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Popular Summary 
 
Sensors flying on satellites provide the only practical means of estimating the precipitation that 
falls over the entire globe, particularly across the vast unpopulated expanses of Earth’s oceans.  
The sensors that observe the Earth using microwave frequencies provide the best data, but 
currently these are mounted only on satellites flying in “low Earth orbit”.  Such satellites 
constantly move across the Earth’s surface, providing snapshots of any given location every 12-
36 hours.  The entire constellation of low-orbit satellites numbers less than a dozen, and their 
orbits are not coordinated, so a location will frequently go two or more hours between snapshots.  
“Geosynchronous Earth orbit” (GEO) satellites continuously observe the same region of the 
globe, allowing them to provide very frequent pictures.  For example, the “satellite movies” 
shown on television come from GEO satellites.  However, the sensors available on GEO 
satellites cannot match the skill of the low-orbit microwave sensors in estimating precipitation.  
It is perhaps obvious that scientists should try to combine these very different kinds of data, 
taking advantage of the strengths of each, but this simple concept has proved to be a huge 
challenge.  The scheme in this paper is “Lagrangian”, meaning we follow the storm systems, 
rather than being tied to a fixed grid of boxes on the Earth’s surface.  Whenever a microwave 
snapshot occurs, we gladly use the resulting precipitation estimate.  Then at all the times between 
the microwave snapshots we force the storm system to make a smooth transition from one 
snapshot’s values to the next.  We know that a lot more changes occur between the snapshots, 
but this smooth transition the best we can do with the microwave data alone.  The key new 
contribution in this paper is that we also look at the relative variations in the GEO estimates 
during these in-between times and force the estimated changes in the precipitation to have 
similar variations.  Preliminary testing shows that this approach has enough promise that it 
should be developed and studied. 
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Abstract  

A new multi-platform multi-sensor satellite rainfall estimation technique is proposed in 

which sequences of geostationary infrared (IR) images are used to advect microwave (MW)-

derived precipitation estimates along cloud motion streamlines and to further adjust the 

rainfall rates using local cloud classification. The main objective of the Rain Estimation using 

Forward Adjusted-advection of Microwave Estimates (REFAME) is to investigate whether 

inclusion of GEO-IR information can help to improve the advected MW precipitation rate 

as it gets farther in time from the previous MW overpass. The technique is composed of 

three steps. The first step incorporates a 2D cloud tracking algorithm to capture cloud 

motion streamlines through successive IR images. The second step classifies cloudy pixels to 

a number of predefined categories using brightness temperature (Tb) gradients between 

successive IR images along the cloud motion streamlines in combination with IR cloud-top 

brightness temperatures and textural features. A mean precipitation rate for each cluster is 

calculated using available MW-derived precipitation estimates. In the third step, the mean 

cluster precipitation rates are used to adjust MW precipitation intensities advected between 

available MW overpasses along cloud motion streamlines. REFAME is a flexible technique, 

potentially capable of incorporating diverse precipitation-relevant information, such as multi-

spectral data. Evaluated over a range of spatial and temporal scales over the conterminous 

United States, the performance of the full REFAME algorithm compared favorably with 

products incorporating either no cloud tracking or no intensity adjustment. The observed 

improvements in root mean square error and especially in correlation coefficient between 

REFAME outputs and ground radar observation demonstrate that the new approach is 

effective in reducing the uncertainties and capturing the variation of precipitation intensity 
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along cloud advection streamlines between MW sensor overpasses. An extended REFAME 

algorithm combines the adjusted advected MW rainfall rates with infrared-derived 

precipitation rates in an attempt to capture precipitation events initiating and decaying during 

the interval between two consecutive MW overpasses. Evaluation statistics indicate that the 

extended algorithm can be effective to capture the life cycle of the convective precipitation, 

particularly for the interval between microwave overpasses in which precipitation starts or 

ends. 

 

1. Introduction 

High quality precipitation data at fine time and space resolution have many 

hydrometeorological applications including flood forecasting, drought monitoring, disaster 

management, and initialization of numerical weather prediction models, among others. The 

current constellation of earth observing satellites allows global retrieval of precipitation data 

that complement ground precipitation observations from relatively sparse radar/gauge 

networks. While high-resolution precipitation remote sensing is gaining popularity within 

several scientific communities, it faces many challenges. The main challenge is not only to 

derive high quality precipitation intensity from each individual sensor but also to combine 

information from different sensors in order to improve consistency, accuracy, coverage and 

timeliness of high resolution precipitation estimation. Currently, the two most commonly 

used types of sensors in space-based precipitation monitoring are passive Microwave (MW) 

and Infrared (IR) sensors. MW sensors, which are so far available only aboard Low Earth 

Orbit (LEO) satellites, are sensitive to cloud hydrometeors and yield relatively accurate 

instantaneous precipitation estimates for those times when the satellite passes over a given 

geographical region. On the other hand, IR sensors aboard Geostationary Earth Orbit 
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(GEO) satellites can only image clouds rather than the hydrometeors they contain. GEO 

satellite data alone yield relatively inaccurate rainfall intensity estimates that nonetheless 

provide comprehensive spatial and temporal coverage. Given that in the latter case, 

precipitation is indirectly estimated from cloud forms present in frequent GEO images, 

attempts to combine GEO-IR estimates with the less frequent but higher quality 

precipitation information from LEO-MW data has been a major research issue for more 

than a decade. These efforts, which will significantly benefit from the anticipated launch and 

operation of NASA’s Global Precipitation Measurement (GPM) mission, can be categorized 

into four major groups.  

 

The first and most common type of IR/MW combination approach includes techniques that 

retrieve precipitation intensity by establishing an empirical relationship between GEO-IR 

images and microwave precipitation estimates to yield an improved, locally calibrated 

function mapping IR imagery to surface rainfall rates. This includes: (a) methods that use 

microwave estimates to adjust an IR threshold for rain area delineation followed by rain rate 

estimation (Adler et al. 1993; Kummerow and Giglio 1995; Xu et al. 1999); (b) 

probability/histogram matching methods in which the cumulative distribution functions of 

MW rain rates and IR brightness temperatures are matched to provide IR-rain rate equations 

under the general assumption that colder clouds statistically produce more intense rainfall 

(Hong et al. 2004; Huffman et al. 2007; Kidd  et al. 2003; Sorooshian et al. 2000;  Todd et al. 

