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MULTI-MANEUVER CLOHESSY-WILTSHIRE TARGETING

David P. Dannemiller∗

Orbital rendezvous involves execution of a sequence of maneuvers by a chaser
vehicle to bring the chaser to a desired state relative to a target vehicle while
meeting intermediate and final relative constraints. Intermediate and final relative
constraints are necessary to meet a multitude of requirements such as to control
approach direction, ensure relative position is adequate for operation of space-to-
space communication systems and relative sensors, provide fail-safe trajectory fea-
tures, and provide contingency hold points. The effect of maneuvers on constraints
is often coupled, so the maneuvers must be solved for as a set. For example, ma-
neuvers that affect orbital energy change both the chaser’s height and downrange
position relative to the target vehicle. Rendezvous designers use experience and
rules-of-thumb to design a sequence of maneuvers and constraints.

A non-iterative method is presented for targeting a rendezvous scenario that in-
cludes a sequence of maneuvers and relative constraints. This method is referred to
as Multi-Maneuver Clohessy-Wiltshire Targeting (MM CW TGT). When a single
maneuver is targeted to a single relative position, the classic CW targeting solution
is obtained.

The MM CW TGT method involves manipulation of the CW state transition
matrix to form a linear system. As a starting point for forming the algorithm,
the effects of a series of impulsive maneuvers on the state are derived. Simple
and moderately complex examples are used to demonstrate the pattern of the re-
sulting linear system. The general form of the pattern results in an algorithm for
formation of the linear system. The resulting linear system relates the effect of ma-
neuver components and initial conditions on relative constraints specified by the
rendezvous designer. Solution of the linear system includes the straight-forward
inverse of a square matrix. Inversion of the square matrix is assured if the de-
signer poses a controllable scenario - a scenario where the the constraints can be
met by the sequence of maneuvers. Matrices in the linear system are dependent
on selection of maneuvers and constraints by the designer, but the matrices are
independent of the chaser’s initial conditions. For scenarios where the sequence
of maneuvers and constraints are fixed, the linear system can be formed and the
square matrix inverted prior to real-time operations.

Example solutions are presented for several rendezvous scenarios to illustrate
the utility of the method. The MM CW TGT method has been used during the
preliminary design of rendezvous scenarios and is expected to be useful for itera-
tive methods in the generation of an initial guess and corrections.
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A non-iterative method is presented for targeting a rendezvous scenario that in-
cludes a sequence of maneuvers and relative constraints. This method is referred to
as Multi-Maneuver Clohessy-Wiltshire Targeting (MM CW TGT). When a single
maneuver is targeted to a single relative position, the classic CW targeting solution
is obtained. The MM CW TGT method involves manipulation of the CW state
transition matrix to form a linear system. Solution of the linear system includes
the straight-forward inverse of a square matrix. Example solutions are presented
for several rendezvous scenarios to illustrate the utility of the method.

INTRODUCTION

Orbital rendezvous involves execution of a sequence of maneuvers by a chaser vehicle to bring
the chaser to a desired state relative to a target vehicle while meeting intermediate and final relative
constraints. Intermediate and final relative constraints are necessary to meet a multitude of require-
ments such as to control approach direction, ensure relative position is adequate for operation of
space-to-space communication systems and relative sensors, provide fail-safe trajectory features,
and provide contingency hold points. The effect of maneuvers on constraints is often coupled, so
the maneuvers must be solved for as a set. For example, maneuvers that affect orbital energy change
both the chaser’s height and downrange position relative to the target vehicle. Rendezvous designers
use experience and rules-of-thumb to design a sequence of maneuvers and constraints.

A non-iterative method is presented for targeting a rendezvous scenario that includes a sequence
of maneuvers and relative constraints. This method is referred to as Multi-Maneuver Clohessy-
Wiltshire Targeting (MM CW TGT). When a single maneuver is targeted to a single relative posi-
tion, the classic CW targeting solution is obtained.1

As a starting point for forming the MM CW TGT algorithm, the effects of a series of impulsive
maneuvers on the state are derived. The MM CW TGT method involves manipulation of the CW
state transition matrix to form a linear system. Simple and moderately complex examples are used
to demonstrate the pattern of the resulting linear system. The general form of the pattern leads
to an algorithm for formation of the linear system. The resulting linear system relates the effect
of maneuver components and initial conditions on relative constraints specified by the rendezvous
designer. Solution of the linear system includes the straight-forward inverse of a square matrix.
Inversion of the square matrix is assured if the designer poses a controllable scenario – a scenario
where the constraints can be met by the sequence of maneuvers.
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A numerical example is presented to illustrate the utility of the method and to provide comparison
data.

NOTATION

Vectors are denoted by an over arrow (e.g. ~r). Subscripts denote time or event information. For
example, ~r0 is the value of ~r at time t0.

 

+X 
+Z  

Figure 1. Local Vertical Curvilinear Coordinate System

State vectors are in Local Vertical Curvilinear (LVC) coordinates (axes orientation is shown in
Figure 1) and are represented as:

~s =

[
~r
~v

]
where ~r is the position vector and ~v is the velocity vector.

~r =

xy
z

 , ~v =

ẋẏ
ż


The 6x6 Clohessy-Wiltshire (CW) transition matrix is denoted byCnm where the subscript denotes

the initial time and superscript denotes the final time, tm and tn respectively in this case.

Impulsive maneuvers are instantaneous changes in velocity at a specified time. To remove ambi-
guity, it is necessary to specify pre or post-maneuver when referring to velocity and state vectors.
Subscripts - and + are used to refer to pre and post-maneuver quantities respectively.

∆~vn = ~vn+ − ~vn− =

∆ẋn
∆ẏn
∆żn


While not strictly required, subscripts - and + are also applied to times to differentiate an interest

in pre or post-maneuver quantities (e.g. tn−, tn+).

EFFECT OF A SERIES OF IMPULSIVE MANEUVERS

As a starting point for forming the MM CW TGT algorithm, the effects of a series of impulsive
maneuvers on the state are derived.
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Given an initial state ~s0− at time t0− and impulsive maneuvers ∆~v0, ∆~v1, and ∆~v2 at times t0,
t1, and t2, determine the state at time t2+.

~s0+ = ~s0− +

[
~0

∆~v0

]
~s1− = C1

0 · ~s0+

= C1
0 · ~s0− + C1

0 ·
[
~0

∆~v0

]
~s1+ = ~s1− +

[
~0

∆~v1

]
= C1

0 · ~s0− + C1
0 ·
[
~0

∆~v0

]
+

[
~0

∆~v1

]
~s2+ = C2

1 · ~s1+ +

[
~0

∆~v2

]
= C2

1 ·
(
C1
0 · ~s0− + C1

0 ·
[
~0

∆~v0

]
+

[
~0

∆~v1

])
+

[
~0

∆~v2

]
= C2

0 · ~s0− + C2
0 ·
[
~0

∆~v0

]
+ C2

1 ·
[
~0

∆~v1

]
+

[
~0

∆~v2

]

In general there will be impulsive maneuvers at times t0, t1, t2, . . . tn. The general form for the
effect of this series of n impulsive maneuvers is obtained by extrapolating the pattern above.

