angle of incidence and the associated acoustic response varies with 

the Mach number. The acoustic pressure 'increases with an increase in Mach number. Notice that 

the computed acoustic pressure at M = 8 is identical to that shown in Figure 6, as computed by 

Zang et al. [32], thus verifying the present calculations. It should be pointed out that the results 

for various upstream Mach numbers as shown in Figure 7 are originally obtained by the author. 

5. Results 

Based on the foregoing premise, the intensity of BBSN taken at the peak incidence angle, as 

obtained from the results of Figure 7, is plotted as function of f3 in Figure 8. The sound 

pressure level (OASPL) is given by 
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OASPL = 2010~ ~(cpzY I Pref) dB (10) 

where 5pz is obtained form (10a) and Pref is the reference sound pressure (2xlO-5 N/m2
). It is 

revealed that the scaling of intensity very nearly varies as p4 for a wide range of p between 0.2 

and 2.0. In this range the present theory yields 

I oc p4.Z (11) 

Beyond this range there is seen a change in slope in the intensity variation. 

A direct comparison of the scaling based on the proposed model and the experimental data of 

Tanna [20] is presented in Figure 9. The OASPL data are obtained from an underexpanded 

nozzle with 1; / To = 1 (cold jet) at ¢ = 135 deg. For scaling purposes, the model results presented 

in Figure 9 are adjusted such that at f3 = 0.7, the prediction matches the OASPL data of 117 dB 

(taken for reference purposes). The predictions from the proposed model substantially agree 

with the data in the range of 0.3 < f3 < 1.0 . Recall that for low values of P less than about 0.3, the 

turbulent mixing noise becomes significant. It is known that beyond about f3 = 1 , a Mach disc is 

formed, which alters the shock-cell structure. The large central portion of subsonic flow that 

develops downstream of the Mach disc considerably diminishes the noise generation. 

The satisfactory explanation of the p4 scaling law by the proposed theory suggests that the 

hypothesis of peak incidence angle for the generation of sound by shock-vorticity interaction is 

plausible. This forms an important contribution of the present work. 

The determination of the directionality effects and spectral distribution of the BBSN are 

outside the scope of the present investigation, which is mainly concerned with the scaling law for 

broadband shock noise intensity. The fact that only a single shock-celVvortex interaction is 

considered here indicates that the shock noise intensity obtained by the present formulation is 
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essentially ominidirectional. It is believed that the present investigation would be helpful in our 

understanding of supersonic jet noise [51, 52] and its suppression by active control such as water 

injection [53-55]. 

6. Discussion 

With regard to the validity of the linear theory, the author [7] recently applied the linear 

theory to the production of screech noise, regarded as a consequence of interaction of an incident 

acoustic wave and a shock wave, and obtained a remarkable agreement with data for the screech 

amplitude for fully expanded Mach number M j up to 2. The predicted directivity pattern is also 

satisfactory when compared with measurements. Since the screech amplitudes are considerably 

larger as relative to broadband shock noise levels, it is hardly surprising that the proposed model 

based on linear formulation is able to describe the intensity scaling law for broadband shock 

noise. As indicated in Zang et al. [28], the linear theory is found to be valid for extraordinarily 

large amplitudes, suggesting that the region of validity of linear theory is indeed much broader 

than one would generally expect. Quoting Zang et al. [28], in some of the examples of their 

numerical Euler simulations, the post-shock velocity fluctuations were of nearly the same order 

as the mean stream velocity! 

Referring to the notable difference, for strong shocks, between the linear approach of Ribner 

[19] and the weakly-nonlinear approach of Lighthill [13], it may be ascribed to differences in 

their assumptions and simplifications in treating the statistics of the interaction process. 

