Disruptive Technologies in Workmanship: pH-neutral Flux, CDM ESD Events, HDI PCBs

Jeannette Plante
NASA Workmanship Standards Program
October 2010
Electrical Specification
Mil-Spec COTS

Quality
Mil-Spec COTS

Environment/Reliability Performance
MIL-Spec COTS

1975 – 1985
EEE PM&P

Office of Safety and Mission Assurance
1975 – 1985

Quality need

1985 – 2000

Quality
Mil-Spec COTS

Mil-Spec COTS

COTS

COTS

Electrical Spec

1985 – 2000

Environment/Reliability

Electrical Spec

Electrical Specification
Mil-Spec COTS

MIL-Spec COTS

Environment/Reliability

Performance
Technology complexity is reducing the applicability of traditional quality and reliability tests.

New technology depending more and more on all available means of cooling; not least of which is forced air.

DESIGN-related failure modes difficult to discover.

DESIGN-related failure modes cannot be screened out. (*screening tests find units with quality problems – doesn’t meet specification*).

Challenge is to better understand how to best use products with high uniformity, high electrical performance, but not intended for NASA applications.
Example of Limitations Posed by Design Features Tuned to Target Market: Commercial Market Assumes High-Volume Automated Production

Vendors offer no instructions for hand-soldering

Design tuned to high volume production. Limited repair options.

Process development influences quality greater than assembly technician.
"Low-end disruption" occurs when the rate at which products improve exceeds the rate at which customers can adopt the new performance. Therefore, at some point the performance of the product overshoots the needs of certain customer segments. At this point, a disruptive technology may enter the market and provide a product which has lower performance than the incumbent but which exceeds the requirements of certain segments, thereby gaining a foothold in the market.

Examples:

Disrupting
- Downloadable Digital Media
- Desktop Publishing
- Private Jet
- LED’s
- Web Search Engine

Incumbent
- CD’s, DVD’s
- Traditional Publishing
- Supersonic transport
- Incandescent Light Bulbs
- Directory based listing

- Water Soluble Flux
- MHz digital data rates
- ≥3.3 V ECL, TTL
- Rosin Flux
- GHz digital data rates
- <3.3V LVDS
- MHz digital data rates
- ≥3.3 V ECL, TTL
- Lead-Free solder
- Tin-Lead solder
- “Open” packages
- Hermetic package
Flux

Flux is used to remove surface oxides from soldered interfaces to enable metal surfaces and solder to diffuse and create an intermetallic layer.

Sold several forms: liquid, mixed with solder balls in a paste, as the core of solder wire.
Incumbent Technology:

Rosin flux: non-activated, mildly activated, highly activated

Rosin flux = tree sap + halide + more halide (Cl, Br, F)

Cleaning requires alcohol. Traditional solvent of choice was 1,1,2-Trifluoro-1,2,2-trichloroethane (Fluorocarbon 113) + methanol + nitromethane

1,2,2-trichloroethane phased out by Montreal Protocol of 1989.

Subpart A—Semiconductor Effluent Limitations

<table>
<thead>
<tr>
<th>Pollutant or pollutant property</th>
<th>Maximum for any 1 day</th>
<th>Average of daily values for 30 consecutive days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milligrams per liter (mg/l)</td>
<td></td>
</tr>
<tr>
<td>Total Toxic Organics</td>
<td>1.37</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>Within range of 6.0 to 9.0</td>
<td>Within range of 6.0 to 9.0</td>
</tr>
</tbody>
</table>
Disrupting Technology:

Water Soluble flux: mildly activated, highly activated (includes halides)

“….A water soluble flux composition includes a vehicle portion of polyoxyethylene-polyoxypropylene block copolymers and their adducts of trimethylolpropane along with an activator portion of tetrakis hydroxyalkyl derivatives of alkalene diamines such as N,N,N',N'-tetrakis (2-hydroxypropyl) ethylenediamine and/or a long chain alkyldiethanolamine, such as polyoxyethylene soyamine….”