~sn+ = Cn0 · ~s0− + Cn0 ·
[
~0

∆~v0

]
+ Cn1 ·

[
~0

∆~v1

]
+ Cn2 ·

[
~0

∆~v2

]
+ . . .+

[
~0

∆~vn

]
(1)

The MM CW TGT method involves manipulation of the CW state transition matrix to form a
linear system. Two examples are used to demonstrate the pattern of the resulting linear system, a
simple targeting example and a more complex targeting example.

SIMPLE TARGETING EXAMPLE

Assume a pair of horizontal maneuvers transfer a chaser vehicle from a stable location on the x
axis at ~s0− to another stable location ~sf+ in an integral number of orbits. Figure 2 shows the desired
trajectory.

For this example, Eq. (1) takes the following form.

~sf+ = Cf0 · ~s0− + Cf0 ·
[
~0

∆~v0

]
+

[
~0

∆~vf

]
(2)

Restructure this equation in 2 steps. The first step takes advantage of knowledge of the selected
maneuver components. Since ∆~v0 and ∆~vf are specified as horizontal, they take the form

∆~v0 =

∆ẋ0
0
0

 ,∆~vf =

∆ẋf
0
0

 (3)
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Figure 2. Simple Targeting Example

Substitute Eq. (3) into Eq. (2).

~sf+ = Cf0 · ~s0− +



∗ ∗ ∗ Cf0 (1, 4) ∗ ∗
∗ ∗ ∗ Cf0 (2, 4) ∗ ∗
∗ ∗ ∗ Cf0 (3, 4) ∗ ∗
∗ ∗ ∗ Cf0 (5, 4) ∗ ∗
∗ ∗ ∗ Cf0 (5, 4) ∗ ∗
∗ ∗ ∗ Cf0 (6, 4) ∗ ∗


·



0
0
0

∆ẋ0
0
0

+



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ·



0
0
0

∆ẋf
0
0



One of the CW transition matricies is expanded. Most of the terms are “*”, denoting that their
specific values do not matter. Because of the form of ∆~v0, only one column is relevant. The identity
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matrix is added in front of the ∆~vf term for symmetry. Simplifying,

~sf+ = Cf0 · ~s0− +



Cf0 (1, 4)

Cf0 (2, 4)

Cf0 (3, 4)

Cf0 (4, 4)

Cf0 (5, 4)

Cf0 (6, 4)


· ∆ẋ0 +



0
0
0
1
0
0

 · ∆ẋf

~sf+ = Cf0 · ~s0− +



Cf0 (1, 4) 0

Cf0 (2, 4) 0

Cf0 (3, 4) 0

Cf0 (4, 4) 1

Cf0 (5, 4) 0

Cf0 (6, 4) 0


·
[

∆ẋ0
∆ẋf

]
(4)

The second restructuring step takes advantage of the selected constraints. For this example the
final state is specified as a stable location on the x axis (i.e. ẋf = 0). This implies that ~sf+ takes
the form

~sf+ =



xf
∗
∗
0
∗
∗

 (5)

Note that yf , zf , ẏf , and żf are not explicitly constrained. Given the example setup (i.e. initial
state is stable on the x axis, and transfer time is an integral number of orbits), by definition zf and
żf are both zero. Since no maneuver components are specified in the y direction, neither yf nor ẏf
can be used as constraints.

Substitute Eq. (5) into Eq. (4), and then remove all but the xf and ẋf rows.[
xf
0

]
=

[
Cf0 (1, 1) Cf0 (1, 2) Cf0 (1, 3) Cf0 (1, 4) Cf0 (1, 5) Cf0 (1, 6)

Cf0 (4, 1) Cf0 (4, 2) Cf0 (4, 3) Cf0 (4, 4) Cf0 (4, 5) Cf0 (4, 6)

]
· ~s0−

+

[
Cf0 (1, 4) 0

Cf0 (4, 4) 1

]
·
[

∆ẋ0
∆ẋf

]
(6)

Eq. (6) is a system of linear equations with 2 equations and 2 unknowns – the desired maneuver
components ∆ẋ0 and ∆ẋf . Use shorthand notation to compact Eq. (6).

~sconstraint = A · ~s0− +B · ∆~v (7)

The n-vector ~sconstraint contains the selected constraints, where n is the number of constraints.
The nx6 matrix A is the effect of ~s0− on the constraints. The n-vector ∆~v contains the selected
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maneuver components. The nxn matrix B is the effect of ∆~v on the constraints. Rearrange Eq. (6)
to solve for ∆~v.

∆~v = B−1 · (~sconstraint −A · ~s0−) (8)

Applying the maneuver components ∆ẋ0 and ∆ẋf , at the specified times, will satisfy the con-
straints.

To summarize, a sequence of maneuvers (times and components) and constraints (times and
components) were designed. A system of linear equations was structured in 2 steps. The first
step eliminated terms associated with zero maneuver components. The second step formed the
~sconstraint vector, and the A and B matrices by keeping only the terms associated with constraints.
Since the number of maneuver components is equal to the number of constraints, the resulting B
matrix is square. Inversion of the B matrix is assured if the designer poses a controllable scenario –
a scenario where the the constraints can be met by the sequence of maneuvers.

MODERATELY COMPLEX TARGETING EXAMPLE

Using the multi-maneuver CW technique to solve the simple example in the last section is
overkill, but provides initial insight into the pattern of the resulting linear system. More insight
is provided in this section by a moderately complex example.

 

Figure 3. Moderately Complex Targeting Example

For this scenario, a sequence of maneuvers NC, NH, TI (Transition Initiate), TF (Transition Final)
transfer a chaser vehicle from an initial state on the x axis at ~s0−, to a desired TI position at ~sTI+,
to the final state at ~sTF+. Figure 3 shows the desired trajectory.

The burn names used here have Gemini, Apollo, and Shuttle heritage. “N” in the burn names
was originally (circa 1964) a Mission Control Docking Initiation (DKI) rendezvous burn targeting
program counter variable. “N” stood for the Nth crossing of the chaser line of apsides where the burn
was performed (such as 1 for first apogee, 1.5 for first perigee, 5 for fifth apogee, etc.). The burn
type was added using subscripts as 1C (Catch-up or phasing), 2.5H (Height), 3PC (Plane Change),
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4SR (Slow Rate or coelliptic), and 4.5CC (Corrective Combination). Eventually the apse count and
subscripts notation were dropped. The resulting burn names became NC, NH, NPC, NSR, and NCC.

We specify horizontal maneuvers at NC and NH, and 2-axis maneuvers at TI and TF. Typically,
TI and TF include maneuver components in the y direction. They are not included in this example
in order to keep the problem tractable. The maneuvers take the following form.