7. Conclusion 

A physical basis IS proposed for the scaling of . the broadband shock-associated nOIse III 

supersonic jets considering linear interaction between the shock wave and the vorticity wave 

considering the peak incidence angle for the turbulence. The hypothesis that the generation of 
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sound at peak incidence angle is important is shown to satisfactorily describe the experimental 

scaling law for the broadband shock-associated noise intensity in imperfectly expanded 

supersonic jets. 
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Nomenclature 

c: speed of sound 

d j : nozzle diameter 

f: frequency 

I: overall sound intensity, ~2 /(Poc 2 
) 

k: incident wave vector 

k: wave number 

M: Mach number 

Md: design Mach number 

M j : fully expanded jet Mach number 

p: pressure 

r: distance to measurement location 

R: C2 / cl 

Sf: Strouhal number, fd j / U j 

T: temperature 

U velocity 

u j : jet exit velocity 

y: isentropic exponent 

~2: amplitude of the acoustic pressure rise 

hiLl: amplitude of the incident vorticity wave 

¢: angle from downstream jet axis 

A: acoustic wavelength 

17 



p density 

Be : critical angle 

w : circular frequency, 27if 

Subscripts 

e: nozzle exit 

t: stagnation (reservoir) 

0: ambient 

1 upstream of shock 

2 downstream of shock 

18 



References 

[1] M. J. Lighthill, "On sound generated aerodynamically, 1. General theory." Proceedings of 

the Royal Society of London, series A, vol. 211, no. 1107, pp. 564-587, 1952. 

[2] M. J. Lighthill, "On sound generated aerodynamically, ll. Turbulence as a source of sound. 

Proceedings of the Royal Society of London, series A, vol. 222,no. 1148, pp.I-32, 1954. 

[3] J. E. Ffowcs-Williams, "The noise from turbulence convected at high speed," Proceedings 

of the Royal Society of London, series A, vol. 255, no. 1061, pp. 469-503, 1963. 

[4] 1. M. Seiner, "Advances in high speed jet aeroacoustics, AIAA paper 84-2275, 1984. 

[5] M. Harper-Bourne and M. 1. Fisher, "The noise from shock waves in supersonic jets," 

Noise Mechanisms, AGARD CP-131, paper 11, 1973. 

[6] A. Powell, "The noise of choked jets," Journal of the Acoustical SOCiety of America, vol. 

25,no.3,pp. 385-389,1953. 

[7] M. Kandula, "Shock refracted acoustic wave model for screech amplitude in supersonic 

jets," AlAA Journal, vol. 46, no. 3, pp. 682-689,2008. 

[8] R. Emden, "Uber die Ausstromungserscheinungen permanenter Gase," Ann. Physik, vol. 

69,pp.264-289,1899. 

[9] L. Prandtl, "Ober die stationaren Wellen in einem Gasstrahl," Phys. Zeitschrift, vol. 5, no. 

19,pp. 599-601,1904. 

[10] Lord Rayleigh, "On the discharge of gases under high pressure," Philosophical Magazine, 

vol. 32, pp. 177-181,1916. 

[11] D. C. Pack. "A note on Prandtl's formula for the wavelength of a supersonic gas jet," 

Quarterly Journal of Mechanics and Applied Mathematics, vol. 3, pp. 173-181, 1950. 

19 



[12] A. Powell, "On Prandtl's fonnulas for supersonic jet cell length," International Journal of 

Aeroacoustics, vol. 9, nos. 1 & 2, pp. 207-236, 2010. 

[13] M. J. Lighthill, "On the energy scattered from the interaction of turbulence with sound or 

shock waves," Proceedings of Cambridge Philosophical Society, vol. 49, pp. 531-551 , 

1953. 

[14] H. S. Ribner, "Convection ofa pattern of vorticity through a shock wave," NACA Report 

1164, 1954. 

[15] H. S. Ribner, "Shock-turbulence interaction and the generation of noise," NACA Report 

1233, 1955. 

[16] M. J. Fisher, P. A. Lush, and M. Harper-Bourne, "Jet noise," Journal of Sound and 

Vibration, vol. 28, no. 3, pp. 563-585, 1973. 

[17] M. S. Howe and J. E. Ffowcs Williams, "On the noise generated by an imperfectly 

expanded supersonic jet," Philosophical Transactions of the Royal Society of London, vol. 

289, no. 1358,pp. 71-314,1978. 

[18] A. Krothapalli, P. T. Sodennan, C. S. Allen, J. A. Hayes, and S. M. Jaeger, "Flight effects 

on the far-field noise of a heated supersonic jet," AIAA Journal, vol. 35, no. 6, pp. 52-957, 

1997. 

