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ABSTRACT

Structure formation provides a strong test of any cosmic acceleration model because a suc-
cessful dark energy model must not inhibit or overpredict the development of observed large-scale
structures. Traditional approaches to studies of structure formation in the presence of dark energy
or a modified gravity implement a modified Press-Schechter formalism, which relates the linear
overdensities to the abundance of dark matter haloes at the same time. We critically examine the
universality of the Press-Schechter formalism for different cosmologies, and show that the halo
abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation)
time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of
best correlation for small haloes), and show that our results agree with deviations from modified
Press-Schechter formalism seen in simulated mass functions. This provides a novel universal pre-
scription to measure linear density evolution, based on current and future observations of cluster
(or dark matter) halo mass function. In particular, even observations of cluster abundance in a
single epoch will constrain the entire history of linear growth of cosmological of perturbations.

Subject headings: cosmology: large-scale structure of universe

1. Introduction

An important part of the effort to explain cos-
mic acceleration and the cosmological constant
problem is testing proposed models in the context
of what are, at this stage, better-established phys-
ical pictures. Structure formation could prove to

1Current address: Goddard Space Flight Center, Green-
belt, MD, 20770, USA

2chanda.prescod-weinstein@nasa.gov
3nafshordi@perimeterinstitute.ca

be an incredibly useful phenomenological method
for distinguishing models of cosmic acceleration.

It is currently believed that large-scale struc-
ture formation has its seeds in small quantum
fluctuations in the early universe (e.g., Mukhanov
et al. (1992)). The current model for structure
formation is elegant in its fundamental simplicity.
Random inhomogeneities, artifacts of cosmic in-
flation, create a runaway effect in which overdense
regions attract more matter, thus becoming more
dense and leading to galaxies, stars, and planets.
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Better understanding of this process is inde-
pendently an intriguing enterprize in the field of
cosmology. However, in this work we focus on
the relationship between the cosmic acceleration
and structure formation. More specifically, differ-
ent cosmological pictures (cosmologies with differ-
ing causes of acceleration, such as a cosmologi-
cal constant, dark energy, or modifications of Ein-
stein gravity) might have expansion histories that
are similar to one another but leave different im-
prints on large-scale structures, and in particular
on galaxy clusters. Therefore, structure forma-
tion provides a unique testing ground for models
of cosmic acceleration (e.g., Ishak et al. (2006);
Acquaviva et al. (2008); Vikhlinin et al. (2009)).
Here we critically examine some of the assump-
tions in this program, and develop a framework to
enhance the accuracy of this kind of work.

The first step in this direction is to revisit how
the Press-Schechter formalism (Press & Schechter
1974) (PSF) is used to predict the cluster mass
function. Press & Schechter (1974) have argued
that the number density of dark matter haloes (or
galaxy clusters) of mass M is given by:

dn(M, z)

dM
= f [σ(M, z)]

ρ̄m(z)

M

∂ lnσ−1(M, z)

∂M
,

(1)
where σ2(M, z) is the variance of linear overden-
sity in spherical regions of mass M at redshift z,
while ρ̄m(z) is the mean matter density of the uni-
verse. For random gaussian initial conditions, f [σ]
is given by:

fPS [σ] =

√
2

π

δsc
σ

exp

[
− δ

2
sc

2σ2

]
, (2)

where δsc (' 1.68 for most ΛCDM cosmologies) is
the spherical collapse threshold for linear overden-
sities (Gunn & Gott 1972).

While the PSF successfully predicts the broad
features of the simulated cluster mass functions,
it proves too simplistic for detailed model com-
parisons required for precision cosmology. Conse-
quently, several authors including Sheth & Tormen
(1999), Jenkins et al. (2001), Evrard et al. (2002),
Warren et al. (2006), and Tinker et al. (2008) have
refined the function f(σ) to better match the mass
functions in N-body simulations. We shall refer to
these approaches as modified PSF. For example,
Warren et al. (2006) and Tinker et al. (2008) pro-

pose a fitting formula of the form:

f(σ) = A

[(σ
b

)−a
+ 1

]
e−c/σ

2

, (3)

where (A, a, b, c) = (0.186, 1.47, 2.57, 1.19) give a
good fit to simulated haloes of overdensity ∆ =
200, in a concordance ΛCDM cosmology at z = 0
(Tinker et al. 2008) (see Fig. 1). While most of
this work is based on fitting formulae to simulated
mass functions, Sheth et al. (2001) argue that an
approximate implementation of ellipsoidal collapse
can account for most of the deviations from the
PSF.

Fig. 1.— A comparison of Press-Schechter prediction for
the function f(σ) (dotted line; Eq. 2), with a parameterized
fit to the numerical simulations (solid line; Eq. 3).