∆~vNC =

∆ẋNC
0
0

 ,∆~vNH =

∆ẋNH
0
0

 ,∆~vTI =

∆ẋTI
0

∆żTI

 ,∆~vTF =

∆ẋTF
0

∆żTF



We have constraints at TI and TF.

~sTI+ =



xTI
∗
zTI
∗
∗
∗

 , ~sTF+ =



xTF
∗
zTF
ẋTF+

∗
żTF+



Notice that the number of maneuver components and the number of constraints are both 6, which
will result in a square B matrix. Also notice that the scenario is controllable; NC/NH are capable
of maneuvering the chaser to the specified TI position xTI and zTI ; TI/TF are capable of achieving
the desired final conditions.

Since constraints are specified at 2 times, the effects of maneuvers at both TI and TF must be
formulated. First TI.

~sTI+ = CTI0 · ~s0− + CTINC ·
[

~0
∆~vNC

]
+ CTINH ·

[
~0

∆~vNH

]
+

[
~0

∆~vTI

]

Next TF.

~sTF+ = CTF0 · ~s0− + CTFNC ·
[

~0
∆~vNC

]
+ CTFNH ·

[
~0

∆~vNH

]
+ CTFTI ·

[
~0

∆~vTI

]
+

[
~0

∆~vTF

]

The equations are restructured in 3 steps. The first step takes advantage of knowledge of the
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selected maneuver components.

~sTI+ = CTI0 · ~s0− +



CTINC(1, 4)

CTINC(2, 4)

CTINC(3, 4)

CTINC(4, 4)

CTINC(5, 4)

CTINC(6, 4)


· ∆ẋNC +



CTINH(1, 4)

CTINH(2, 4)

CTINH(3, 4)

CTINH(4, 4)

CTINH(5, 4)

CTINH(6, 4)


· ∆ẋNH +



0 0
0 0
0 0
1 0
0 0
0 1

 ·
[
∆ẋTI
∆żTI

]

~sTF+ = CTF0 · ~s0− +



CTFNC(1, 4)

CTFNC(2, 4)

CTFNC(3, 4)

CTFNC(4, 4)

CTFNC(5, 4)

CTFNC(6, 4)


· ∆ẋNC +



CTFNH(1, 4)

CTFNH(2, 4)

CTFNH(3, 4)

CTFNH(4, 4)

CTFNH(5, 4)

CTFNH(6, 4)


· ∆ẋNH

+



CTFTI (1, 4) CTFTI (1, 6)

CTFTI (2, 4) CTFTI (2, 6)

CTFTI (3, 4) CTFTI (3, 6)

CTFTI (4, 4) CTFTI (4, 6)

CTFTI (5, 4) CTFTI (5, 6)

CTFTI (6, 4) CTFTI (6, 6)


·
[
∆ẋTI
∆żTI

]
+



0 0
0 0
0 0
1 0
0 0
0 1

 ·
[
∆ẋTF
∆żTF

]

The second step in restructuring takes advantage of the selected constraints. Eliminate all rows
that are not constraints.

[
xTI
zTI

]
=

[
CTI0 (1, 1) CTI0 (1, 2) CTI0 (1, 3) CTI0 (1, 4) CTI0 (1, 5) CTI0 (1, 6)

CTI0 (3, 1) CTI0 (3, 2) CTI0 (3, 3) CTI0 (3, 4) CTI0 (3, 5) CTI0 (3, 6)

]
· ~s0−

+

[
CTINC(1, 4)

CTINC(3, 4)

]
· ∆ẋNC +

[
CTINH(1, 4)

CTINH(3, 4)

]
· ∆ẋNH +

[
0 0
0 0

]
·
[
∆ẋTI
∆żTI

]

xTF
zTF
ẋTF+

żTF+

 =


CTF0 (1, 1) CTF0 (1, 2) CTF0 (1, 3) CTF0 (1, 4) CTF0 (1, 5) CTF0 (1, 6)

CTF0 (3, 1) CTF0 (3, 2) CTF0 (3, 3) CTF0 (3, 4) CTF0 (3, 5) CTF0 (3, 6)

CTF0 (4, 1) CTF0 (4, 2) CTF0 (4, 3) CTF0 (4, 4) CTF0 (4, 5) CTF0 (4, 6)

CTF0 (6, 1) CTF0 (6, 2) CTF0 (6, 3) CTF0 (6, 4) CTF0 (6, 5) CTF0 (6, 6)

 · ~s0−

+


CTFNC(1, 4)

CTFNC(3, 4)

CTFNC(4, 4)

CTFNC(6, 4)

 · ∆ẋNC +


CTFNH(1, 4)

CTFNH(3, 4)

CTFNH(4, 4)

CTFNH(6, 4)

 · ∆ẋNH

+


CTFTI (1, 4) CTFTI (1, 6)

CTFTI (3, 4) CTFTI (3, 6)

CTFTI (4, 4) CTFTI (4, 6)

CTFTI (6, 4) CTFTI (6, 6)

 ·
[
∆ẋTI
∆żTI

]
+


0 0
0 0
1 0
0 1

 ·
[
∆ẋTF
∆żTF

]
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For the final step in restructuring, stack the 2 equations into a single linear system.

xTI
zTI
xTF
zTF
ẋTF+

żTF+

 =



CTI0 (1, 1) CTI0 (1, 2) CTI0 (1, 3) CTI0 (1, 4) CTI0 (1, 5) CTI0 (1, 6)

CTI0 (3, 1) CTI0 (3, 2) CTI0 (3, 3) CTI0 (3, 4) CTI0 (3, 5) CTI0 (3, 6)

CTF0 (1, 1) CTF0 (1, 2) CTF0 (1, 3) CTF0 (1, 4) CTF0 (1, 5) CTF0 (1, 6)

CTF0 (3, 1) CTF0 (3, 2) CTF0 (3, 3) CTF0 (3, 4) CTF0 (3, 5) CTF0 (3, 6)

CTF0 (4, 1) CTF0 (4, 2) CTF0 (4, 3) CTF0 (4, 4) CTF0 (4, 5) CTF0 (4, 6)

CTF0 (6, 1) CTF0 (6, 2) CTF0 (6, 3) CTF0 (6, 4) CTF0 (6, 5) CTF0 (6, 6)


· ~s0−

+



CTINC(1, 4) CTINH(1, 4) 0 0 0 0

CTINC(3, 4) CTINH(3, 4) 0 0 0 0

CTFNC(1, 4) CTFNH(1, 4) CTFTI (1, 4) CTFTI (1, 6) 0 0

CTFNC(3, 4) CTFNH(3, 4) CTFTI (3, 4) CTFTI (3, 6) 0 0

CTFNC(4, 4) CTFNH(4, 4) CTFTI (4, 4) CTFTI (4, 6) 1 0

CTFNC(6, 4) CTFNH(6, 4) CTFTI (6, 4) CTFTI (6, 6) 0 1


·



∆ẋNC
∆ẋNH
∆ẋTI
∆żTI
∆ẋTF
∆żTF

 (9)

Notice that Eq. (9) has the same general form as Eq. (7). We solve for ∆~v in the same manner as
Eq. (8).

