Preliminary Investigation of Civil Tiltrotor in NextGen Airspace

Larry A. Young
Dan Salvano
Ken Wright
William Chung
Ray Young
David Miller
Alfonso Paris
Huina Gao
Victor Cheng
Rotorcraft in the Next Gen Airspace

• Demonstrate analytically that rotorcraft can be successfully integrated into Next Gen airspace
• Identify unique Next Gen technologies and concepts of operations that might be required to maximize safe, efficient, environmental responsive, and economic employment of rotorcraft in the Next Gen airspace
• Demonstrate with modern, accepted analysis/simulation tools that rotorcraft can be a potential solution to airport/airspace congestion
• Provide insights into rotorcraft-specific technology advances that will be required
Primary emphasis of Next Gen implementation is, not unexpectedly, on subsonic fixed-wing jet aircraft.

It is vitally important to ensure that rotorcraft requirements are adequately factored into Next Gen technologies and concepts of operation. Without proper attention to rotorcraft-specific technology and operational questions and issues the full potentiality of future rotorcraft systems might not be realized.
• Ongoing Airspace Systems-sponsored “Advanced Vehicles in Next Gen Airspace” study; in the final few months of an 18-month study effort by two contractor teams

• NASA provided Sensis-led NRA team 90-PAX LCTR2 reference design for airspace modeling effort‡

• But consensus within SRW is that NRA Effort needs to be expanded upon -- that led to the initiation of SRW-sponsored “Civil Tiltrotor (CTR) in Next Gen” study

“CTR in Next Gen” Study Tasks

Year 1
- Task 1: Identify CTR Attributes Using tiltrotor design tools
 Performance optimization
- Task 2: Develop CTR operational procedures and ConOps using high fidelity Manned simulator

Year 2
- Task 3: Identify CTR metrics in NextGen
- Task 4: NextGen system analysis tool survey
- Task 5: CTR system performance analysis and tradeoffs in NextGen using NAS system tools

Year 3
- Task 6: Safety and risk mitigation for CTR in NextGen
- Task 7: Disaster relief effectiveness evaluation for CTR in NextGen
- Task 8: Identify future research and critical topics

Report #1
Report #2
Report #3

CTR performance attributes
CTR fleet BADA database
CTR 4D Trajectories

CTR performance and tradeoffs
in NextGen

Optimal Synthesis Inc.
Not One, but a Family of Vehicles Being Studied

- CTR airspace simulations will be based on a fleet of 10-, 30-, 90-, and 120-PAX vehicles
- 10- and 30-PAX vehicle design heritage based, in part, on BA-609 and V-22
- 90- and 120-PAX vehicles will be clean-sheet conceptual designs based on Bell Helicopter technology projections for IOP’s of 2020.
- Additionally, both VTOL and STOL takeoff and landing profiles will be incorporated in the pilot-in-the-loop and airspace simulations
- Bell PRESTO sizing analysis used for vehicles
Progress to Date

- Nine months into Year 2 effort
- Design requirements for family of CTR vehicles agreed to by team
- Conceptual designs completed for 10-, 30-, and 120-PAX vehicles
- Demand modeling and informal team assessments established a baseline fleet size for vehicles for 2025 time frame
- Given design data, BADA models are developed
- Pilot-in-the-loop simulations completed
- Coupled ACES/AvTerminal airspace simulations have begun
General Conceptual Design Requirements