[19] H. S. Ribner, "Acoustic energy flux fonn shock-turbulence interaction," Journal of Fluid 

Mechanics, vol. 35,1969, part 2, pp. 299-310, 1969. 

[20] H. S. Ribner, "Spectra of noise and amplified turbulence emanating from shock-turbulence 

interaction," AIAA Journal, vol. 25, pp. 436-442, 1987. 

[21] M. Kandula, "On the scaling law for broadband shock noise intensity in supersonic jets," 

AlAA-2009-3318, 2009. 

20 



[22] H. K. Tanna, "An experimental study of jet noise, Part II: Shock Associated Noise," 

Journal of Sound and Vibration, vol. 50, no. 3, pp. 429-444, 1977. 

[23] J. M. Seiner and T. D. Norum, "Experiments of shock-Associated Noise in Supersonic 

jets," AIAA-79-1526, 1979. 

[24] T. D. Norum and 1. M. Seiner, "Broadband shock noise from supersonic jets," AIAA 

Journal, vol. 20, no. 1, p. 68-73, 1982. 

[25] S. P. Pao and 1. M. Seiner, "Shock-Associated noise in supersonic jets," AlAA Journal, 

vol. 21, no. 5, pp. 687-693, 1983. 

[26] T. J. S. Jothi and K. Srinivasan, "Acoustic · characteristics of non-circular slot jets," Acta 

Acustica united with Acustica, vol. 94, pp. 229-242, 2008. 

[27] L. S. G. Kovasznay, "Turbulence in supersonic flow," Journal of Aerospace Sciences, vol. 

20, no. 10,pp. 657-674, 1953. 

[28] T. A. Zang, M. Y. Hussaini, and D. M. Bushnell, "Numerical computation of turbulence 

amplification in shock-wave interactions," AlAA Journal, vol. 2, no. 1, pp. 13-21, 1984. 

[29] D. I. Blokhintzev, "A moving sound pickup," Doklady Akademii Nauk SSSR (Soviet 

Physics-Doklady), vol. 47, pp. 22-25, 1945 (see also translation: Acoustics of a 

nonhomogeneous moving medium, NACA TM 1399, 1956). 

[30] J. M. Burgers, "On the transmission of sound waves through a shock wave," Proceedings 

of the Koniklijke Nederlandse van Wetenshappaen, vol. 49, pp. 273-281, 1946. 

[31] F. K. Moore, "Unsteady oblique interaction of a shock wave with a plane disturbance," 

NACA 1165, 1954. 

[32] J. F. McKenzie and K. o. Westphal, "Interaction of linear waves with oblique shock 

waves," Physics of Fluids, vol. 11, pp. 2350- 2362, 1968. 

21 



[33] G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press, 

Cambridge, 1953. 

[34] C. K. W. Tam, "Stochastic model theory of broadband shock associated noise from 

supersonic jets," Journal of Sound and Vibration, vol. 116, no. 2, pp. 265-302, 1987. 

[35] C. K. W. Tam, "Broadband shock-associated noise of moderately imperfectly expanded 

supersonic jets," Journal of Sound and Vibration, vol. 140, no. 1, pp. 55-71, 1990. 

[36] C. K. W. Tam, "Supersonic jet noise," Annual Reviews of Fluid Mechanics, vol. 27, pp. 17-

43, 1995. 

[37] S. K. Lele, "Phased array models of shock-cell noise sources," AIAA-2005-2841, 2005. 

[38] A. Raman, "Advances in supersonic jet screech: review and perspective," Progress in 

Aerospace Sciences, Vol. 34, pp. 45-106, 1998. 

[39] S. Lee, S. K. Lele, and P. Moin, "Direct numerical simulation of isotropic turbulence 

interacting with a weak shock wave," Journal of Fluid Mechanics, vol. 251, pp. 533-562, 

199. 

[40] S. Lee, S. K. Lele, P. Moin, "Interaction of isotropic turbulence with shock waves: effect of 

shock strength," Journal of Fluid Mechanics, vol. 340, pp. 225-247,1997. 