GENERAL PATTERN

We use Eq. (9) to find the general pattern of the Multi-Maneuver CW Targeting algorithm.

1. The selected maneuver components and constraints are used to form a system of linear equa-
tions of the form ~sconstraint = A · ~s0− +B · ∆~v.

2. The number of maneuver components must be equal to the number of constraints, which is
denoted as n.

3. ~sconstraint is an n-vector that contains the selected constraints.

4. ∆~v is an n-vector that contains the selected maneuver components.

5. A is an nx6 matrix that contains the effects of ~s0− on the constraints. Each row of A contains
a row from the CW transition matrix, the specific row being that associated with the selected
constraint, and the transfer time equal to tconstraint − t0.

6. B is an nxn matrix that contains the effects of the maneuver components on the constraints.
Each row of B contains terms from the CW transition matrix, the specific row being that
associated with the constraint, the specific column being that associated with the maneuver
component, and the transfer time equal to tconstraint − tmaneuver . If the constraint time is
after the maneuver time, the term is 0 (later maneuvers cannot effect earlier constraints).

7. B must be invertible. This is assured if the designer poses a controllable scenario – a scenario
where the the constraints can be met by the sequence of maneuvers.

8. The linear system is solved for the unknown maneuver components.

∆~v = B−1 · (~sconstraint −A · ~s0−)
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ACCELERATION CONSTRAINT

Many trajectory scenarios can be solved with the position and velocity constraints discussed
above. Two other useful constraint types are derived in this section and next.

Co-elliptic segments are useful in many rendezvous scenarios. Targeting co-elliptic conditions
with only position and velocity constraints is possible, but awkward. When co-elliptic, z = const,
ż = 0, and z̈ = 0, so the addition of an acceleration constraint makes co-elliptic targeting straight
forward.

The CW differential equations for coasting flight are:

ẍ = 2 · ω · ż
ÿ = −ω2 · y
z̈ = 3 · ω2 · z − 2 · ω · ẋ

Put these equations in matrix form.ẍÿ
z̈

 =

0 0 0 0 0 2 · ω
0 −ω2 0 0 0 0

0 0 3 · ω2 −2 · ω 0 0

 ·
[
~r
~v

]

~̈a = PV A ·
[
~r
~v

]
(10)

We refer to the 3x6 matrix in Eq. (10) as PV A since it converts a position/velocity vector to an
acceleration vector. Notice that PV A is a function only of ω; it is time independent. Pre-multiply
Eq. (1) by PV A.

~̈an+1 = PV A · ~sn+ = PV A · Cn0 · ~s0− + PV A · Cn0 ·
[
~0

∆~v0

]
+ . . .+ PV A ·

[
~0

∆~vn

]
(11)

For scenarios where an acceleration constraint is desired, form the constraint using Eq. (11) and
adjoin it to the linear system.

ELEVATION ANGLE CONSTRAINT

Another useful constraint is elevation angle. Figure 4 shows the convention for the in-plane
elevation angle.

Specifying an elevation angle constraint imposes a constraint on the relationship between x and
z. If θ is the desired elevation angle, then

tan θ = − zθ
xθ

(12)

Form the following.

xθ = ~fx · ~s0 + ~gx · ∆~v (13)

zθ = ~fz · ~s0 + ~gz · ∆~v (14)
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Figure 4. Elevation Angle Convention

Here ~fx and ~gx are row vectors that represent the effect of ~s0 and ∆~v on xθ. Likewise for ~fz and
~gz on zθ. Substitute Eqs. (13) and (14) into Eq. (12) and restructure.

0 =
(
~fz + tan θ · ~fx

)
· ~s0 + (~gz + tan θ · ~gx) · ∆~v (15)

Note that Eq. (15) has a form similar to previous constraints. For scenarios where an elevation
angle constraint is desired, form the constraint using Eq. (15) and adjoin it to the linear system.

NC, NH, NSR, TPI, TPF NUMERICAL EXAMPLE

This section provides a numerical example to illustrate the utility of the method and to provide
comparison data. Figures 5 and 6 illustrate the desired relative motion.

Initial conditions for the scenario are near the x axis with some out-of-plane position.

t0 = 1000 sec, ~s0 =



−1, 000, 000
2000

0
0
0
0

 ft

The target orbit period is 90 minutes.

w =
2 · π
5400

rad

sec
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Figure 5. Numerical Example

Event times are as follows.

t0 = 1000 sec

tNC = t0

tNH = tNC + 2.5 · π
w

(i.e. 2.5 orbits from NC)

tNSR = tNH + .4 · π
w

∗

tTPI = tNSR + .5 · π
w

tTPF = tTPI +
130

360
· π
w

(i.e. 130 degree transfer from TPI)

Maneuvers NC and NH are horizontal. NSR has x and z maneuver components. TPI and TPF
are 3-axis – x, y, and z maneuver components.

∆~vNC =

∆ẋNC
0
0

 , ∆~vNH =

∆ẋNH
0
0

 , ∆~vNSR =

∆ẋNSR
0

∆żNSR


∆~vTPI =

∆ẋTPI
∆ẏTPI
∆żTPI

 , ∆~vTPF =

∆ẋTPF
∆ẏTPF
∆żTPF


Constraints are imposed at 3 event times – post-NSR co-elliptic, TPI elevation angle, and post-

TPF state.

zNSR = 10, 000 ft, żNSR+ = 0, z̈NSR+ = 0

θTPI = .5 rad

~sTPF+ = ~0

∗Using a transfer of .5 orbits instead of .4 would result in lower ∆~v. This example uses .4 to better illustrate the NSR
maneuver.

12



 

Figure 6. Numerical Example (cont.)

We have everything required to form the linear system, Eq. (7). Doing so results in the following
quantities.

