1-G Human Factors for Optimal Processing and Operability of Ground Systems up to CxP GOP PDR

Damon B. Stambolian
NASA Kennedy Space Center (KSC)
Engineering and Technology Directorate

*1-G is Earth Gravity
KSC Design Engineering had the challenge to:

- Define the human factors Level 5 requirements from the FAA HFDS for each CxP GOP subsystems (Over 40 Subsystems)
- Develop a process for developing these requirements and improve the design for ground operations

Examples of subsystems:

- Crew Access Arm
- Breathing Air
- Cold Gas Helium
- Crew Module Ammonia
- Environmental Control
- Electrical Ground Support Equipment
- Hypergol
- LO2
- LH2
- GHE
- Ignition Overpressure/Sound
- Vehicle Access Arms
- Umbilicals
Solution

Within the Kennedy Documented Procedures a human factors engineering analysis was required to be performed by qualified human factors engineers.

- Human Factors Engineering Analysis (HFEA) Tool was developed to create a dedicated subset of requirements from FAA requirements for each subsystem.
- Meetings were held between the human factors engineers, lead design engineers, and systems engineers:
 - To understand the human interfaces of the subsystem
 - To understand the task at these interfaces
 - To determine the human factors considerations/issues with these task interfaces
 - To get agreement on the allocation of requirement on these task interface issues
 - And to derive human engineered design solutions for these requirements
Solution

Columns: Human Interface, Issue, FAA Requirement, etc.

Each Tab is a FAA Chapter: Design equipment for maintenance, Controls and visual indicators, etc.
Example

Mobile Launcher

Crew Access Arm

Actuator Motor
Example

- Human Interface - Actuator motor
- Issue/Consideration - Access for maintenance
- Requirement – FAA 4.3.4.1.1 Complete visual and physical access
 - Equipment shall be positioned so that the maintainer has complete visual and physical access to all parts of the equipment on which maintenance is performed; this includes access openings, adjustment points, test points, cables, connectors, labels, and mounting fasteners
- Consequence – Delay
- Processing phase - Inspection, Maintenance, and Disassembly
- Likelihood and Consequence was 2 and 3
- Notes: Solution was to moved the motor to an open and more accessible location at the back of the Crew Access Level of the ML Tower
Suggested Applications

- The HFEA analysis can be applied for designing in human factors for many applications.
 - Since the FAA requirements are required by KSC ground systems and FAA, it is highly applicable at KSC and FAA.
 - Other Government agencies may benefit from this tool, such as DoD.
 - Other NASA Centers, Johnson Space Center, Marshall Space Flight Center, Etc.
 - Non government companies.
Advantages and Disadvantages

- Effective method to create a HFEA subsystem specific requirements report by tailoring out FAA requirements
 - Requirements were easy to select from drop down list
 - FAA sections were easy to select from tabs

- Excel sheet is easy to modify and to provide to the users; systems engineer, lead design engineer, and human factors engineer

- The process promoted identifying the human factors interface, issue, and then applicable requirements

- Determining which requirements to select from FAA was time consuming

- Determining which FAA sections applied was time consuming

- The excel sheet has limitations such as, processing time, and deletion of rows can disrupt macros

- Capturing lessons learned from design solutions was not stressed in the tool
Recommendations

For HFEA Tool improvement

- Improve selection of requirements so this is less time consuming
- Improve selection of FAA Chapter sections (tabs) so this is less time consuming
- Improve the functionality of the tool by making it a software or web-based instead of an excel spreadsheet
- Improve the tool so it promotes a operations time line way of analyzing the human factors interfaces
- Improve the tool so it will promote capturing lessons from design solution, and use of design solutions in future use
- Improve the tool and related database through collaborations with other NASA Centers, FAA, DoD, and commercial uses
Summary

- Continue to use and improve the HFEA process and tool.
- Have kickoff human factors meetings with the systems engineer and lead design engineer earlier in the design process at 30%.
- Include the Human Factors Engineer as a member of the design team.
- During verification, the HFEA report should be used as a verification checklist.