However, a more pressing question for cosmo-
logical applications is whether the function f(σ) is
universal, or rather can vary for different cosmolo-
gies or cosmic acceleration models. In other words,
could the same modified PSF be used to accurately
predict halo abundance in cosmologies with differ-
ent cosmological parameters? While earlier stud-
ies failed to find such dependence, Tinker et al.
(2008) first noticed a systematic evolution of f(σ)
with redshift, implying a breakdown of universal-
ity at the 10 − 30% level (also see Reed et al.
(2007); Crocce et al. (2010); Bhattacharya et al.
(2010)). Courtin et al. (2010) note that universal-
ity is limited by the nonlinearity of structure for-
mation, and the cluster mass function shows some
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redshift dependence at higher redshifts that can be
(partially) understood in the context of spherical
collapse. However, the spherical collapse model
falls short of explaining the 10 − 30% deviations
from universality in all but the most massive clus-
ters (see Fig. 7).

In this work, we contribute to the effort to bet-
ter understand the role and limits of universal-
ity in the cluster mass function by introducing a
new parameter that appears to be universal across
cosmological models.1 In particular, the modi-
fied PSF relies on σ(M), the root-mean-square
of linear density fluctuations at the time of ob-
servation, when in reality, observed clusters are
very non-linear objects with overdensities exceed-
ing 200. We thus seek to find a universal time
in the past when we could make a connection be-
tween the nonlinear structures that we observe in
the present and the linear structures that existed
at that time, since all structures go through a lin-
ear phase. Our basic strategy is to find the time in
the past at which the linear density of the struc-
tures that collapse today show minimum disper-
sion as we vary cosmologies. This is illustrated in
Fig. (2).

In § 2, we present the complete nonlinear differ-
ential equation that governs the growth of matter
perturbations in spherical overdense regions in the
presence of a cosmological constant.

In § 3, we describe a numerical method which
we developed in order to solve both the nonlin-
ear and linear structure formation equations in
the presence of a cosmological constant, or dark
energy with a constant equation of state.

In § 4, we discuss the implications of our nu-
merical study, i.e. we find a universal fraction of
collapse time, where linear density is the same in-
dependent of cosmology.

In § 5 we reexamine the idea of universality of
mass functions in light of the results of the previ-
ous section, including the effect of ellipsoidal col-
lapse on the formalism, and propose a new mass
function for general dark energy models.

1Here we define cosmological models to mean different val-
ues of the cosmological constant density ΩΛ at the time
of observation, or different values of the dark energy equa-
tion of state parameter, w. For now, we do not consider
quintessence models where w is dynamical in nature, or
possible modifications of Einstein gravity. Future work will
extend our study to such possibilities.

Finally, in § 6, we conclude with an overview of
our results and a discussion of future prospects.

2. Λ & Non-linear Structure Formation

In Appendix A, we derive the differential equa-
tion that governs the growth of linear matter per-
turbations. We used a familiar fluid dynamics pic-
ture to do so. Here we derive the full non-linear
equation for spherical overdensities using only cos-
mological considerations. It should be noted that
this particular form of the non-linear equation is
only strictly valid for ΛCDM cosmologies, where
the inside of a spherical top-hat overdensity can be
considered as a separate universe. More complex
models such as dark energy models with different
values of w require additional considerations which
will be discussed below.

We consider a physical picture in which struc-
ture formation arises due to a uniformly positive
spherical perturbation away from an average mat-
ter density, i.e. a top-hat matter overdensity. This
scenario is similar to considering two cosmologies
with two distinct scale factors: one for the outer
universe and another for the overdense region. Of
course, we are interested in a scenario where a
dark energy component similar to a cosmological
constant is at play, so we will assume the presence
of one as part of our base model.

For the external universe, we write the Fried-
mann equation with zero curvature:(

ȧo
ao

)2

=
8πGN

3
(ρ+ ρΛ) = H2. (4)

We can assume ρ ∝ a−3 for ordinary matter, while
ρΛ = const. denotes the cosmological constant
density. We also note that the value of the cosmo-
logical constant will be the same inside the over-
dense region and the background.

In a general scenario with dynamical dark en-
ergy models we cannot assume that curvature, of-
ten denoted by k, will be a constant inside the
overdense region due to the presence of pressure
gradients. Therefore, Wang & Steinhardt (1998)
point out that we are compelled to use the time-
time component of Einstein’s equations, as these
do not explicitly involve the curvature term. How-
ever, in the presence of a cosmological constant, or
w = −1, we can ignore these considerations and
begin with the first order Friedmann equation. We
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Fig. 2.— A schematic picture of our proposal for a universal mass function: While standard universal mass functions relate
the observed cluster abundance to linear growth at the same time, we propose that cluster abundance is best predicted by linear
growth at an earlier time. The top charts show the abundance for clusters of different mass (nominally, masses of 1013, 1014

and 1015h−1M�, from top to bottom) as a function of cosmic time, while the bottom charts show the linear growth. As we
argue in § 5, the abundance of less massive clusters depends on the linear growth at an earlier time, which explains why the
arrows point to different stages in the history of linear growth.

then calculate k, which can be seen as an integra-
tion constant that arises in going from second to
first order Friedmann formulations, using initial
conditions.