2001; Turk et al. 2000); and c) regression methods in which MW estimate are directly related 

to coincident IR pixel data to establish a regression-based equation for rain rate estimation 

(Kuligowski 2002; Martin et al. 1990; Miller et al. 2001; Vicente et al. 1998). As discussed by 

Kidd et al. (2003), calibration-based combination strategies are affected by the inherent 
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tradeoff between the temporal and spatial details of the calibration domain. A longer 

calibration time scale allows for better retention of spatial details but at the expense of short-

term variation in the IR-Rainfall relationship. Conversely, when calibration uses coincident 

MW-IR images, the algorithm can better capture short term variability of IR-Rainfall 

relationships but at the expense of information regarding their spatial variability due to the 

limited number or coincident samples.  

 

A second combination strategy, which may be used in concert with the first, focuses on 

obtaining the “best” local estimate for a given grid box. This approach has been employed 

for generating robust medium-resolution precipitation products as opposed to finer 

temporal resolution time-series. The 3B42-RT product of the Tropical Rainfall Measuring 

Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; Huffman et al. 2007) relies 

on collecting available MW estimates from various satellites within a time bracket of 3 hours 

for each cell on a 0.25×0.25-degree grid and then filling gaps in the grid with MW-calibrated 

IR estimates. Clearly, the fundamental differences between what IR and MW instruments 

observe may affect the spatial consistency of rainfall estimates, introducing discontinuities 

that may be problematic for studies focusing on rainfall structures. These problems can arise 

in other MW-IR algorithms where the discontinuities in sensor coverage translate into 

discontinuities in product characteristics. 

 

Cloud motion tracking, which is increasingly becoming a common operational application of 

GEO satellite imagery, forms the core element of the third combination strategy. The 

Climate Prediction Center Morphing Method (CMORPH; Joyce et al., 2004) estimates a 

temporally and spatially complete precipitation field, exclusively from MW observations 
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through guided propagation of precipitation estimates between two MW images using IR-

based cloud tracking. In brief, CMORPH consists of the following steps: (1) the spatial lag 

correlations obtained from successively collocated IR images are used to calculate cloud 

motion vectors, (2) the relatively high quality MW-derived precipitation estimates are 

propagated forward in time along the cloud motion vectors until the next MW overpass is 

reached, (3) the latter MW precipitation field is propagated backward in time using the 

existing motion vectors, and (4) a time-weighted linear interpolation of the MW precipitation 

is obtained by averaging the forwardly and backwardly propagated precipitation fields. The 

interpolation allows for modification of shape and intensity (morphing) of the precipitation 

field between two microwave overpasses. 

 

CMORPH has shown good results based on evaluation statistics reported during the Pilot 

Evaluation of High Resolution Precipitation Products (PEHRPP) initiative as well as in few 

other studies (Dinku et al. 2008; Sapiano et al. 2009; Tian et al. 2007). However, a few 

concerns can be raised. First, the morphed precipitation product relies on the MW 

precipitation estimates at the two ends of a cloud advection path. As such, the method is 

unable to capture precipitation events that may form and dissipate between two MW 

overpasses such as convective precipitation. More generally, CMORPH may not result in 

accurate estimates if the precipitation field during the morphing process varies nonlinearly.  

 

The “GSMaP_MVK” algorithm (Ushio et al., 2009) incorporates the frequently available 

GEO information in adjusting the propagated precipitation field. Although GSMaP_MVK is 

similar to CMORPH in propagating the MW-derived precipitation field using the IR-derived 

motion vectors, it differs from CMORPH in that it also uses cloud-top brightness 
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temperatures to adjust the propagated precipitation intensities along the motion vectors. 

More specifically, by considering the relationship between Tb and precipitation rate and its 

associated uncertainties, a Kalman filter is applied to the propagated precipitation to update 

the IR/Tb relationship. The same Kalman gain value may be used to adjust precipitation 

intensities along a given motion vector in both forward and backward propagation stages. 

The final rain rate estimate at each interval is eventually obtained after weighted averaging of 

the forward- and backward- propagated precipitation estimates based on the root-mean-

square uncertainties associated with each stage. Note that the CMORPH group is also 

pursuing a Kalman-filter methodology by using IR-based estimates to improve their 

algorithm (Joyce et al. 2008). 

 

The combination of backward and forward propagation of MW precipitation estimates is an 

attempt to capture the dynamics of growing or decaying precipitation systems. However, the 

need for a pair of consecutive MW observations along the motion vectors, which are 

generally separated by a time lag up to three hours or more, reduces the effectiveness of this 

approach in real time monitoring of precipitation. Even with GPM in full operation, the 

revisit time between two MW overpasses will not improve significantly. Real-time 

precipitation monitoring at high time and space resolution is critical for extreme hydrologic 

events such as flash floods.  

 

To improve real-time high-resolution estimation of precipitation rate using GEO-IR–based 

cloud tracking and MW data, Bellerby et al.(2009) and Hsu et al.(2009) developed the 

LMODEL (Lagrangian Model) algorithm that combines a high-resolution 2-D cloud 

tracking system (Bellerby 2006) and conceptual semi-Lagrangian cloud model. The model 



 8 

estimates convective and stratiform precipitable water fluxes from GEO imagery and uses 

these to model bulk cloud liquid water content and associated rainfall rates as they evolve 

along streamlines. Model parameters are locally adjusted at MW overpasses and these 

adjustments interpolated along streamlines between overpasses. State variables are 

sequentially updated using a Kalman filter at each MW overpass. The method has been 

tested under conterminous United States and has been demonstrated to be effective at 

capturing rainfall variability between MW overpasses. A weakness of the current LMODEL 

algorithm is that is does not contain any mechanism to distinguish between cloud types.  

 

In this study, we propose a new tracking-based MW/IR rainfall estimation approach that 

incorporates cloud classification to improve real-time precipitation estimation.  The Rain 

Estimation using Forward Adjusted-advection of Microwave Estimates (REFAME) 

algorithm computes cloud motion vectors from frequent GEO-IR cloud-top images using 

the method developed by Bellerby (2006). Calculated temperature gradients between 

successive Tb images along with other textural and brightness temperature features are then 

used to classify GEO satellite grid-boxes into predetermined number of clusters. Mean 

precipitation rates for each cluster are then derived from time-space matched MW-derived 

precipitation rates in manners similar to the recently reported Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks – Multi-Spectral Analysis 

(PERSIANN-MSA) method (Behrangi et al., 2009b). The cluster mean precipitation rates 

are used to adjust the MW precipitation intensities as they are advected along cloud motion 

streamlines.  
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The datasets used in this study are described in section 2. The development and structure of 

the REFAME algorithm along with few other variations of the algorithm are described in 

section 3. The variations facilitate the evaluation of the REFAME. A detailed evaluation and 

comparison of the REFAME and the reference products is provided in section 4. Finally, 

concluding remarks are reported in section 5.  

