Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle

Damon B. Stambolian
NASA Kennedy Space Center (KSC)
Engineering and Technology Directorate
Problem Introduction

- Flight vehicle engineering designers for Ares-1 launch vehicle:
 - had the challenge to design the flight vehicle for effective, efficient and safe ground operations
 - needed to comply with the Human Systems Interface Requirements for ground processing of flight hardware
Solution

- Solution was to build a physical mockup of the areas where ground operations take place.
- Determine the human interfaces and associated tasks performed.
- Determine the applicable requirements for these interfaces and tasks.
- Used the mockup to practice modifications to the design to meet the human factors requirements.
Solution - Requirements

- The ground maintenance and assembly requirements in the HSIR included human factors major concerns for:
 - hardware access
 - work envelopes volumes
 - reach envelope volumes
 - visual access
 - LRU weight limit
 - tool clearances
 - appropriate clothing and equipment
 - emergency egress
 - maintenance without damage
Solution - Requirements

- The Ares key human operations:
 - Ground handling and access platforms for all areas needed for access to the flight components
 - Avionics box installation/removal inside vehicle
 - Translation of avionics boxes from inside vehicle through hatch
 - Work volume inside skirt with multiple technicians
 - Installation/Removal of ground support equipment in vehicle
 - Normal and Emergency Egress operations through hatch and inside skirt
Example – Ground Support Equipment

- There is little that can be done to change these cramped dimensions in rocket design, so adjustments were made to:
 - the ground support equipment
 - box placement locations and heights
- The ground support equipment acts as a seat, and foot rest.
- Ground support equipment installed to:
 - protect the technician from injury
 - protect the flight hardware from damage
Example – Avionics Boxes

- There were several avionics boxes.
- The analysis determined the best locations based on the technicians location capabilities and:
 - Box weight
 - Tool access
 - Hand volumes
 - Cable routes
Example – Hatch
Advantages and Disadvantages

- The physical mockup is very close to the real working environment
- Allow for the differences in human movement
- Promotes collaboration between designers and operators
- Different ways to perform a task can be analyzed and can be videotaped for further analysis

- Takes longer to build, and are more expensive than computer models
- Take up space, not easy to transport
- There is a chance of someone getting injured
- Operators may need to travel to the physical mockup location
- Finding the best solution takes time. Videos do not capture the 3D perspective
Suggested Applications

Use physical mockups

- To improve communication between designers and users
- Where there are multiple activities taking place in the same area
- Where there are more than one person working in the same area
- Where there are awkward positions that cannot be understood well in computer models
- Where there are many human factors scenarios. To make the most of the cost and time spent to build the mockup
Recommendations

- Promote more standardized and integrated mockup processes and designs between KSC, MSFC, and JSC
- Promote sharing of mockups across Centers and projects
- Embed mockup analysis as part of the Engineering processes, as one option to choose from for the appropriate human factors engineering analysis
- Future mockups should also include more collaboration with the ground support equipment
- Introduce motion capture analysis capabilities into mockup activities. Motion capture allows for quicker and simpler physical mockups
Summary

- Mockup analysis proved very effective to promote collaboration between Ares -1 designers and ground operations personnel to improve the flight hardware design.

- Continue using mockups analysis to promote human factor design collaborations and solutions.