WSF: pH-neutral
basic active ingredient is weak organic acid halides added to heighten activity level
very soluble in water
<table>
<thead>
<tr>
<th>Rosin Flux</th>
<th>Water Soluble Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well established as reliable for space</td>
<td>Limited use in space hardware (growing)</td>
</tr>
<tr>
<td>Remnant flux forms “protective shell” over surface of assembly</td>
<td>Remnant flux is not protective to assembly</td>
</tr>
<tr>
<td>High levels of halides required to cause dendrite growth</td>
<td>Lower levels of halides may be sufficient to create shorting paths</td>
</tr>
<tr>
<td>Easy to detect high levels of halides with non-destructive screening</td>
<td>Non-destructive tests to discover halide contamination may not be sufficient.</td>
</tr>
<tr>
<td>Remnant flux “cures” into hard deposit and is not reactivated with rework.</td>
<td>Remnant flux can be reactivated with rework. Found to be highly mobile during hand-cleaning operations.</td>
</tr>
<tr>
<td></td>
<td>Complex chemistries may be required to clean under low profile parts.</td>
</tr>
<tr>
<td>Remnant flux contains weak organic acid which stores water (water is a constituent required for dendrite growth)</td>
<td>Hydrophilic nature reduces shelf life and dwell time after deposit to PCB</td>
</tr>
<tr>
<td>Hydrophilic nature connected with increase in joint voiding</td>
<td>Hydrophilic nature connected with increase in joint voiding</td>
</tr>
</tbody>
</table>
Metallic salt deposits may be permanent causing entire assemblies to be scrapped.

Workmanship does not have a test method or acceptance criteria for voiding.
Rosin flux

Stable formulations – many vendors have not requalified products in 15 or more years with no negative impact on user community.

Part numbers stay intact for decades.

Process engineers favor old, well worn formulations. (low activation, mildly activated, highly activated)

Mil-standard (now IPC standard) was adequate for rosin flux, most parameters tuned to rosin.

Water Soluble flux

Formulations are highly variable and are highly proprietary.

Industry is still very dynamic regarding balance between cleaning and cleanability.

✓ Field failures are not highly advertised but indicate that internal testing is not ringing out contamination problems.

✓ Market growing for solutions to low-profile components
 • Cleaning solution adders
 • New solder mask designs
 • No-clean formulae

IPC Standard re-examining parameters that are more apt for non-Rosin flux types
• 2008: 1 project using at GSFC

2010: 5 projects using at GSFC, JSC seeing usage, JPL looking at internal process development.

• Flux qualification testing fell away after mil-spec retired (~ 15 years ago). Old data being used to claim new IPC type.

• Formulae include halogens which are not detected by halide tests but which break down into halides during activation. IPC types don’t tell the whole story.

• IPC and SMTA have heightened interest in flux and cleaning concerns. Second biennial cleaning conference to be held in November in Chicago.
 Rise in unpublished failures?
Electrostatic Discharge

Charge Device Model
ESD Overview

(1) ESD Models Provide a way to characterize the sensitivity of components to ESD

(2) The different ESD models simulate the different environments experienced by electronic components during the manufacturing process.

(3) Parts and assemblies may be exposed to more than one type of ESD event over the manufacturing and test life cycle.
HBM = Human Body Model
MM = Machine Model
CDM = Charged Device Model

Voltage discharged through RC or RCL network creates different total energy experienced by the device.
HBM safety methods have brought HBM & MM failures down to ~10% of failures encountered industry-wide.

Role of CDM in failure count is now majority (~90%)
CDM Challenges

- Opportunities to use on-chip ESD protection reduced in high speed designs
- Reduction in conductor widths on-chip result in higher current densities and thermal stress
- Package capacitances in high pin-count designs increase peak current during CDM ESD event.
- Ionizers work on an HBM time scale and are not effective for mitigating rapid-pulse charging events

Suppliers have been working to a 500V qualification level for CDM (peak current @ 16A).

Industry position developing to reduce qualification level to 250V (peak current @ 7A).

\[\text{increasing baseline risk} \]
CDM Challenges

Gate damage susceptibility is scaling with feature size.

The area needed for on-chip ESD protection against CDM events @ 16A has become impractical.

Both are 45 nm technology, LV is Vdd=1.1V, MV is Vdd=1.8V

Capacitance must be reduced for high speed operation. The remaining budget for ESDS circuitry scales downward providing lower levels of ESD protection.