 

 

2. Dataset 

GEO-IR data from the Climate Prediction Center (CPC) merged IR dataset (Janowiak et al. 

2001) and MW-derived precipitation estimation from the CPC merged microwave dataset 

(Joyce et al. 2004) were obtained for a study region covering the continental United States 

(CONUS) for the period June-August of 2006. The CPC IR data set is a composite of all 

available GEO-IR (~11 µm) images, with zenith angle corrections, and is available at 4km 

spatial resolution every 30 minutes. The IR data were remapped onto 0.08-degree spatial 

resolution for this study.  The CPC merged MW precipitation data includes data from the 

Defense Meteorological Satellite Program Special Sensor Microwave/Imager (DMSP-SSMI), 

Polar Operational Environmental Satellite Advanced Microwave Sounding Unit B (POES 

AMSU-B), Aqua Advanced Microwave Scanning Radiometer E (AMSR-E) and TRMM 

Microwave Imager (TMI) instruments (Ferraro 1997; Ferraro et al. 2000; Kummerow et al. 

2001; Weng et al. 2003). As described by Joyce et al. (2004), the merged MW precipitation 

data is obtained via mapping the MW precipitation estimates to the nearest grid point on 

rectilinear grids at ~ 0.07-degree lat/log , separately for each half an hour and for each 

satellite. For the grids with no precipitation data, an inverse distance squared weighting 

interpolation of the nearest grids with precipitation estimate is used. Finally, by 



 10 

implementing an order of precedence in regions of overlapping sensors, a spatially 

complete field of merged MW precipitation estimate is obtained at ~ 0.07-degree lat/log 

for each half an hour. Subsequently, in the present work, the merged product is interpolated 

to a common 0.08-degree spatial and 30-minute temporal resolution.  

 

The reference precipitation dataset was obtained from hourly ground-based weather radar 

systems, provided by the NOAA National Center for Environmental Prediction (NCEP) 

and Environmental Modeling Center (EMC) (Lin and Mitchell 2005). The NCEP/EMC 4-

km gridded radar rainfall estimates were remapped to a 0.08-degree latitude/longitude grid 

maps, compatible with the IR and MW dataset. 

 

In this study the first half period (June –Aug 15) dataset was used for training and calibration 

purpose and the rest was used to evaluate the results. The ground radar precipitation data is 

reference for deriving all statistical measures for REFAME and its variations discussed in 

section 4 in more detail. 

 

 

3. Methodology 

The REFAME technique is composed of three steps. In the first step, cloud motion 

streamlines are captured from successive high resolution (0.04-degree latitude/longitude 

every 30 minutes) IR images using a 2D cloud tracking algorithm described in subsection 

3.1. In the second step, described in subsection 3.2, the IR grids are classified into 

predefined number of classes using brightness temperature (Tb) gradients between 

successive IR images along the cloud motion streamlines in combination with IR cloud-top 
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brightness temperatures and textural features. Subsequently, mean precipitation rate for each 

cluster is calculated using corresponding MW-derived precipitation estimates. This step is 

conducted using training samples prior to the testing/validation phase. In other words, 

during testing/validation period the calculated mean precipitation rate for each class remains 

unchanged.  In the third step, described in section 3.3, the mean cluster precipitation rates 

are used to adjust MW precipitation intensities advected between available MW overpasses 

along cloud motion streamlines. In section 3.4, a potential extension of REFAME is 

described in which GEO-IR-derived precipitation is averaged with REFAME-derived 

precipitation to account for those convective precipitations that may not be captured at the 

previous MW overpass. 

 

 3.1 High resolution 2D cloud tracking 

 

This study employs the high resolution 2-D cloud tracking algorithm developed by Bellerby 

(2006). The algorithm matches equivalent cloud pixels location between a pair of GEO-IR 

images using a combination of hierarchical template matching and mesh-based tracking 

techniques. The procedure, fully described in Bellerby (2006), consists of mapping regular 

mesh grid centers (nodes) of a given image (Image A) to corresponding locations in the 

previous image (Image B).  The mapping starts at coarse resolution and uses localized 

template matching to optimize the local correspondence between the two images at and near 

the nodes. The mapped nodes are then connected to create a convex quadrilateral mesh over 

Image B. Both the regular grid over Image A and the irregular grid over image B are 

interpolated to twice their current resolution before the procedure is iterated. In this, and 

subsequent, iterations, the local image distortion, including rotation and shear, represented 
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by the irregular mesh are incorporated into the local image matching process. The matching 

points on Image B are again joined to form an irregular mesh over Image B and both regular 

and irregular meshes interpolated to double their resolution. These steps demonstrated in 

Figure 1 are then repeated until the original resolution of the GOES image is reached. To 

reduce potentially ambiguous matches, the procedure includes consistency checking, mesh 

untangling and edge effect management steps. As a result, and at the end of the procedure, a 

Lagrangian representation of cloud development is obtained which provides, at each cloudy 

pixel location in Image A a translational vector that maps the pixel to its best match in image 

B while explicitly incorporating the effect of cloud motion, growth, deformation and 

dispersal (decay). Case studies show that the algorithm is more effective and accurate in 

tracking cloud deformation between successive GOES images than a straightforward single-

stage template matching approaches (Bellerby, 2006 ; Bellerby et. al., 2009).  

 

 

3.2 GEO input feature extraction and classification 

 

Due to the strong relation between Tb and cloud height, frequent high resolution IR 

observations of cloud top properties from GEO satellite images can provide information on 

cloud morphology, texture and evolution, which in turn may be used to infer information 

relevant to precipitation intensity. For example, successive IR images may be used to detect a 

growing convective system where gradient of temperature change (∆Tb) along the cloud 

motion streamlines is negative. A mature convective system that reaches a high elevation 

usually demonstrates very low cloud-top brightness temperature and small ∆Tb. Stratus 

clouds, on the other hand, do not usually demonstrate significant ∆Tb along the cloud 
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motion streamline. They also typically appear horizontally flat in IR imagery, manifesting 

only insignificant changes in Tb between neighboring grid boxes. 