The scale factor in the overdense region is gov-
erned by:(

ȧi
ai

)2

+
k

a2
i

=
8πGN

3
(ρi + ρΛ). (5)

Again, we define ρi = ρ(1 + δ). A little bit of al-
gebra yields the following full differential equation
for δ:

[ρ(1 + δ)]
− 2

3

[
−8πGN

3
δρ− 2

3

Hδ̇

1 + δ
+

1

9

δ̇2

(1 + δ)2

]
+k = 0

(6)

It is important to reiterate the importance of
having access to both linear and nonlinear solu-
tions. As noted by Pace et al. (2010) amongst
others, although initially both the complete solu-
tion and its linear approximation will track, even-
tually the nonlinear solution will grow much faster
relative to the scale factor.

Following Liddle & Lyth (2000), we can show
that knowing nonlinear theory is necessary. A crit-
ical point in the evolution of a structure’s collapse
is the turnaround event in which universal expan-
sion’s dominance over the perturbation is eclipsed
by gravitational collapse. In other words, at the
turnaround point, a potential structure has de-
tached from background expansion, but complete
gravitationally-bound structure formation has not
yet begun. This might be thought as the true birth
of a structure within the void. Knowing the non-
linear solution allows us to find out the value of the
scale factor and the overdensity at this so-called
“turn-around point.”

Numerically, at the point of complete collapse
the nonlinear solution will “blow up” and ap-
proach infinity (see Fig. 3). The linear density at
this point, δsc is the quantity that enters the origi-
nal Press-Schechter formalism (see § 1) and is used
as proxy between linear and non-linear structures.
Physically, we do not expect an actual singularity.
This “blow up” point is considered to be the be-
ginning of virialization, a process whereby energy
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in the bulk infall of matter is redistributed into
random motion of dark matter particles, leading
to a system in virial equilibrium, where kinetic en-
ergy T and the potential energy U are related by
the virial theorem:

Tvir =
1

2
(R ∂U/∂R)vir, (7)

(see Maor & Lahav (2005)). Another point of view
on the spherical collapse picture, including a dis-
cussion of virialization, can be found in Somerville
& Primack (1999). However, for the purpose of
this study, more details on this process are not
necessary.

We can generalize to cases where w 6= −1,
i.e. non-cosmological constant scenarios. Abramo
et al. (2007) provides a comprehensive derivation
of the full non-linear equation, which we refer the
interested reader to for complete details. For our
purposes, it will suffice to show the final result,
which is Equation 7 in Abramo et al. (2007):

δ̈j +

(
2H − ẇj

1 + wj

)
δ̇j −

4 + 3wj
3(1 + wj)

δ̇j
2

1 + δj

−4πG
∑
k

ρk(1 + wk)(1 + 3wk)δk(1 + δk) = 0. (8)

The subscripts j and k refer to different fluids in
the system, e.g. matter and dark energy. In a
scenario where the dark energy can clump, this
becomes a system of equations. As we discuss be-
low, we do not allow this possibility. Therefore,
noting that w = 0 for matter, we get the follow-
ing non-linear equation governing the behavior of
matter perturbations:

δ̈m + 2Hδ̇m −
4

3

δ̇2
m

1 + δm
− 4πGρmδm(1 + δm) = 0.

(9)
But, why exactly are we allowed to ignore the
clumping in dark energy?

The discussion about dark energy perturbations
is often cast in terms of the effective speed of sound
for dark energy, e.g., Bean & Doré (2004). Typ-
ically one may expect that for an adiabatic fluid
with a constant equation state parameter w, the
speed of sound is given by c2 = δP/δρ = w. How-
ever, when wde < 0, clearly this becomes imagi-
nary, suggesting a catastrophic instability, e.g., see
Afshordi et al. (2005), and thus we must use a

more general definition of the c. In other words,
dark energy with constant w cannot be an adi-
abatic fluid, implying w = P

ρ 6=
δp
δρ . While the

equation of state parameter can still give us infor-
mation about the background evolution, the full
action of the fluid is necessary to compute its effec-
tive speed of sound: c2eff ≡

δp
δρ . It turns out that

for the simplest quintessence models ceff = 1, al-
though for more general actions ceff could essen-
tially take any value, e.g., Armendariz-Picon et al.
(2001).