Package size causes an increase in CDM event current. Package capacitance charges triboelectrically or inductively and then discharges rapidly into the die during the CDM event.
CDM - Summary

• Devices will be less robust to CDM event in the future and “old” practices may not be sufficient.

• Expert help will be needed to work through CDM safety solutions. Complex and evolving event model.

• CDM safety measures may include new board materials, design rules, discharge steps during test, protection from stray RF

• Technology drivers in high-speed, high pin-count devices make them more susceptible to CDM events.

 ✓ Suppliers will **not** “ESD harden” these devices
 ✓ HBM methods will not protect these devices
High Density Interconnect

Printed Circuit Boards
• In 2008 a GSFC project encountered a printed wiring assembly with a PCB that was failing batch-based quality inspections.

• Extensive engineering and quality attention to this board found that:

 • HDI features such as buried vias, micro-vias, and a high layer count made it very complex to manufacture

 • The system supplier did not have a PCB supplier who could identify and control the critical processing parameters

Source: NASA GSFC

Courtesy: Coretec
• In December 2009 the IPC hosted a government-industry symposium on the concerns of the US PCB industry.

• A major concern is a loss of the ability of US firms to leverage off of high-volume commercial business to fund capital equipment upgrades for their low-volume high-rel customers (Mil and Space).

• Though device suppliers require state-of-the-art features, PCB manufacturing capability is lagging and showing up as quality defects.

![Image](image.png)
What is HDI?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via Diameter</td>
<td>(\leq 0.006'') drilled; (\leq 0.003'') laser ablated</td>
</tr>
<tr>
<td>Pad-To-Hole Diameter Difference</td>
<td>(\leq 0.006'')</td>
</tr>
<tr>
<td>Trace Width</td>
<td>(\leq 0.003'')</td>
</tr>
<tr>
<td>Spaces</td>
<td>(\leq 0.003'')</td>
</tr>
<tr>
<td>Pitch</td>
<td>(\leq 0.010'')</td>
</tr>
<tr>
<td>Through-Hole Aspect Ratio (plating ratio)</td>
<td>12:1 +</td>
</tr>
<tr>
<td>Sequential Lamination</td>
<td>2 cycles +</td>
</tr>
<tr>
<td>Thin Dielectrics</td>
<td>(\leq 0.003'') reinforced; (\leq 0.001'') unreinforced</td>
</tr>
</tbody>
</table>

0.003'' = 0.072 mm

0.65 mm PITCH BGA

Via-in-Pad Technology
- BGA Ball Size: 0.4 (16)
- BGA Land Dia: 0.425 (17)
- Hole Size: 0.2 (8)
- Plane Clearance: 0.575
- Solder Mask: 1:1 scale

Trace/Space Data
- Trace Width: 0.075 (3)
- Trace/Trace Space: 0.075
- Trace/Via Space: 0.075 (3)
- Routing Grid: 0.05 (2)
- Via Grid: 0.65 (26)
- Part Place Grid: 1 (40)

Source: HDI Implementation for Aerospace/Military Applications, Gareth Parry Chief Technology Officer, Coretec Inc.
Interconnect Stress Testing (IST) should be investigated for standard use by NASA in addition to coupon analysis.

Resistive heating and sense circuits built into PCB coupons can be used to rapidly perform thermal cycling QCI testing.

Developer has demonstrated good correlation between field failures and IST test failures.
(1) Disruptive technologies: timely access, low-cost, new performance neglects some traditional features new performance suite establishes price point neglected features no longer affordable

(2) Disruptive technologies: characterization/reliability challenge Not always a parts/materials quality challenge More likely to be a design challenge More GIDEPs at the System level?

(3) pH-neutral flux: Provides increased activity level and Green cleaning Cleanliness requirements now more meaningful, not well developed. Reliability of voided joints (other than BGA) not addressed.
Summary (2 of 2)

(4) CDM ESD Re-rating: Sacrifices ESD tolerance for high-speed performance
Clarifies performance capability to users though risk mitigations may not be available.
CDM control methods are not standardized
CDM events expected to continue to dominate ESD failures

(5) High Density Interconnect: HDI features enable high-speed performance
High equipment costs to support
Use of old equipment results in lack of lot control
(Quality problem)
Industry creating requirements
IST testing is an emerging option
PCB technology has become a significant assurance concern for NASA (1st time?)