 

The REFAME algorithm incorporates a range of IR-derived cloud ‘features’ to characterize 

cloud types. Figure 2 illustrates the features used in REFAME including:  brightness 

temperature (Tb) of the IR grid box; texture obtained from 3x3 neighboring grid-boxes: 

mean (M3) and standard deviation (S3); and dynamic properties, namely Tb gradient (∆Tb) 

calculated from corresponding brightness temperatures at two successive images with 

temporal resolution of GEO-IR imagery (30 min).  

 

The inverse statistical relationships between Tb, ∆Tb (from GEO-IR) and mean 

precipitation rate (from ground radar) are demonstrated in Figures 3a and 3b for the three 

months of the study period (June, July and August of 2006). To obtain Figure 3, Tb and ∆Tb 

were first binned separately with step size of 2 units. The mean precipitation rate for each 

bin was then calculated by dividing the total volume of rain rates over the total number of 

samples associated with the bin. The sample count in each bin is also shown in Figures 3c 

and 3d. The relationship between ∆Tb and mean precipitation rate suggests that in addition 

to Tb of each grid-box, ∆Tb along the cloud motion path provide useful information 

relevant to precipitation intensity. 

 

The next step of the REFAME algorithm involves the classification of satellite grid-boxes 

into a predetermined number of clusters (here, 400) sharing similar input feature properties. 
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The well-known k-means classification method was used herein. Briefly, the method consists 

of the following steps:  

 

1) Randomly locate n cluster centers (initial centroids) within the input-feature space D. 

2) Using Euclidean distance from the randomly chosen centers, assign each input-feature 

vector (i.e., Tb, ∆Tb, M3, and S3) to the nearest center. 

3) Re-compute the cluster centers as the mean value of the input-feature vectors belonging 

to each cluster. 

4) Repeat steps 2 and 3 until the cluster centers do not change within a pre-determined 

tolerance. 

 

The k-means clustering approach produces clusters that are located in the input-feature 

space D to minimize the cost, which is the sum of the squared Euclidean distance from 

every point in D to its nearest cluster center. The classic cost (or error) function is described 

as 

2

1
||||∑∑
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−=
n

k px
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cxE         (1) 

where x is a point representing an input-feature vector, Ck is the center of cluster Pk., and n is 

the number of clusters. Detailed information about the k-means technique is available in 

(Duda and Hart, 1973; Everitt 1993; MacQueen, 1967; Qiu and Tamhane, 2007).  

 

 

The classification was performed by introducing 200,000 input-feature-vectors to the k-

means classifier. A filtering process prior to the input-feature selection was used to sample 
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the input feature vectors from more than 5 million feature vectors extracted randomly from 

satellite pixels of the calibration period (June-July 15, 2006). Following Behrangi et al. 

(2009a), the filtering process was designed to ensure that a sufficient number of clusters was 

maintained in the region of low Tb representing cloudy areas with a higher possibility of 

precipitation occurrence, resulting in a more desirable distribution of clusters in the input 

feature space. The filtering process consists of three steps: Firstly, all data samples are 

binned into a number of groups based on Tb (here 10 groups with unequal range). Secondly, 

the number of samples in the coldest bin is applied as an upper limit to screen the data in the 

other bins. Finally, data from the warmer bins are randomly taken out until the total count of 

data vectors in each bin matches the number of samples in the coldest temperature group. 

  

The k-means procedure is an unsupervised classification that may be performed 

independently of any precipitation rate observation. Classification in unsupervised mode 

avoids some of the difficulties that may be introduced by uncertainties in precipitation 

measurement field or imperfect time-space matches between satellite GEO-IR and 

precipitation rate. Since the clusters are derived from multiple cloud features, the REFAME 

algorithm is highly flexible and capable of incorporating new inputs. Enhanced features 

vectors may, for example, include multi-spectral and cloud-patch information (Behrangi et 

al., 2009b: Behrangi et al. 2010).  

 

The next stage of the REFAME algorithm involves calculating a mean precipitation rate 

(MPR) for each cluster using the full calibration dataset. In this stage k-means cluster centers 

are not changed. Input feature vectors from each satellite grid box are calculated and used to 

allocate the grid box to the most closely matching cluster. If available, the corresponding 
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MW precipitation rate is then assigned to the cluster. This process continues until all of the 

calibration data are exhausted.  MPR for each cluster c is then calculated as: 

 

C

C
C N

PR
MPR

∑
=              (2) 

 

where MPRC is the mean precipitation rate for cluster c, PRC is the corresponding MW 

precipitation rate estimate (including zero values) of every single grid-box belonging to 

cluster c, and NC is  the total number of precipitation and no-precipitation samples within 

cluster c. 

 

Figure 4 shows a scatter plot of the MPR (Y axis) versus average brightness temperature (X 

axis) for all 400 cluster centers used in this study. As expected, the general trend indicates 

that clusters with lower average brightness temperature usually correspond to higher MPR. 

Note that the observed relationship between a cluster’s Tb and MPR is a result of 

considering all of the input features listed in Figure 2. Therefore, having several distinct 

cluster centers with the same average Tb indicates that these clusters contain gird-boxes with 

similar average Tb, but with different averages for the remaining input features. The clusters’ 

MPR are used to adjust the advection of MW-derived precipitation estimates as described 

below. 

 

 

3.3 Adjusted-advection of microwave precipitation estimates along cloud 

advection streamlines 
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The final stage of the REFAME algorithm incorporates forward adjusted advection of MW-

derived precipitation estimates along cloud motion streamlines obtained from GEO-IR 

imagery. Cloud motion vectors obtained using 2-D cloud tracking are used in conjunction 

with cluster MPRs described in section 3.1 to both advect and adjust the MW precipitation 

field forward in time. If the location vectors along an advection streamline form a sequence 

Xt, t=1,2,…, and the GEO satellite feature vector at location Xt  is associated with a cluster 

of mean precipitation rate MPR(Xt) then the adjusted advected microwave rain-rate 

MW*(Xt+1) is calculated iteratively along the streamline as 

 

)()(*)( 11 ++
∗ ×= ttt XCaXMWXMW        (3) 
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XCa             (4) 

 

is an adjustment factor based on the ratio of means between the current and previous 

clusters along the streamline (which may be the same). 

 

Figure 5 schematically illustrates how clusters mean precipitation rate are employed to 

change the intensity of MW-derived precipitation along an advection streamline.   
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3.4 Extended REFAME incorporating GEO-based estimates of precipitation rate 

 

REFAME is expected to result in superior performance compared to algorithms employing 

advection or cloud classification alone due to its ability to modify precipitation intensity 

through hybrid advection and adjustment of the MW precipitation forward in time. 