As to the question of dark energy clumping,
we know that pressure fluctuations propagate with
the speed of sound ceff . Therefore, dark energy
should be smooth on scales smaller than its sound
horizon ∼ ceff/H. As long as ceff ∼ 1, all the
collapsed structures at late times are much smaller
than the sound horizon, implying that dark energy
perturbations δDE should be negligible for their
formation.

3. Numerical Techniques

Although Gunn & Gott (1972) showed that
the perturbation equation with the assumption of
spherical symmetry (also known as the spherical
top-hat problem) can be solved analytically for
the case of an Einstein-de Sitter (EdS) universe
(Λ = 0), we are interested in cases where the
cosmological constant/dark energy are non-zero.
Therefore, a numerical solution is necessary.

We built a code in C++ that utilizes the Runge-
Kutta method for numerical solutions of ordinary
differential equations. The full code can be found
in Prescod-Weinstein (2010). The code runs an
instance of a loop for value of ΩΛ,present in the
range of 0 to 0.7 (the currently measured value
of dark energy density), which solves the second-
order linear differential equation, Equation A7, as
well as the full non-linear equation, Equation 6.
In order to solve both equations, the solution to
the differential equation for the background scale
factor, Equation 4, is found. The curvature con-
stant is calculated for the initial overdensity be-
fore proceeding to a solution for both the linear
and nonlinear differential equations.

Collapse time is formally defined to be the time
at which nonlinear overdensity, δNL, goes to infin-
ity. However, we define collapse numerically by
requiring a large value of nonlinear overdensity,
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δNL = 200. The initial conditions are calibrated
such that they provide the same results as the ana-
lytical EdS model, namely that δL(tcollapse) ≈ 1.7.
This is essentially done by assuming that at early
times δ scales linearly with the scale factor a,
as expected for the growing solution to Equation
(A7) in the matter era 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10
0

10
5

10
10

10
15

δ
L

δ
N

L

Fig. 3.— This plot shows nonlinear vs. linear overdensi-
ties in the Einstein-de Sitter Universe. The code produces,
as expected, a δNL that diverges when δL ≈ 1.68.

4. Results

As stated in the Introduction, we wish to dis-
cover the time (as a fraction of the collapse time)
such that the variance of δL(t) is at a minimum,
as we vary cosmologies. In doing so, we find the
time in cosmological history where linear theory
is most likely to accurately predict gravitational
collapse, independent of cosmology.

For simplicity, we chose to plot the relative dif-
ference of δL(t) (in each cosmology) with respect
to the fraction of time to the collapse time in the
Einstein-de Sitter universe. However, it should
be noted that the results are independent of this
choice, and one could easily calibrate with respect
to a universe with a non-zero Λ instead. Having
found a common ground, all the data was searched
for a single point in time (in units of collapse

time) where the variance of δL(Q)
δL(Λ=0) − 1 was at

a minimum, where Q stands for different dark en-
ergy models under consideration, whether a gen-
eral fluid or a cosmological constant.

The interpolations and variance computations
were carried out using a script in MatLab, which

2It is important to remember that δ is a ratio of two numbers
whose units are that of density. Therefore, δ is dimension-
less.

can be found in Prescod-Weinstein (2010). In the
case of the simple cosmological constant models,
Fig. 4 shows the result that at t

tcollapse
' 0.94, the

variance in δL(t/tcollapse) for different cosmologi-
cal constant models hits a minimum of 1.80×10−9.
Values of δL at range from 1.602 for Einstein-de
Sitter 3 to 1.599 in the Λ = 0.7 universe.

Computing the solution to Equation (9) re-
quires some modifications to the code. Instead of
scanning over different cosmological constant val-
ues, this version of the code varies between con-
stant values of w. Moreover, as current observa-
tions, e.g., Komatsu et al. (2010) set a (very con-
servative) upper limit of −1/3 for the value of w ,
we studied cases where w was smaller than −1/3.

Because the cosmological constant is a special
case of this scenario with w = −1, we are able
to check the self-consistency of our methods (Eq.
6 vs. Eq. 9) finding that both versions of the
code produce the same results for a universe with
ΩΛ = 0.7 (approximately the universe that we live
in).

0.2 0.4 0.6 0.8 1 1.2
-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

t/t
collapse

(δ
L
/δ

L
, 

Λ
=

0
)-

1

Fig. 4.— Relative change in δL(t/tcollapse) in ΛCDM
cosmologies (ΩΛ = 0.1, 0.2, ..., 0.7), with respect to the
Einstein-de Sitter Universe. tcollapse is calculated for
spherical overdensities. The curves seem to intersect at
t/tcollapse ' 0.94, and a calculation of the point of mini-
mum variance between the lines confirms this.