~sconstraint =



zNSR
żNSR+

z̈NSR+

row associated with θTPI
xTPF+

yTPF+

zTPF+

ẋTPF+

ẏTPF+

żTPF+



∆~v =



∆ẋNC
∆ẋNH
∆ẋNSR
∆żNSR
∆ẋTPI
∆ẏTPI
∆żTPI
∆ẋTPF
∆ẏTPF
∆żTPF
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A =



0 0 0.0002 −0.0328 0 −0.0505
0 0 −0.0000 0.0001 0 0.0001
0 0 0.0000 −0.0000 0 0.0000

0.0001 0 0.0075 −3.2096 0 0.2204
0.0001 0 0.0148 −6.4359 0 0.1599

0 0.0000 0 0 −0.0857 0
0 0 0.0004 −0.1599 0 −0.0857
0 0 0.0000 −0.0003 0 −0.0002
0 0.0000 0 0 0.0000 0
0 0 −0.0000 0.0002 0 0.0000


· 104

B =



−0.0328 −0.3109 0 0 0 0 0 0 0 0
0.0001 −0.0001 0 0.0001 0 0 0 0 0 0
−0.0000 0.0000 −0.0000 0 0 0 0 0 0 0
−3.2096 −0.9397 −0.7863 0.1878 0 0 0 0 0 0
−6.4359 −1.7001 −1.6583 0.0614 −0.3217 0 0.2824 0 0 0

0 0 0 0 0 0.0658 0 0 0 0
−0.1599 −0.1839 −0.0614 −0.0658 −0.2824 0 0.0658 0 0 0
−0.0003 −0.0003 −0.0000 −0.0002 −0.0006 0 0.0002 0.0001 0 0

0 0 0 0 0 −0.0001 0 0 0.0001 0
0.0002 −0.0002 0.0002 0.0001 −0.0002 0 −0.0001 0 0 0.0001


· 104

Solve this using Eq. (8).

∆~vNC =

−18.96
0
0

 ft

sec

∆~vNH =

−1.21
0
0

 ft

sec

∆~vNSR =

14.36
0

20.86

 ft

sec

∆~vTPI =

 3.05
−0.21
−2.09

 ft

sec

∆~vTPF =

 2.76
−2.46
3.33

 ft

sec

Applying these ∆~vs at the appropriate times results in the relative motion trajectory shown in
Figures 5 and 6.
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CONCLUSION

When the accuracy associated with CW equations is adequate, the MM CW TGT method is
useful as is. The non-iterative nature of the method results in fast and robust results. The author has
used MM CW TGT for preliminary design of rendezvous scenarios.

Although not yet implemented, the author expects MM CW TGT to be useful as a part of iterative
methods. MM CW TGT can generate initial guesses for maneuvers, and can calculate corrections
between iterations.
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Introduction 

•  Orbital rendezvous 
–  Sequence of maneuvers 
–  Bring the chaser to a desired state relative to a target 
–  Meet intermediate and final relative constraints 

•  Effect of maneuvers on constraints is often coupled, so the 
maneuvers must be solved for as a set 

•  Multi-Maneuver Clohessy-Wiltshire Targeting 
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Agenda 

•  Notation 
•  Effect of a Series of Impulsive Maneuvers 
•  Simple Targeting Example 
•  Moderately Complex Targeting Example 
•  General Pattern 
•  Other Constraints 
•  Numerical Example 
•  Conclusion 
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Notation 

•  Local Vertical Curvilinear (LVC) 

•  State vector 

•  Clohessy-Wiltshire (CW) transition matrix 
–  Subscript – initial time 
–  Superscript –  final time 

•  Impulsive maneuvers 
–  (-) pre-maneuver 
–  (+) post-maneuver 

4 

 

+X 
+Z  

A numerical example is presented to illustrate the utility of the method and to provide comparison
data.

NOTATION

Vectors are denoted by an over arrow (e.g. �r). Subscripts denote time or event information. For
example, �r0 is the value of �r at time t0.

 

+X 
+Z  

Figure 1. Local Vertical Curvilinear Coordinate System

State vectors are in Local Vertical Curvilinear (LVC) coordinates (axes orientation is shown in
Figure 1) and are represented as:

�s =

�
�r
�v

�

where �r is the position vector and �v is the velocity vector.

�r =




x
y
z



 ,�v =




ẋ
ẏ
ż





The 6x6 Clohessy-Wiltshire (CW) transition matrix is denoted by Cn
m where the subscript denotes

the initial time and superscript denotes the final time, tm and tn respectively in this case.

Impulsive maneuvers are instantaneous changes in velocity at a specified time. To remove ambi-
guity, it is necessary to specify pre or post-maneuver when referring to velocity and state vectors.
Subscripts - and + are used to refer to pre and post-maneuver quantities respectively.

∆�vn = �vn+ − �vn− =




∆ẋn
∆ẏn
∆żn





While not strictly required, subscripts - and + are also applied to times to differentiate an interest
in pre or post-maneuver quantities (e.g. tn−, tn+).

EFFECT OF A SERIES OF IMPULSIVE MANEUVERS

As a starting point for forming the MM CW TGT algorithm, the effects of a series of impulsive
maneuvers on the state are derived.
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Effect of a Series of 
Impulsive Maneuvers 

•  Two maneuvers 

•  General 

5 

Given an initial state �s0− at time t0− and impulsive maneuvers ∆�v0, ∆�v1, and ∆�v2 at times t0,
t1, and t2, determine the state at time t2+.

�s0+ = �s0− +

�
�0

∆�v0

�

�s1− = C1
0 · �s0+

= C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�

�s1+ = �s1− +

�
�0

∆�v1

�

= C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�
+

�
�0

∆�v1

�

�s2+ = C2
1 · �s1+ +

�
�0

∆�v2

�

= C2
1 ·

�
C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�
+

�
�0

∆�v1

��
+

�
�0

∆�v2

�

= C2
0 · �s0− + C2

0 ·
�

�0
∆�v0

�
+ C2

1 ·
�

�0
∆�v1

�
+

�
�0

∆�v2

�

In general there will be impulsive maneuvers at times t0, t1, t2, . . . tn. The general form for the
effect of this series of n impulsive maneuvers is obtained by extrapolating the pattern above.

�sn+ = Cn
0 · �s0− + Cn

0 ·
�

�0
∆�v0

�
+ Cn

1 ·
�

�0
∆�v1

�
+ Cn

2 ·
�

�0
∆�v2

�
+ . . .+

�
�0

∆�vn

�
(1)

The MM CW TGT method involves manipulation of the CW state transition matrix to form a
linear system. Two examples are used to demonstrate the pattern of the resulting linear system, a
simple targeting example and a more complex targeting example.

SIMPLE TARGETING EXAMPLE

Assume a pair of horizontal maneuvers transfer a chaser vehicle from a stable location on the x
axis at �s0− to another stable location �sf+ in an integral number of orbits. Figure 2 shows the desired
trajectory.

For this example, Eq. (1) takes the following form.

�sf+ = Cf
0 · �s0− + Cf

0 ·
�

�0
∆�v0

�
+

�
�0

∆�vf

�
(2)

Restructure this equation in 2 steps. The first step takes advantage of knowledge of the selected
maneuver components. Since ∆�v0 and ∆�vf are specified as horizontal, they take the form

∆�v0 =




∆ẋ0
0
0



 ,∆�vf =




∆ẋf
0
0



 (3)
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Simple 
Targeting Example 

•  Maneuvers 

•  Constraints 
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Given an initial state �s0− at time t0− and impulsive maneuvers ∆�v0, ∆�v1, and ∆�v2 at times t0,
t1, and t2, determine the state at time t2+.