However, the method cannot account for precipitation events initiating and dying between 

two MW overpasses because equation (3) is a multiplicative adjustment.  These events can 

be critical, as the life of an intense convective storm from growth to dissipation may occur in 

a matter of 1 hour. Such events are captured by using more frequent GEO-observation of 

cloud-top properties. An extended algorithm (REFAME-GEOmsa) has been developed to 

target this problem. REFAME-GEOmsa combines a GEO-IR-derived precipitation rate 

with that derived from REFAME by assigning proper weighs to the elements of the 

combination for each time-step difference from the most recent MW overpass.  The 

development of the extended algorithm is described below: 

 

a) GEO-IR-derived precipitation rate: 

As discussed in the introduction, a majority of the GEO-IR-based precipitation estimation 

algorithms use power-law regression or histogram matching techniques to establish a 

relationship between cloud-top brightness temperature and reference precipitation 

measurements. The calibrated relationship is then used to estimate precipitation rate. The 

common result is that precipitation rate increases as cloud-top temperature decreases. 

However, as shown in Behrangi et al. (2009b) and Behrangi et al. (2010), the assumption 
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does not always hold. These and other studies have demonstrated that in addition to IR 

brightness temperature other GEO-derived precipitation-relevant features, such as cloud-

texture, can improve precipitation rate estimation from GEO satellites. Although 

establishing a relationship between multiple features and reference precipitation rate is 

challenging, the method outlined in section 3.1 can readily incorporate multiple features, 

through the calculated clusters’ MPR, to estimate grid-box precipitation rate. By employing a 

multi-dimensional clustering/histogram-matching technique; originally developed for multi-

spectral precipitation estimation (PERSIANN-MSA, Behrangi et al. 2009b), GEO-IR 

precipitation rates are calculated from the GEO satellite feature vectors described in 3b.  In 

brief, clusters are assigned ranks in a descending order based on their corresponding mean 

rain rates (highest to lowest). In parallel, the entire rain rate sample is also ranked in 

descending order. The histogram matching stage then consists of re-assigning members of 

the rain rate sample into the above-described clusters according to the number of samples 

associated with each cluster. For example, if cluster C1 with the highest calculated mean rain 

rate has N1 samples, the highest N1 rain rate values are re-assigned to this cluster. The next 

highest N2 rain rate values are re-assigned to cluster C2 having N2 samples, and so on for all 

of the clusters in the map The rainfall estimate for a given cluster is then set equal to the 

mean of the samples re-assigned to that cluster. Note that the use of histogram-matched 

rain-rate values as opposed to the original cluster means ensures that the resulting rainfall 

product displays a realistic dynamic range and accounts for possible mismatches between 

rain rate and cloud feature locations in the calibration dataset. As with cloud classification, 

this technique may be readily extended to multi-spectral data. 

 

b) Weighted averaging of REFAME and GEOmsa  
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REFAME and GEOmsa outputs were linearly combined using weights derived from a 

comparison of both products to a ground radar reference dataset. Figures 6a and 6c 

demonstrate that the performance of REFAME, as determined using correlation and root-

mean-square error (RMSE) scores, drops as the time distance from the previous MW 

overpass increases.. Figures 6b and 6d suggest that the combination weights should be 

identified with respect to the time distance from the last MW overpass. While the correlation 

coefficient of REFAME is more sensitive to time-distance than GEOmsa, it is less sensitive 

to sample counts (Figures 6e and 6f), particularly as the time distance gets larger. The large 

value of RMSE can be attributed to the considerable differences between MW-derived and 

radar precipitation estimates. Radar precipitation rates may exceed 100mm/hr as opposed to 

MW-derived precipitation, which does not exceed 50 mm/hr. Therefore, it is expected that 

the uncertainty in correlation coefficient, unlike RMSE, becomes less sensitive to the existing 

differences in rain intensity, as the former deals with patterns and the latter deals with actual 

values of precipitation. While RMSE-based combination weights (Figure 6d) could be also 

used, in this study COR was selected as the performance metric to assign combination 

weights to REFAME and GEOmsa at each time-distance (∆T) from previous MW 

overpasses (Figure 6b). The combination weights (WREFAME and WGEOmsa) are calculated by 

solving the following set of equations: 

 

)(
)(

)(
)(

TCOR
TCOR

TW
TW

GEOmsa

REFAME

GEOmsa

REFAME

∆
∆

=
∆
∆

       (5) 

1)()( =∆+∆ TWTW GEOmsaREFAME        (6) 
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Where CORREFAME (∆T) and CORGEOmsa  (∆T) are corresponding correlation coefficients for 

REFAME and GEOmsa as compared to the reference ground radar estimates at time 

distance ∆T From the most recent MW estimate along the cloud motion streamlines.  

 

Once the proper weights with respect to the time distance from the previous MW overpass 

were obtained for each method, the REFAME-GEOmsa is calculated to identify the 

precipitation rate for each grid-box as 

 

If 0≠∆Τb ,  

PR REFAME-GEOmsa (Xt )=W REFAME(∆T) * PRREFAME(Xt)+ WGEOmsa(∆T) * PRGPR(Xt )  (7) 

 

Otherwise,   

PR REFAME-GEOmsa (Xt ) = MW (Xt )       (8) 

 

 

 

where PRREFAME-GEOmsa (Xt ), PRREFAME(Xt ), and PRGEOmsa(Xt ) are the precipitation rate from 

the alternative product REFAME-GEOmsa, REFAME and GEOmsa at location X at time t 

along the cloud motion stream line.  

 

It must be noted that in the construction of Figure 6, the hourly Radar precipitation was 

assumed to have occurred at uniform intensity during each interval, which may affect the 

correlation coefficients and RMSE values.   
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4. Evaluation and comparison of results 

 

4.1 Model validation 

REFAME is useful to investigate if inclusion of GEO-IR information can help to improve 

the propagated MW precipitation rate as it gets farther in time from the previous MW 

overpass. In order to assess the contributions made by the elements of the proposed 

adjusted-advection process, two variations of the algorithm were developed and compared 

to REFAME using the ground radar precipitation rate as reference:  

 

1. Fixed MW precipitation field (hereafter referred to as MWfix) 

2. Forward Advection of MW precipitation field (hereafter referred to as MWadv) 

 

In MWfix, the MW estimate of precipitation for grid-box B is kept unchanged both in 

location and intensity until the next MW overpass provides new precipitation estimate for B. 