Fig. (5) shows a similar comparison to that of
Fig. (4), but with different values of equation of
state, w, with ΩDE = 0.7. Interestingly, we can
again clearly see a point of minimum variance at
t/tcollapse ' 0.94, suggesting that this result might
be quite independent of the dark energy model (at
least within the spherical collapse approximation).

3This is below the predicted analytic value of 1.68 at collapse
because while δL = 1.68 is expected as δNL → ∞, we
have set the collapse to occur at δNL = 200, resulting in a
lowered collapse δL.
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Fig. 5.— Same as Fig. (4), but with varying values
of dark energy equation of state (w = −0.3,−0.4, ...,−1),
at ΩΛ(today) = 0.7. Again, curves seem to intersect at
t/tcollapse ' 0.94, and, again, a calculation of the point
of minimum variance between the lines confirms this. We
begin at the value -0.3 because current data constrains the
parameter to be smaller than this value.

The variance at this minimum is 7.5×10−7. In the
next section, we discuss the physical significance
of this result.

5. What does the Cluster Mass Function
teach us about cosmology?

At first, one might be puzzled by the fact that
δL happens to have almost the same value at 94%
of the collapse time, independent of w or Λ, even
though the linear approximation breaks down long
before this point. In other words, why should non-
linear collapse show such strong correlation with
the linear evolution? This can be understood as
the near cancelation of two different effects with
opposite signs:

1. With the exact same initial conditions, the
presence of dark energy weakens the gravita-
tional attraction near the turn around point,
which in turn stretches the collapse time.

2. The linear growth factor D(t), which is the
growing solution to Equation (A7), slows
down as dark energy starts to dominate,
since the Hubble friction 2Hδ stops decaying
(H → const.), while matter density decays
exponentially ρ̄ ∝ a−3 ∝ exp(−3Ht).

It turns out that for near ΛCDM cosmologies,
these two effects nearly cancel each other, i.e. the
linear growth is slowed down, but tcollapse is also
longer, resulting in nearly the same value of δL
close to (i.e. at 94% of) the collapse time.

Fig. 6.— The expected time of minimum variance in
linear overdensity, in units of ellipsoidal collapse time. Ob-
serving the cluster number counts at tcol should tell us the
linear overdensity of the collapsing region at t∗, indepen-
dent of the dark energy model.

However, we should note that this result is
specific to the spherical collapse scenario. On
the other hand, real collapsing regions are far
from spherical. Even though very rare peaks of
a random gaussian field can be approximated as
spheres, more abundant haloes could significantly
deviate from sphericity, e.g., Bardeen et al. (1986).
In addition, in a study of halo assembly histories,
Angulo & White (2010) find that extending the
PSF to account for ellipsoidal effects could sup-
port a more accurate picture. For Einstein-de Sit-
ter universe, Sheth et al. (2001) give a simple nu-
merical fit for the impact of ellipticity on the linear
collapse threshold, δec:

δec ' δsc
[
1 + 0.31× σ(M)1.23

]
, (10)

where δsc ' 1.686 is the spherical collapse thresh-
old (but see Robertson et al. (2009) for the limita-
tions of the ellipsoidal collapse formalism). Since
δL ∝ t2/3 in an Einstein-de Sitter universe, this
implies that, for the same initial overdensity, the
collapse time of an elliptical region is longer than
that of a spherical region by a factor of:

tcollapse,elliptical
tcollapse,spherical

'
[
1 + 0.31× σ(M)1.23

]3/2
.

(11)
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In other words, we need to extrapolate the linear
theory predictions in Figs. (4-5) farther beyond
the point of intersection to actually hit gravita-
tional collapse. Therefore, assuming that Equa-
tion (11) is approximately independent of the dark
energy model, it can be combined with the results
of previous sections to show that the point of min-
imum variance in δL is shifted to smaller values of
t/tcollapse, i.e.:

t∗
tcollapse

=
0.94

[1 + 0.31× σ(M)1.23]
3/2

, (12)

if we include the impact of ellipsoidal collapse.
This result is shown in Fig. (6), and demonstrates
how measuring the mass function of clusters at a
given era may tell us about the entire history of
linear growth, and not just a snapshot at the time
of observation (as is in the traditional universal
mass function hypothesis).

Inspired by the fitting formula Eq. (3), Equa-
tion (12) leads us to propose a new universal clus-
ter mass function:

f(σ;Q) ' g(σ)e−h(σ)/σ2
∗ , σ∗ = σD

[
0.94× to

(1 + 0.31× σ1.23)3/2

]
,

(13)
where the actual mass function is related to
f(σ;Q) through equation (1), and to is the time of
observation at which D(t) is normalized to unity.
In other words, Equation (13) suggests that the
exponential cut-off in the cluster number counts
at any time t is set by the linear density fluctu-
ations σ∗ at an earlier time t∗, which is set by
Equation (12). As suggested by several recent nu-
merical studies (see Introduction) f(σ;Q) depends
on cosmology (denoted by Q), but we propose the
functions g and h to be universal, while the de-
pendence on cosmology (or dark energy models)
only enters through D(t∗). The explicit depen-
dence of g and h on σ at the time of observation is
justified, as the value of σ acts as a proxy for the
asphericity of the collapsing region (Sheth et al.
2001).