�s0+ = �s0− +

�
�0

∆�v0

�

�s1− = C1
0 · �s0+

= C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�

�s1+ = �s1− +

�
�0

∆�v1

�

= C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�
+

�
�0

∆�v1

�

�s2+ = C2
1 · �s1+ +

�
�0

∆�v2

�

= C2
1 ·

�
C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�
+

�
�0

∆�v1

��
+

�
�0

∆�v2

�

= C2
0 · �s0− + C2

0 ·
�

�0
∆�v0

�
+ C2

1 ·
�

�0
∆�v1

�
+

�
�0

∆�v2

�
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1 ·
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2 ·
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�0

∆�vn
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(1)

The MM CW TGT method involves manipulation of the CW state transition matrix to form a
linear system. Two examples are used to demonstrate the pattern of the resulting linear system, a
simple targeting example and a more complex targeting example.

SIMPLE TARGETING EXAMPLE

Assume a pair of horizontal maneuvers transfer a chaser vehicle from a stable location on the x
axis at �s0− to another stable location �sf+ in an integral number of orbits. Figure 2 shows the desired
trajectory.

For this example, Eq. (1) takes the following form.

�sf+ = Cf
0 · �s0− + Cf

0 ·
�

�0
∆�v0

�
+

�
�0

∆�vf

�
(2)

Restructure this equation in 2 steps. The first step takes advantage of knowledge of the selected
maneuver components. Since ∆�v0 and ∆�vf are specified as horizontal, they take the form

∆�v0 =




∆ẋ0
0
0



 ,∆�vf =




∆ẋf
0
0



 (3)

3

matrix is added in front of the ∆�vf term for symmetry. Simplifying,

�sf+ = Cf
0 · �s0− +





Cf
0 (1, 4)

Cf
0 (2, 4)

Cf
0 (3, 4)

Cf
0 (4, 4)

Cf
0 (5, 4)

Cf
0 (6, 4)





·∆ẋ0 +





0
0
0
1
0
0




·∆ẋf

�sf+ = Cf
0 · �s0− +





Cf
0 (1, 4) 0

Cf
0 (2, 4) 0

Cf
0 (3, 4) 0

Cf
0 (4, 4) 1

Cf
0 (5, 4) 0

Cf
0 (6, 4) 0





·
�
∆ẋ0
∆ẋf

�
(4)

The second restructuring step takes advantage of the selected constraints. For this example the
final state is specified as a stable location on the x axis (i.e. ẋf = 0). This implies that �sf+ takes
the form

�sf+ =





xf
∗
∗
0
∗
∗




(5)

Note that yf , zf , ẏf , and żf are not explicitly constrained. Given the example setup (i.e. initial
state is stable on the x axis, and transfer time is an integral number of orbits), by definition zf and
żf are both zero. Since no maneuver components are specified in the y direction, neither yf nor ẏf
can be used as constraints.

Substitute Eq. (5) into Eq. (4), and then remove all but the xf and ẋf rows.

�
xf
0

�
=

�
Cf
0 (1, 1) Cf

0 (1, 2) Cf
0 (1, 3) Cf

0 (1, 4) Cf
0 (1, 5) Cf

0 (1, 6)

Cf
0 (4, 1) Cf

0 (4, 2) Cf
0 (4, 3) Cf

0 (4, 4) Cf
0 (4, 5) Cf

0 (4, 6)

�
· �s0−

+

�
Cf
0 (1, 4) 0

Cf
0 (4, 4) 1

�
·
�
∆ẋ0
∆ẋf

�
(6)

Eq. (6) is a system of linear equations with 2 equations and 2 unknowns – the desired maneuver
components ∆ẋ0 and ∆ẋf . Use shorthand notation to compact Eq. (6).

�sconstraint = A · �s0− +B ·∆�v (7)

The n-vector �sconstraint contains the selected constraints, where n is the number of constraints.
The nx6 matrix A is the effect of �s0− on the constraints. The n-vector ∆�v contains the selected
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Simple 
Targeting Example (cont) 
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Given an initial state �s0− at time t0− and impulsive maneuvers ∆�v0, ∆�v1, and ∆�v2 at times t0,
t1, and t2, determine the state at time t2+.

�s0+ = �s0− +

�
�0

∆�v0

�

�s1− = C1
0 · �s0+

= C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�

�s1+ = �s1− +

�
�0

∆�v1

�

= C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�
+

�
�0

∆�v1

�

�s2+ = C2
1 · �s1+ +

�
�0

∆�v2

�

= C2
1 ·

�
C1
0 · �s0− + C1

0 ·
�

�0
∆�v0

�
+

�
�0

∆�v1

��
+

�
�0

∆�v2

�

= C2
0 · �s0− + C2

0 ·
�

�0
∆�v0

�
+ C2

1 ·
�

�0
∆�v1

�
+

�
�0

∆�v2

�

In general there will be impulsive maneuvers at times t0, t1, t2, . . . tn. The general form for the
effect of this series of n impulsive maneuvers is obtained by extrapolating the pattern above.
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�
+ Cn

1 ·
�
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∆�v1

�
+ Cn

2 ·
�

�0
∆�v2

�
+ . . .+

�
�0

∆�vn

�
(1)
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�
+

�
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�
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3

 
Figure 2. Simple Targeting Example

Substitute Eq. (3) into Eq. (2).

�sf+ = Cf
0 · �s0− +





∗ ∗ ∗ Cf
0 (1, 4) ∗ ∗

∗ ∗ ∗ Cf
0 (2, 4) ∗ ∗

∗ ∗ ∗ Cf
0 (3, 4) ∗ ∗

∗ ∗ ∗ Cf
0 (5, 4) ∗ ∗

∗ ∗ ∗ Cf
0 (5, 4) ∗ ∗

∗ ∗ ∗ Cf
0 (6, 4) ∗ ∗





·





0
0
0

∆ẋ0
0
0




+





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




·





0
0
0

∆ẋf
0
0





One of the CW transition matricies is expanded. Most of the terms are “*”, denoting that their

specific values do not matter. Because of the form of ∆�v0, only one column is relevant. The identity
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Targeting Example (cont) 
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Eq. (6) is a system of linear equations with 2 equations and 2 unknowns – the desired maneuver
components ∆ẋ0 and ∆ẋf . Use shorthand notation to compact Eq. (6).

�sconstraint = A · �s0− +B ·∆�v (7)

The n-vector �sconstraint contains the selected constraints, where n is the number of constraints.
The nx6 matrix A is the effect of �s0− on the constraints. The n-vector ∆�v contains the selected

5

matrix is added in front of the ∆�vf term for symmetry. Simplifying,

�sf+ = Cf
0 · �s0− +





Cf
0 (1, 4)

Cf
0 (2, 4)

Cf
0 (3, 4)

Cf
0 (4, 4)

Cf
0 (5, 4)

Cf
0 (6, 4)





·∆ẋ0 +
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·∆ẋf

�sf+ = Cf
0 · �s0− +





Cf
0 (1, 4) 0

Cf
0 (2, 4) 0

Cf
0 (3, 4) 0

Cf
0 (4, 4) 1

Cf
0 (5, 4) 0

Cf
0 (6, 4) 0





·
�
∆ẋ0
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maneuver components. The nxn matrix B is the effect of ∆�v on the constraints. Rearrange Eq. (6)

to solve for ∆�v.