[41] K. Mahesh, S. K. Lele, and P. Moin, "The influence of entropy fluctuations on the 

interaction of turbulence with a shock wave," Journal of Fluid Mechanics, vol. 334, p. 353, 

1997. 

[42] D. Rotman, "Shock wave effects on a turbulent flow," Physics of Fluids, vol. 3, pp. 1792-

1806, 1991. 

22 



[43] S. Barre, D. AHem, and J. P. Bonnet, "Experimental study of a normal 

shocklhomogeneous turbulence interaction," AIAA Journal, vol. 34, no. 5, pp. 968-974, 

1996. 

[44] H. S. Ribner, "Comment on Experimental study of a normal shocklhomogeneous 

turbulence interaction," AIAA Journal, vol. 36, no. 2, p. 494, 1998. 

[45] J. Panda and R. A. Seasholtz, "Experimental investigation of density fluctuation in high 

speed jets and correlation with generated noise," Journal of Fluid Mechanics, Vol. 450, pp. 

97 -130, 2002. 

[46] G. Erlebacher, M. Y. Hussaini, and c.-W. Shu, Interaction of a shock with a longitudinal 

vortex, Journal of Fluid Mechanics, vol. 337, pp. 129-153,1997. 

[47] F. Grasso and S. Pirozzoli, "Shock-wave-vortex interactions: Shock and Vortex 

deformations, and sound production," Theoretical and Computational Fluid Dynamics, vol. 

13, pp. 421-456, 2000. 

[48] c. Bailly, C. Bogey, and O. Marsden, "Progress in direct noise computation," International 

Journal of Aeroacoustics, Vo. 9, nos. 1&2, pp. 123-143,2010. 

[49] E. J. Avital, N. D. Sandham, and K. H. Luo, "Mach wave radiation by mixing layers, Part I: 

Analysis of the sound field," Theoretical and computational Fluid Dynamics, Vol. 12, pp. 

73-90, 1998. 

[50] J. O. Hinze, Turbulence, 2nd ed. McGraw-Hill, New York, 1975. 

[51] M. Kandula, "On the scaling laws and similarity spectra for jet noise for subsonic and 

supersonic flow," International Journal of Acoustics and Vibration, vol. 13, no. 1, pp. 3-

16,2008. 

23 



[52] M. Kandula, "Nearfield acoustics of clustered rocket engines," Journal of sound and 

Vibration, vol. 309, Issues 3-5, pp. 852-857,2008. 

[53] M. Kandula, "Prediction of turbulent jet mixing noise reduction by water injection," AlAA 

Journal, vol. 46, no. 11,2714-2722,2008. 

[54] M. Kandula, "Broadband shock noise reduction in turbulent jets by water injection," 

Applied Acoustics, vol. 70, pp. 1009-1014, 2009. 

[55] M. Kandula, "Spectral attenuation of sound in dilute suspensions with nonlinear particle 

relaxation," Journal of the Acoustical Society of America, vol. 124, EL284-EL290, 2008. 

24 



Captions to Figures 

FIGURE 1: A typical narrowband farfield shock noise spectrum (adapted from Seiner [4]). 

FIGURE 2: Shock cell structure in an underxpanded supersonic jet. 

FIGURE 3: Intensity of broadband noise at 90 deg. to jet axis (from Fisher et al. [16]). 

FIGURE 4: Interaction of a shear wave with shock wave (Ribner [19]). 

FIGURE 5: Intensity of broadband noise according to the theories of Ribner [19] 

and Lighthill [13]. 

FIGURE 6: Dependence of acoustic response to vorticity waves incident on a Mach 8 shock 
(solid lines: linear theory, circles from nonlinear Euler simulations; from Zang et al. [28]). 

FIGURE 7: Pressure rise due to shock/vorticity amplification according to linear theory. 

FIGURE 8: Intensity of broadband noise according to the theory of maximum incidence angle. 

FIGURE 9: Comparison of the present theory and the data of Tanna [22] for the intensity of the 
broadband shock noise. 
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FIGURE 4: Interaction of a shear wave with shock wave (Ribner [19]). 
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