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>30</th>
<th>90</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeoff Condition</td>
<td>5k/Hot</td>
<td>--></td>
<td>--></td>
<td>--></td>
</tr>
<tr>
<td>Takeoff Procedure (1)</td>
<td>VTOL</td>
<td>VTOL</td>
<td>VTOL</td>
<td>VTOL</td>
</tr>
<tr>
<td>Takeoff Configuration</td>
<td>Helo</td>
<td>Helo</td>
<td>Helo</td>
<td>Helo</td>
</tr>
<tr>
<td>Payload, lbs</td>
<td>2200</td>
<td>6600</td>
<td>19800</td>
<td>26400</td>
</tr>
<tr>
<td>Design Range, nm</td>
<td>800 (2)</td>
<td>1000 (2)</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>Cruise Altitude, 1000 ft</td>
<td>25</td>
<td>25</td>
<td>30 (2)</td>
<td>27.5</td>
</tr>
<tr>
<td>Cruise Speed, ktas</td>
<td>Fallout</td>
<td>Fallout</td>
<td>300 (2)</td>
<td>345</td>
</tr>
</tbody>
</table>

(1) VTOL is assumed to be a Cat A procedure and is a target for 10 and 30-pax designs
(2) Target
30-Pax CTR Conceptual Design

ICDS CL

6 deg forward sweep

BL 0.0

BL 275.00

FS 119.536

FS 417.000

WL 152.36

Mast CL

739.628

16 deg

457.00 dia

95.0 dia

WL 35.00

Optimal Synthesis Inc.
30-Pax CTR Cont.

34 x 72 Aft Entry Door

34 x 72 Fwd Entry Door

Lavatory

91.50 cockpit

352.0 cabin length

70.0 Cabin Height

This seat only on aft row at aft bhd

21.50 Floor

95.0

88.0

21.0

21.0

21.0

21.0

2.0

72.0 Floor
120-Pax CTR Cont.

- 34 x 72 Aft Entry Door
- 34 x 72 Service Door
- 20 x 38 Emergency Exit (2)
- 90 in plus cabin
- 36 in floor
- 21 width x 32 pitch seats
- Fwd Galley
- Stowage
- 21 width x 32 pitch seats
- Aft Galley
- Lavatory
- Aft Pressure Bhd
- 28 width x 38 pitch seats
- 74.0 cockpit
- 941.0 cabin floor
Pilot-in-the-Loop Simulations

- Pilot-in-the-loop simulations were performed at Bell Helicopter
- Because of simulator logistics reasons terminal area simulations were at Miami airport (MIA)
- ACES airspace simulations, though, will focus primarily on Northeast Corridor
- Pilot-in-the-loop simulations tested applicable terminal area CONOPS
- Additionally, Bell simulator data was used to validate BADA/ACES models
Fixed-Base Simulator used in PITL Sim
Coupled ACES/AvTerminal Simulations

• During Year 2 effort, CTR BADA models was transformed to ACES models
• ACES is a well-known NASA-developed airspace simulation tool
• AvTerminal is a Sensis-developed terminal area tool
• Airspace simulations are being used to assess impact of CTR fleet to increase capacity/throughput of congested airports in 2025 time frame
• Study primary focus will be on Northeast Corridor
• CTR fleet size for 2025 was based in part on demand modeling and informal team assessments
Northeast Corridor Nine Airport Network

ACES CTR Flight Tracks

Colored by Destination

CTR in NextGen - 16
“Productivity Index” to refine Flight Profiles

![Graph showing productivity index vs. KTAS for different passenger capacities and flight distances.](image)
CTR Fleet Noise and Emissions Modeling

CTR in NextGen - 18
Future Plans -- CTR Public Service/Disaster Relief Modeling

• Public service missions are a singular and key aspect of rotorcraft; CTR will be no different
• During Year 3 effort, specialized simulation tools will be used to assess utility of CTR fleet for disaster relief missions
• Prototypical scenario to consider is a hurricane relief effort
• One possibility to consider in analysis is a CRAF-like (Civil Reserve Air Fleet) CTR civilian fleet response to disaster scenario
Concluding Remarks

• A challenging but valuable exercise so far

• SRW-sponsored “CTR in Next Gen Airspace” study significantly leverages off Airspace Systems Program “Advanced Vehicles in Next Gen” NRA Studies

• Already gaining considerable insights from CTR conceptual design and pilot-in-the-loop sim efforts

• Coupled ACES/AvTerminal airspace simulations have begun
Questions?