Comparing to Eq. (3), we fix g and h as:

g(σ) = A

[(σ
b

)−a
+ 1

]
,

h(σ) = cD2

[
0.94× to

(1 + 0.31× σ1.23)3/2

]
ΩΛ=0.7

, (14)

where (A, a, b, c) = (0.186, 1.47, 2.57, 1.19) 4.

Fig. 7.— The relative change in f(σ) at high redshifts,
compared to z = 0. The colored regions show the simu-
lated results from Tinker et al. (2008). Curves in top panel
show our analytic prediction without ellipticity corrections,
while curves in the bottom panel include the ellipticity cor-
rections (Eq. 13). The solid, dotted, short-dashed, and
long-dashed curves refer to z = 0, 0.5, 1.25, and 2.5 respec-
tively.

Fig. (7) compares the evolution in the func-
tion f(σ;Q) in N-body simulations of Tinker et al.

4We recognize that these choices for g and h are not unique,
but as Fig. (7) demonstrates, these are sufficient to fit
current simulations
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(2008), with our prediction from Eqs. (13-14). We
see that while the result from spherical collapse,
t∗ = 0.94 × tcollpase, underpredicts the evolution
(top panel), Eq. (13), which includes the ellip-
soidal correction to the collapse time (Eq. 12),
can successfully reproduce the evolution in f(σ;Q)
(bottom panel). Notice that, while we use the
same σ-dependence as Tinker et al. (2008) at z = 0
to fix functions h(σ) and g(σ), our predicted red-
shift evolution is based on Eq. (13). Therefore,
comparison with their simulated evolution pro-
vides an independent test of our proposal.

In the end, we should point out a subtlety in
comparing our predictions with simulated cluster
mass functions. The most widely used algorithm
to identify haloes in N-body simulations, known as
friends-of-friends (FoF), is based on linking neigh-
boring particles. However, this method has the
tendency to bridge between two close-by haloes,
and thus counting them as one. An alternative
method, which is known as the Spherical Over-
density method, (SO) identifies haloes by search-
ing for spheres of large overdensity (200 or more).
The SO haloes are more closely related to the ob-
servational notion of clusters, as large overdense
compact regions of the Universe. Consequently,
we expect our predictions based on spherical (or
ellipsoidal) collapse to be relevant for SO cluster
mass functions, such as in Tinker et al. (2008).
Indeed, the deviations from universality show op-
posite trend with mass for FoF clusters, with more
(less) massive clusters having closer to (farther
from) universal behavior (Reed et al. 2007; Crocce
et al. 2010; Bhattacharya et al. 2010). We note
that predictions from FoF and SO methods are
divergent, leading to substantive challenges to our
ability to compare models with cluster observa-
tions. Further discussion of this topic, however, is
beyond the scope of this article.

6. Conclusions and Future Prospects

We have presented a study of non-linear grav-
itational collapse in different models of dark en-
ergy/cosmic acceleration. In particular, we crit-
ically examined the correlation between the lin-
ear growth of fluctuations and the emergence and
statistics of collapsed objects (such as dark mat-
ter haloes or galaxy clusters). First, we focused
on the collapse of spherical overdensities, and dis-

covered that they all have the same linear ovder-
density (' 1.50), at ' 94% of the time of col-
lapse/virialization, independent of the density or
equation of state of dark energy. We then used a
simple prescription to include the impact of el-
lipsoidal collapse in our finding, and then used
this result to propose a new universal mass func-
tion for galaxy clusters/dark matter haloes. Our
semi-analytic predictions are consistent with the
observed evolution in mass function of haloes in
N-body simulations.

Future work will include the adaptation of this
prescription to study models with dynamical equa-
tions of state, such as quintessence or modified
gravity models. A particularly challenging appli-
cation would be to the gravitational aether/black
hole model (Prescod-Weinstein et al. 2009). Be-
cause of the way dark energy is sourced in the
gravitational aether model, there are unique tech-
nical challenges associated with properly describ-
ing structure formation in its presence. Early
Dark Energy (Grossi & Springel 2009) cosmolo-
gies also provide an interesting example of a
quintessence model where dark energy signa-
tures in structure formation would be particularly
strong.)