∆�v = B−1 · (�sconstraint −A · �s0−) (8)

Applying the maneuver components ∆ẋ0 and ∆ẋf , at the specified times, will satisfy the con-

straints.

To summarize, a sequence of maneuvers (times and components) and constraints (times and

components) were designed. A system of linear equations was structured in 2 steps. The first

step eliminated terms associated with zero maneuver components. The second step formed the

�sconstraint vector, and the A and B matrices by keeping only the terms associated with constraints.

Since the number of maneuver components is equal to the number of constraints, the resulting B
matrix is square. Inversion of the B matrix is assured if the designer poses a controllable scenario –

a scenario where the the constraints can be met by the sequence of maneuvers.

MODERATELY COMPLEX TARGETING EXAMPLE

Using the multi-maneuver CW technique to solve the simple example in the last section is

overkill, but provides initial insight into the pattern of the resulting linear system. More insight

is provided in this section by a moderately complex example.

 

Figure 3. Moderately Complex Targeting Example

For this scenario, a sequence of maneuvers NC, NH, TI (Transition Initiate), TF (Transition Final)

transfer a chaser vehicle from an initial state on the x axis at �s0−, to a desired TI position at �sTI+,

to the final state at �sTF+. Figure 3 shows the desired trajectory.

The burn names used here have Gemini, Apollo, and Shuttle heritage. “N” in the burn names

was originally (circa 1964) a Mission Control Docking Initiation (DKI) rendezvous burn targeting

program counter variable. “N” stood for the N
th

crossing of the chaser line of apsides where the burn

was performed (such as 1 for first apogee, 1.5 for first perigee, 5 for fifth apogee, etc.). The burn

type was added using subscripts as 1C (Catch-up or phasing), 2.5H (Height), 3PC (Plane Change),
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4SR (Slow Rate or coelliptic), and 4.5CC (Corrective Combination). Eventually the apse count and

subscripts notation were dropped. The resulting burn names became NC, NH, NPC, NSR, and NCC.

We specify horizontal maneuvers at NC and NH, and 2-axis maneuvers at TI and TF. Typically,

TI and TF include maneuver components in the y direction. They are not included in this example

in order to keep the problem tractable. The maneuvers take the following form.

∆�vNC =




∆ẋNC

0
0



 ,∆�vNH =




∆ẋNH

0
0



 ,∆�vTI =




∆ẋTI

0
∆żTI



 ,∆�vTF =




∆ẋTF

0
∆żTF





We have constraints at TI and TF.

�sTI+ =





xTI

∗
zTI

∗
∗
∗




,�sTF+ =





xTF

∗
zTF

ẋTF+

∗
żTF+





Notice that the number of maneuver components and the number of constraints are both 6, which

will result in a square B matrix. Also notice that the scenario is controllable; NC/NH are capable

of maneuvering the chaser to the specified TI position xTI and zTI ; TI/TF are capable of achieving

the desired final conditions.

Since constraints are specified at 2 times, the effects of maneuvers at both TI and TF must be

formulated. First TI.

�sTI+ = CTI

0 · �s0− + CTI

NC ·
�

�0
∆�vNC

�
+ CTI

NH ·
�

�0
∆�vNH

�
+

�
�0

∆�vTI

�

Next TF.

�sTF+ = CTF

0 · �s0− + CTF

NC ·
�

�0
∆�vNC

�
+ CTF

NH ·
�

�0
∆�vNH

�
+ CTF

TI ·
�

�0
∆�vTI

�
+

�
�0

∆�vTF

�

The equations are restructured in 3 steps. The first step takes advantage of knowledge of the
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żTF+





Notice that the number of maneuver components and the number of constraints are both 6, which

will result in a square B matrix. Also notice that the scenario is controllable; NC/NH are capable

of maneuvering the chaser to the specified TI position xTI and zTI ; TI/TF are capable of achieving

the desired final conditions.

Since constraints are specified at 2 times, the effects of maneuvers at both TI and TF must be

formulated. First TI.

�sTI+ = CTI

0 · �s0− + CTI

NC ·
�

�0
∆�vNC

�
+ CTI

NH ·
�

�0
∆�vNH

�
+

�
�0

∆�vTI

�

Next TF.

�sTF+ = CTF

0 · �s0− + CTF

NC ·
�

�0
∆�vNC

�
+ CTF

NH ·
�

�0
∆�vNH

�
+ CTF

TI ·
�

�0
∆�vTI

�
+

�
�0

∆�vTF

�

The equations are restructured in 3 steps. The first step takes advantage of knowledge of the

7

4SR (Slow Rate or coelliptic), and 4.5CC (Corrective Combination). Eventually the apse count and

subscripts notation were dropped. The resulting burn names became NC, NH, NPC, NSR, and NCC.

We specify horizontal maneuvers at NC and NH, and 2-axis maneuvers at TI and TF. Typically,

TI and TF include maneuver components in the y direction. They are not included in this example

in order to keep the problem tractable. The maneuvers take the following form.

∆�vNC =




∆ẋNC
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For the final step in restructuring, stack the 2 equations into a single linear system.





xTI

zTI

xTF

zTF

ẋTF+

żTF+




=





CTI

0 (1, 1) CTI

0 (1, 2) CTI

0 (1, 3) CTI

0 (1, 4) CTI

0 (1, 5) CTI

0 (1, 6)
CTI

0 (3, 1) CTI

0 (3, 2) CTI

0 (3, 3) CTI

0 (3, 4) CTI

0 (3, 5) CTI

0 (3, 6)
CTF

0 (1, 1) CTF

0 (1, 2) CTF

0 (1, 3) CTF

0 (1, 4) CTF

0 (1, 5) CTF

0 (1, 6)
CTF

0 (3, 1) CTF

0 (3, 2) CTF

0 (3, 3) CTF

0 (3, 4) CTF

0 (3, 5) CTF

0 (3, 6)
CTF

0 (4, 1) CTF

0 (4, 2) CTF

0 (4, 3) CTF

0 (4, 4) CTF

0 (4, 5) CTF

0 (4, 6)
CTF

0 (6, 1) CTF

0 (6, 2) CTF

0 (6, 3) CTF

0 (6, 4) CTF

0 (6, 5) CTF

0 (6, 6)





· �s0−

+





CTI

NC
(1, 4) CTI

NH
(1, 4) 0 0 0 0

CTI

NC
(3, 4) CTI

NH
(3, 4) 0 0 0 0

CTF

NC
(1, 4) CTF

NH
(1, 4) CTF

TI
(1, 4) CTF

TI
(1, 6) 0 0

CTF

NC
(3, 4) CTF

NH
(3, 4) CTF

TI
(3, 4) CTF

TI
(3, 6) 0 0

CTF

NC
(4, 4) CTF

NH
(4, 4) CTF

TI
(4, 4) CTF

TI
(4, 6) 1 0

CTF

NC
(6, 4) CTF

NH
(6, 4) CTF

TI
(6, 4) CTF

TI
(6, 6) 0 1





·





∆ẋNC

∆ẋNH

∆ẋTI

∆żTI

∆ẋTF

∆żTF




(9)

Notice that Eq. (9) has the same general form as Eq. (7). We solve for ∆�v in the same manner as
Eq. (8).