This product was considered to provide a MW-only base-line that does not account for 

cloud motion, and does not use IR estimates to adjust MW estimates. MWfix, therefore, to 

some extent resembles TMPA-RT’s scheme in implementing MW-derived precipitation rate 

in the final precipitation product.  However, as described in Huffman et al. (2007) and 

summarized in the introduction section of the present manuscript, TMPA-RT also benefits 

from a MW-calibrated IR estimates to fill the remaining gaps within each time bracket of 3 

hours. This may lead to considerable differences between TMPA-RT and MWfix. As will be 

shown in the results section, MWfix can result in significant misplacement of the MW 

precipitation particularly when clouds are subject to rapid movement and the time distance 
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from previous MW overpass is large. In addition, the product cannot account for changes in 

rainfall intensity. 

 

In MWadv the MW precipitation grid-boxes are advected forward in time along cloud 

motion streamlines obtained from successive GEO-IR images using the 2-D cloud motion 

algorithm described in Section 3.1. Assuming a perfect tracking of cloud grid-boxes, MWadv 

is expected to significantly improve the positioning of MW precipitation, compared to 

MWfix. However, it does not account for changes in precipitation intensity between two 

successive MW overpasses as REFAME does. The second variation, MWadv, is tailored to 

be similar to the scheme implemented in CMORPH. However, as described in Joyce et al. 

(2004) and summarized in Section 1, CMORPH also benefits from the backward 

propagation of the next MW-precipitation overpass to adjust the precipitation intensity at 

the expense of postponing the near real-time estimate of precipitation intensity for up to few 

hours. While by excluding the backward propagation of the next MW precipitation overpass, 

“QMORPH” (Joyce et al. 2004) is a more timely precipitation product, REFAME was 

not compared to QMORPH in the present work. The main reason is QMORPH uses 

different tracking strategy and employs a few other adjustments that make it difficult to 

conclude whether the differences between REFAME and QMORPH are algorithmic or 

due to the variation of input features.  

Evaluation of REFAME, its variations, and REFAME-GEOmsa were performed using the 

hourly ground radar precipitation data as “ground-truth”. Four evaluation statistics are used: 

Equitable Treat Score (ETS), Correlation Coefficient (COR), Root Mean Square Error 

(RMSE) and BIAS (see appendix A for detail). ETS is computed through the construction of 

a binary contingency table to measure the skill of each product in delineating rain/no-rain 
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areas. This is attained by selecting a threshold (0.1 mm/hr) above which a precipitation event 

is considered to have occurred. The rest of the statistical indices use quantitative values and 

measure how well the products can estimate rain rate compared to the reference radar rain 

rate. Table 1 summarizes the evaluation of 3-hour aggregated rainfall products at 0.08° and 

0.24° lat/long resolutions. With the exception of BIAS, a performance gain/loss metric is 

calculated for each index to facilitate the comparison against the reference product (MWfix). 

The gain/loss performance metric of a given product is computed as: 

 

100 %/ ×
−

=
MWfix

MWfixscenario
scenario S

SS
LossGain         (9) 

 

Whether the above performance metric is considered as gain or loss depends on whether an 

increase or decrease of the value of the metric is better or worse. As such, obtaining a 

negative performance value for RMSE is gain while it is considered a loss for the rest of the 

evaluation indices reported in Table 1. 

 

The results in Table 1 highlight several issues: First, by advecting the MW-derived 

precipitation rate (MWadv), the overall evaluation statistics with respect to the reference 

product (MWfix) are improved. The largest gain is reported for the correlation coefficient 

(~12% at 0.08o lat/long and ~11% at 0.24o lat/long). Second, REFAME results in 

significant overall improvement over both MWfix and MWadv. The improvement in COR 

(~23% gain at 0.08o lat/long and ~21% gain at 0.24o lat/long) is more remarkable than the 

rest of the evaluation indices. The improved correlation in conjunction with gain in RMSE 

(~13% at 0.08o lat/long and ~14% at 0.24o lat/long) implies that REFAME is very effective 
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for both advection and adjustment of the MW-precipitation rate along the cloud motion 

stream lines. Third, REFAME-GEOmsa results in another significant improvement over all 

other products with gains in COR (~33% at 0.08o lat/long and ~28% at 0.24o lat/long), 

RMSE (~17% at 0.08o lat/long and ~16% at 0.24o lat/long), and ETS (~13% at 0.08o 

lat/long and ~14% at 0.24o lat/long). Fourth, all of the products capture the total volume of 

precipitation quite well when compared to the reference radar precipitation estimates. One 

major shortcoming for MWfix, MWadv, and REFAME is that they rely on the previous MW 

observation of precipitation field. As such, they may fail to capture the start or end of 

precipitation events between two MW overpasses. In contrast, the GEO-based precipitation 

estimation method estimates precipitation from frequent IR images, where rapid and short-

lived changes in cloud-top temperature can be monitored, albeit indirectly.  This results in 

improved delineation of precipitation area as shown in Table 1 and will be displayed in the 

case study section. 

 

Table 2 contains the evaluation statistics of 1-hour precipitation estimates from all products 

at both 0.08o and 0.24o lat/long resolutions. The results are consistent with the 3-hour 

evaluation described in Table 1. Again, REFAME demonstrates the highest skill in advecting 

MW-derived precipitation rate forward in time with COR having been improved about 28% 

at 0.08o lat/long and 27% at 0.24o lat/long. Similarly, the weighted averaging of GEOmsa 

and REFAME scores the best across all other products and the gain in COR reaches about 

44% at 0.08o and 38% at 0.24o lat/long. Table 2 also demonstrates that both REFAME and 

REFAME-GEOmsa can lead to substantial gain even at high time (one hour) and space 

(0.08o lat/long) resolutions, which are favorable for hydrological applications. 