Finally, we recognize that a more systematic ap-
proach to the question of universal mass functions
should be possible, and given the level of theoret-
ical and observational activities in this field, it is
unlikely that the present work provides the last
word on this subject. For example, the result will
be sensitive to the shape of the primordial power
spectrum (Bagla et al. 2009), and can be extended
to the conditional mass function (e.g., Neistein
et al. 2010). However, the novel (albeit trivial) ob-
servation of this work is that measuring the clus-
ter mass function will teach us about the entire
history of linear growth. This is in contrast to
many previous cosmological applications of cluster
mass functions, which assume a one-to-one corre-
spondence with the linear σ(M) at the time of
observation. Similar to a multi-level archeologi-
cal excavation, dark matter haloes can be thought
of as artifacts of linear growth. As Fig. (6) and
Eq. (13) suggest, the number of smaller haloes
(with larger σ(M)) can teach us about the early
evolution of linear growth, while the bigger haloes
(with smaller σ(M)) tell us about its more recent
history.

9



We thus speculate that this perspective can
eventually lead to yet untapped information about
the nature and history of cosmic acceleration, es-
pecially as the releases of several large scale clus-
ter surveys such as Atacama Cosmology Tele-
scope (ACT) (Menanteau et al. 2010), South Pole
Telescope (SPT) (Andersson et al. 2010), Planck
(Geisbüsch & Hobson 2007), and Red Sequence
Cluster Sequence 2 (RCS2) (Yee et al. 2007) are
now looming on the horizon.
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A. Linear Perturbations

The linear perturbation theory that is used to describe structure formation can be derived via a fluid
picture. We use a Newtonian treatment because when density perturbations are small, the gravitational
potential will be nonrelativistic (Peebles 1993). The standard equations of fluid dynamics are reviewed here.
First, the continuity equation:

∂ρ

∂t
+∇ · (ρ~v) = 0, (A1)

where ρ is the matter density and ~v is the fluid velocity. The Euler equation is:

∂~v

∂t
+ (~v · ∇)~v = −∇P

ρ
−∇φ, (A2)

where φ is the gravitational potential. Finally, the Poisson equation is:

∇2φ = 4πGNρ. (A3)

Introducing the comoving coordinates ~x = ~r
a(t) , we can write the velocity in terms of the comoving coordinates

and the scale factor a(t):

~v =
d~r

dt
= ȧ~x+ ~̇xa =

ȧ

a
~r + ~u(

~r

a
, t) (A4)

where ~u = ~̇xa(t) is the peculiar velocity. Note that at constant ~r, d~rdt = 0 so ȧ~x+a~̇x = 0, giving us ȧ
a~x = −∂~x∂t .

This leads us to the following relation:(
∂ρ(~r, t)

∂t

)
r

=

(
∂ρ(~r, t)

∂t

)
x

+
∂~x

∂t
· ∂ρ
∂~x

=

(
∂ρ(~r, t)

∂t

)
x

− ȧ

a
~x · ∇xρ(~x, t). (A5)

We now wish to rewrite Equation A1 in terms of the comoving coordinates, which essentially means
replacing the partial differential with the modified one from Equation A5. Moreover, what we are really
interested in is the development of relative deviations from the mean density, or the density contrast: δ =
ρ
ρ − 1. Thus, we write ρ = ρ(1 + δ) and assuming that ρ is the mean density of regular matter, we expect

ρ ∝ a−3. This gives:

0 =

(
∂δ

∂t

)
~x

+
1

a
∇ · (1 + δ)~u. (A6)

We make similar transformations for the Poisson and Euler equations. Next, we drop higher order terms (e.g.
O(u2) or uδ). We differentiate the linearized continuity equation and take the divergence of the linearized
Euler equation. This gives us a differential equation that depends entirely on δ and not on ~u:

δ̈ + 2
ȧ

a
δ̇ = 4πGNρδ. (A7)

The linear growth factor D(t) is defined as the growing solution for δ in this equation.
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Lukić, Z., Wagner, C., & Habib, S. 2010, ArXiv
e-prints, ADS, 1005.2239

Courtin, J., Rasera, Y., Alimi, J., Corasaniti, P.,
Boucher, V., & Fuzfa, A. 2010, ArXiv e-prints,
ADS, 1001.3425

Crocce, M., Fosalba, P., Castander, F. J., &
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Neistein, E., Macciò, A. V., & Dekel, A. 2010,
MNRAS, 403, 984, ADS, 0903.1640

Pace, F., Waizmann, J., & Bartelmann, M. 2010,
MNRAS, 1011, ADS, 1005.0233

Peebles, P. J. E. 1993, Principles of physical cos-
mology, ed. Peebles, P. J. E., ADS

Prescod-Weinstein, C., Afshordi, N., & Balogh,
M. L. 2009, Phys. Rev. D, 80, 043513, ADS,
0905.3551

Prescod-Weinstein, C. R. S. 2010,
PhD thesis, University of Waterloo,
http://hdl.handle.net/10012/5498