GENERAL PATTERN

We use Eq. (9) to find the general pattern of the Multi-Maneuver CW Targeting algorithm.

1. The selected maneuver components and constraints are used to form a system of linear equa-
tions of the form �sconstraint = A · �s0− +B ·∆�v.

2. The number of maneuver components must be equal to the number of constraints, which is
denoted as n.

3. �sconstraint is an n-vector that contains the selected constraints.

4. ∆�v is an n-vector that contains the selected maneuver components.

5. A is an nx6 matrix that contains the effects of �s0− on the constraints. Each row of A contains
a row from the CW transition matrix, the specific row being that associated with the selected
constraint, and the transfer time equal to tconstraint − t0.

6. B is an nxn matrix that contains the effects of the maneuver components on the constraints.
Each row of B contains terms from the CW transition matrix, the specific row being that
associated with the constraint, the specific column being that associated with the maneuver
component, and the transfer time equal to tconstraint − tmaneuver . If the constraint time is
after the maneuver time, the term is 0 (later maneuvers cannot effect earlier constraints).

7. B must be invertible. This is assured if the designer poses a controllable scenario – a scenario
where the the constraints can be met by the sequence of maneuvers.

8. The linear system is solved for the unknown maneuver components.

∆�v = B−1 · (�sconstraint −A · �s0−)

9
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∆ẋNC

∆ẋNH
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Figure 5. Numerical Example

Event times are as follows.

t0 = 1000 sec

tNC = t0

tNH = tNC + 2.5 · π
w

(i.e. 2.5 orbits from NC)

tNSR = tNH + .4 · π
w

∗

tTPI = tNSR + .5 · π
w

tTPF = tTPI +
130

360
· π
w

(i.e. 130 degree transfer from TPI)

Maneuvers NC and NH are horizontal. NSR has x and z maneuver components. TPI and TPF

are 3-axis – x, y, and z maneuver components.

∆�vNC =




∆ẋNC

0
0



 , ∆�vNH =




∆ẋNH

0
0



 , ∆�vNSR =




∆ẋNSR

0
∆żNSR





∆�vTPI =




∆ẋTPI

∆ẏTPI

∆żTPI



 , ∆�vTPF =




∆ẋTPF

∆ẏTPF

∆żTPF





Constraints are imposed at 3 event times – post-NSR co-elliptic, TPI elevation angle, and post-

TPF state.

zNSR = 10, 000 ft, żNSR+ = 0, z̈NSR+ = 0

θTPI = .5 rad

�sTPF+ = �0

∗
Using a transfer of .5 orbits instead of .4 would result in lower ∆�v. This example uses .4 to better illustrate the NSR

maneuver.
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tNSR = tNH + .4 · π
w

∗

tTPI = tNSR + .5 · π
w

tTPF = tTPI +
130

360
· π
w

(i.e. 130 degree transfer from TPI)

Maneuvers NC and NH are horizontal. NSR has x and z maneuver components. TPI and TPF

are 3-axis – x, y, and z maneuver components.

∆�vNC =




∆ẋNC

0
0



 , ∆�vNH =




∆ẋNH

0
0



 , ∆�vNSR =




∆ẋNSR

0
∆żNSR





∆�vTPI =




∆ẋTPI

∆ẏTPI

∆żTPI



 , ∆�vTPF =




∆ẋTPF

∆ẏTPF

∆żTPF





Constraints are imposed at 3 event times – post-NSR co-elliptic, TPI elevation angle, and post-

TPF state.

zNSR = 10, 000 ft, żNSR+ = 0, z̈NSR+ = 0

θTPI = .5 rad

�sTPF+ = �0

∗
Using a transfer of .5 orbits instead of .4 would result in lower ∆�v. This example uses .4 to better illustrate the NSR

maneuver.
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Conclusion 

•  Non-iterative nature of the method results in fast and robust results 
•  Method has been used for preliminary design of rendezvous 

scenarios 

•  Method expected to be useful as a part of iterative methods 
–  Generate initial guesses for maneuvers 
–  Calculate corrections between iterations 
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matrix is added in front of the ∆�vf term for symmetry. Simplifying,

�sf+ = Cf
0 · �s0− +





Cf
0 (1, 4)

Cf
0 (2, 4)

Cf
0 (3, 4)

Cf
0 (4, 4)

Cf
0 (5, 4)

Cf
0 (6, 4)





·∆ẋ0 +





0
0
0
1
0
0




·∆ẋf

�sf+ = Cf
0 · �s0− +





Cf
0 (1, 4) 0

Cf
0 (2, 4) 0

Cf
0 (3, 4) 0

Cf
0 (4, 4) 1

Cf
0 (5, 4) 0

Cf
0 (6, 4) 0





·
�
∆ẋ0
∆ẋf

�
(4)

The second restructuring step takes advantage of the selected constraints. For this example the
final state is specified as a stable location on the x axis (i.e. ẋf = 0). This implies that �sf+ takes
the form

�sf+ =





xf
∗
∗
0
∗
∗




(5)

Note that yf , zf , ẏf , and żf are not explicitly constrained. Given the example setup (i.e. initial
state is stable on the x axis, and transfer time is an integral number of orbits), by definition zf and
żf are both zero. Since no maneuver components are specified in the y direction, neither yf nor ẏf
can be used as constraints.

Substitute Eq. (5) into Eq. (4), and then remove all but the xf and ẋf rows.

�
xf
0

�
=

�
Cf
0 (1, 1) Cf

0 (1, 2) Cf
0 (1, 3) Cf

0 (1, 4) Cf
0 (1, 5) Cf

0 (1, 6)

Cf
0 (4, 1) Cf

0 (4, 2) Cf
0 (4, 3) Cf

0 (4, 4) Cf
0 (4, 5) Cf

0 (4, 6)

�
· �s0−

+

�
Cf
0 (1, 4) 0

Cf
0 (4, 4) 1

�
·
�
∆ẋ0
∆ẋf

�
(6)

Eq. (6) is a system of linear equations with 2 equations and 2 unknowns – the desired maneuver
components ∆ẋ0 and ∆ẋf . Use shorthand notation to compact Eq. (6).

�sconstraint = A · �s0− +B ·∆�v (7)

The n-vector �sconstraint contains the selected constraints, where n is the number of constraints.
The nx6 matrix A is the effect of �s0− on the constraints. The n-vector ∆�v contains the selected
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