 



 26 

Further evaluation of the correlation coefficients associated with the products studied is 

shown in Figure 7. Figure 7a shows the correlation of the various products’ half-hourly 

precipitation estimates with hourly reference radar precipitation rates with respect to time-

distance from the most recent MW overpass computed at 0.08 o lat/long resolution. In the 

construction of Figure 7, the hourly precipitation rate observation was assumed to be 

uniformly distributed within each hour to allow the comparison with half-hourly 

precipitation rates from the various products.  This results in significant reduction in COR 

values (e.g., the calculated correlation between hourly MW-derived and reference radar 

precipitation rate is about 0.75 as opposed to 0.55 obtained here). However, in relative 

terms, Figure 7a clearly demonstrates the superior performance of REFAME and 

REFAME-GEOmsa in comparison with the reference MWfix product as well as with 

MWadv. REFAME-GEOmsa indicates that direct inclusion of GEO-based estimation is 

crucial even at small time-distances as it improves the COR significantly. Eventually, 

REFAME-GEOmsa approximates that of GEO-based-only precipitation estimation as less 

weight is assigned to REFAME (WREFAME) at larger time distances. Figure 7b shows the 

occurrence count (in log scale) of product-radar pairs used to derive the displayed 

correlations. Obviously, reduction in the counts is significant as the time gets farther from 

the most recent MW overpass. Figure 7c displays that the COR percent-gain of products 

MWadv and REFAME against the reference product (MWfix) is significant. Overall, Figure 

7 clearly demonstrates that retaining the MW-derived precipitation, until the next MW 

overpass results in significant drop in correlation coefficient. An advection-only process 

progressively improves the correlation as the time-distance from previous MW overpass gets 

larger. The adjusted-advection of the MW precipitation rate is superior to both the products 

with about 90 % gain in correlation coefficient two hours after the most recent MW. The 
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improvement continues in time and as the time distance reaches about 5 hours, the gain is 

nearly 300% (Figure 7c). 

 

The above discussion focused on statistical measures that provide summaries of overall 

performance. It is also important to examine the performance of the various products for 

individual events as identified by the best matched pairs of observation/estimates. Figure 8 

presents a comparison of COR and RMSE between 3 hourly, 0.24° precipitation estimates 

obtained from REFAME, MWfix, MWadv, and REFAME-GEOmsa and corresponding 

radar observations. Although the comparison covers the entire evaluation period over the 

full study area, 3-hour radar precipitation maps associated with the lowest 10% number of 

rain grid-boxes were excluded from the analysis to focus on extensive precipitation events. 

As seen in the first row, REFAME shows fairly high COR and low RMSE for a reasonable 

portion of the samples. When compared with MWfix and MWadv, (rows 2 and 3), 

REFAME’s  COR and RMSE values demonstrate superior performance in a majority of 

cases as indicated by the large number of points above the 1:1 line for COR, and below the 

1:1 line for RMSE. The only product with better overall performance than REFAME is 

REFAME-GOEmsa (last row). 

 

 

4.2. Case Study: Convective Precipitation Event 

In order to examine the detailed workings of REFAME, a case study was investigated that 

covered a convective precipitation event from initiation all the way to the dissipation stage. 

The event, which is explored at 0.08 degree resolution, occurred between 0415 UTC 30 July 

2006 and 1245 UTC 30 July 2006. Figure 9 shows brightness temperature (IR10.7µm) and 
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ground radar rain rate maps in addition to the various satellite rainfall products. The third 

row displays the MW-derived precipitation maps for all available MW overpasses with 

missing data shown in black.  

 

Starting at 4:15 UTC, both ground radar and GEOmsa show scattered precipitation, 

indicating the initiation stage of the convective system. No precipitation is captured by MW, 

and thus no precipitation is estimated from MWfix, MWadv , and REFAME until 8:15 UTC. 

At 8:15 and 9:15 a MW sensor passes over the convective system, which is already in its 

mature stage. Although MW and radar demonstrate major discrepancies in detecting 

precipitation area and estimating its intensity, both indicate that the convective system has 

reached to its mature state. On the other hand, the frequent observation of cloud-top Tb 

clearly shows the system’s growth as it gradually gets colder at top and the area of the cold 

region gets larger. Therefore, GEOmsa and as a result REFAME-GEOmsa fairly well 

capture the convective growth. During the dissipation stage no MW overpass is available 

until 12:45 UTC where the precipitation field has nearly faded. Meanwhile, MWfix and 

MWadv continue to show large-intense precipitation area as estimated from the most recent 

MW observation at 9:15 UTC. However, at 12:45, the large-intense precipitation field is 

abruptly replaced by a smaller low intensity precipitation field. The observed expansion in 

precipitation area in MWadv (row 6) can be attributed to the ability of the 2-D cloud 

hierarchical tracking algorithm to account for cloud divergence as discussed in Bellerby 

(2006). Guided by Tb observations, REFAME adjusts the MW precipitation intensities as 

advected along the cloud motion stream lines and demonstrates, contrary to MWFix, a fairly 

smooth transition toward the next MW-derived precipitation field at 12:45 UTC. As 

expected, the dissipation trend is also captured by both GEOmsa method and REFAME-
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GEOmsa which agrees with radar precipitation maps as well. By exploring the convective 

system two issues need to be highlighted: First, although REFAME has the ability to include 

GEO-IR-derived input features to adjust the MW precipitation intensities forward in time, it 

can not generate any precipitation if the most recent MW shows no precipitation. Second, 

REFAME-GEOmsa may ameliorate this issue if the GEO-based method captures true 

precipitation.  

 

5. Concluding Remarks  

This paper described the development of REFAME, a combined IR/MW satellite rainfall 

estimation technique incorporating real-time adjustment of the multi-sensor MW 

precipitation rates as they are advected forward in time along the GEO-IR-based cloud 

motion streamlines. In contrast to other techniques of this type, REFAME uses cloud 

classification techniques to take account of cloud properties when deriving changes in 

precipitation rate along cloud motion streamlines.  The method was developed and evaluated 

over the United States during a three month period of June-August, 2006. To facilitate the 

evaluation of REFAME, two other products were developed. In the first product MW 

precipitation rate was held constant, while in the second product cloud advection was 

accounted for without adjustment of MW precipitation estimates until the next MW 

overpass. REFAME almost consistently outperformed these two products by demonstrating 

considerable gains in evaluation statistics. In addition, an extended algorithm was proposed 

in which REFAME was combined with GEO-derived precipitation rate through assigning 

weights to each method based on time-distance from the most recent MW overpass. The 

main purpose of direct inclusion of GEO-based precipitation estimate was to capture 

precipitation events initiating and decaying during the interval between two consecutive MW 
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overpasses. Evaluation statistics indicate that the proposed alternative performs remarkably 

well for real time precipitation estimation. However, further investigation is required to 

assess the performance of the employed weighing-average procedures at various 

precipitation events. 

 

The REFAME algorithm has been designed to readily incorporate multiple input features. 

As such multi-spectral satellite information may further improve the performance of the 

algorithm (Ba and Gruber 2001; Behrangi et al., 2009a,b; Capacci and Conway 2005) by 

virtue of improving its GEO based components. While global high temporal and spatial 

monitoring of cloud-top properties in visible, water vapor and thermal IR bands are 

currently available from existing GEO satellites, finer spectral/spatial/and temporal 

resolution data is forthcoming online through the suite of recent and future geostationary 

satellites [e.g., Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the 

Meteosat Second Generation (MSG) satellite and the future Advanced Baseline Imager 

(ABI) on GOES-R]. Certainly, investigating potential improvements in GEO-derived 

precipitation estimation using multi-spectral observations will continue to be an active area 

of research.  