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425,
ADS

Reed, D. S., Bower, R., Frenk, C. S., Jenkins,
A., & Theuns, T. 2007, MNRAS, 374, 2, ADS,
arXiv:astro-ph/0607150

Robertson, B. E., Kravtsov, A. V., Tinker, J.,
& Zentner, A. R. 2009, ApJ, 696, 636, ADS,
0812.3148

Sheth, R. K., Mo, H. J., & Tormen, G. 2001, MN-
RAS, 323, 1, ADS, arXiv:astro-ph/9907024

12

http://adsabs.harvard.edu/abs/2007JCAP...11..012A
http://arxiv.org/abs/0707.2882
http://adsabs.harvard.edu/abs/2008PhRvD..78d3514A
http://arxiv.org/abs/0803.2236
http://adsabs.harvard.edu/abs/2005PhRvD..72f5024A
http://arxiv.org/abs/arXiv:astro-ph/0506663
http://arxiv.org/abs/arXiv:astro-ph/0506663
http://adsabs.harvard.edu/abs/2010arXiv1006.3068A
http://arxiv.org/abs/1006.3068
http://adsabs.harvard.edu/abs/2010MNRAS.401.1796A
http://arxiv.org/abs/0906.1730
http://adsabs.harvard.edu/abs/2001PhRvD..63j3510A
http://arxiv.org/abs/arXiv:astro-ph/0006373
http://adsabs.harvard.edu/abs/2009arXiv0908.2702B
http://arxiv.org/abs/0908.2702
http://adsabs.harvard.edu/abs/1986ApJ...304...15B
http://adsabs.harvard.edu/abs/2004PhRvD..69h3503B
http://arxiv.org/abs/arXiv:astro-ph/0307100
http://adsabs.harvard.edu/abs/2010arXiv1005.2239B
http://arxiv.org/abs/1005.2239
http://adsabs.harvard.edu/abs/2010arXiv1001.3425C
http://arxiv.org/abs/1001.3425
http://adsabs.harvard.edu/abs/2010MNRAS.403.1353C
http://arxiv.org/abs/0907.0019
http://adsabs.harvard.edu/abs/2002ApJ...573....7E
http://arxiv.org/abs/arXiv:astro-ph/0110246
http://adsabs.harvard.edu/abs/2007MNRAS.382..158G
http://arxiv.org/abs/arXiv:astro-ph/0611567
http://adsabs.harvard.edu/abs/2009MNRAS.394.1559G
http://arxiv.org/abs/0809.3404
http://adsabs.harvard.edu/abs/1972ApJ...176....1G
http://adsabs.harvard.edu/abs/2006PhRvD..74d3513I
http://arxiv.org/abs/arXiv:astro-ph/0507184
http://arxiv.org/abs/arXiv:astro-ph/0507184
http://adsabs.harvard.edu/abs/2001MNRAS.321..372J
http://arxiv.org/abs/arXiv:astro-ph/0005260
http://adsabs.harvard.edu/abs/2010arXiv1001.4538K
http://arxiv.org/abs/1001.4538
http://adsabs.harvard.edu/abs/2000cils.book.....L
http://adsabs.harvard.edu/abs/2005JCAP...07..003M
http://arxiv.org/abs/arXiv:astro-ph/0505308
http://adsabs.harvard.edu/abs/2010arXiv1006.5126M
http://arxiv.org/abs/1006.5126
http://adsabs.harvard.edu/abs/1992PhR...215..203M
http://adsabs.harvard.edu/abs/2010MNRAS.403..984N
http://arxiv.org/abs/0903.1640
http://adsabs.harvard.edu/abs/2010MNRAS.tmp.1011P
http://arxiv.org/abs/1005.0233
http://adsabs.harvard.edu/abs/1993ppc..book.....P
http://adsabs.harvard.edu/abs/2009PhRvD..80d3513P
http://arxiv.org/abs/0905.3551
http://adsabs.harvard.edu/abs/1974ApJ...187..425P
http://adsabs.harvard.edu/abs/2007MNRAS.374....2R
http://arxiv.org/abs/arXiv:astro-ph/0607150
http://adsabs.harvard.edu/abs/2009ApJ...696..636R
http://arxiv.org/abs/0812.3148
http://adsabs.harvard.edu/abs/2001MNRAS.323....1S
http://arxiv.org/abs/arXiv:astro-ph/9907024


Sheth, R. K., & Tormen, G. 1999, MNRAS, 308,
119, ADS, arXiv:astro-ph/9901122

Somerville, R. S., & Primack, J. R. 1999, MNRAS,
310, 1087, ADS, arXiv:astro-ph/9802268

Tinker, J., Kravtsov, A. V., Klypin, A., Abaza-
jian, K., Warren, M., Yepes, G., Gottlöber,
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