 

The REFAME algorithm can be also used in a forward-backward process such as that used 

in CMORPH (Joyce et al. 2004) at the expense of postponing the near real time precipitation 

estimate for few hours. The forward-backward process will definitely improve the 

performance of the algorithm since it incorporates information from the next MW overpass 

which, together with the previous MW information, provides better ability to capture the 

precipitation system’s growth and decay. In reality, even a perfect IR-based cloud tracking 
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method is unlikely to pin-point precipitation location due to the relatively faster movement 

of cloud top in comparison with the precipitation field beneath (Joyce et al. 2004). 

Investigating this issue is also another area of research that could lead to improvements in 

the presented algorithm. 

 

REFAME demonstrates the utility of cloud-type information in determining rainfall process 

variation along advection streamlines. Future work could combine such classification with 

the precipitable-water accounting of LMODEL to derive an improved cloud-modeling based 

approach. 

 

Finally, having more accurate, frequent, and consistent MW precipitation rate should directly 

improve the skill of REFAME. It is hoped that the future Global Precipitation Measurement 

(GPM) mission will be a significant step towards such estimates. The REFAME concept is 

computationally efficient and is currently under development for operational 

implementation. The operational product will be compared with the existing 

products in a future work and hopefully over the validation sites hosted by 

International Precipitation Working Group (IPWG). Ebert E.E., J.E. Janowiak, C. 

Kidd, 2007: Comparison of near real time precipitation estimates from satellite 

observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47-64. 

 

 

 

Acknowledgments: Partial financial support is made available from NASA Earth and Space 

Science Fellowship (NESSF award NNX08AU78H), NASA-PMM (Grant NNG04GC74G), 



 32 

NOAA/NESDIS GOES-R Program Office (GPO) via the GOES-R Algorithm Working 

Group (AWG), NSF STC for Sustainability of Semi-Arid Hydrology and Riparian Areas 

(SAHRA; Grant EAR-9876800), and NASA NEWS (Grant NNX06AF934) programs. The 

authors thank Mr. Dan Braithwaite for his technical assistance on processing the 

satellite/radar data for this experiment. 

 

APPENDIX A: Definition of the evaluation statistics used in this study: 

 

a) The Equitable treat score (ETS) is used to evaluate the performance of the methods in 

delineating the areal extent of rainfall. ETS is calculated from the binary-based contingency 

table that classifies the prediction outcome into the following four possibilities based on 

observation of rain/no rain occurrences: 

Hits (H): number of pixels correctly classified as rainfall, 

Misses (M): number of pixels incorrectly classified as no rainfall, 

False alarms (F): number of pixels incorrectly classified as rainfall, 

Correct negatives (Z): number of pixels correctly classified as no rainfall. 

 

ETS is computed as following: 

ETS = (H-hitsrandom)/(H+M+F- hitsrandom) 

Where, 

hitsrandom = [(H+M)(H+F)]/(H+M+F+Z) 
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b) Quantitative statistics are computed using observed (RRobs) and estimated (RRest) rain 

rates, and the total number of observed and estimated rain pairs (N). 

 

 Correlation coefficient (CORR) = 
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Figure captions  

Figure 1. Stages of the 2D cloud-advection matching algorithm (Source: Bellerby et al. 2009, 

Permission required from the publisher). (a) Correlation matching using a rectangular sliding 

window. (b) Mesh replacement using matching results. (c) Mesh interpolation. (d) 

Correlation matching accounting for local image distortion. (e) Mesh replacement using 

matching results. (f) Mesh interpolation. 

 

Figure 2. Description of the GEO-IR-derived features used for classification of IR grid-

boxes. 

 

Figure 3.  Relation between Tb, ∆Tb (from GEO-IR) and mean precipitation rate (from 

ground radar) for three months of June (solid line), July (dark solid line) and August (dashed 

line) of 2006 over the conterminous United States. a) Relation between Tb and mean 

precipitation rate, b) Relation Between ∆Tb and mean precipitation rate, C) Number of 

precipitation samples in each Tb bin (with the size of 2 units) to derive the displayed 

relationships in panel “a”, d) Number of precipitation samples in each ∆Tb bin (with the size 

of 2 units) to derive the displayed relationships in panel “b” 

 

Figure 4. Scatter plot of the mean precipitation rate (MPR) versus cluster average brightness 

temperature for all 400 clusters used in this study. Note that the location of the cluster 

centers are obtained via k-means classification using all four input-features listed in Figure 1.  

 

Figure 5. Schematic demonstration of the procedure used in REFAME to modify the 

intensity of MW-derived precipitation as it is advected along cloud motion streamline. Note 
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that REFAME uses a combination of features listed in Figure 1 and is not limited to Tb-only 

information for each grid-box.  

 

Figure 6. Analysis using ground radar precipitating rate during calibration period to identify 

combination weights to combine REFAME and GEOmsa. a) Correlation Coefficient (COR) 

of REFAME, MWfix and GEOmsa with respect to time distance from the most recent MW 

overpass, b) Correlation-based combination weights (WCOR) for REFAME and GEOmsa, c) 

Root mean square error (RMSE) of REFAME, MWfix and GEOmsa with respect to time 

distance from the most recent MW overpass, d) RMSE-based combination weights (WRMSE) 

for REFAME and GEOmsa, e) number of samples collected during the calibration period to 

derive the statistics with respect to time distance from the most recent MW overpass, f) 

Cumulative distribution function of the sample counts with respect to time distance from 

the most recent MW overpass. 

 

Figure 7. Analyzing the correlation coefficient of the developed products with respect to 

time-distance from the most recent MW overpass. In this figure the evaluation dataset is 

used (16 July-August 2006).  Hourly ground radar precipitation rate is assumed uniform in 

time to serve as a reference for comparing the half-hourly precipitation rates derived from 

different products. a) Correlation coefficient, b) number of available samples at each time-

distance to derive the correlation coefficients reported in panel a, c) correlation gain for 

MWadv and REFAME calculated from Eq. 9.  

 

Figure 8. Three-hour 0.24-degree lat/long statistics over the full area of the study. The first 

row displays the COR (left side) and RMSE (right side) of REFAME. The remaining rows 
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demonstrate scatter plots of COR (left side) and RMSE (right side) for REFAME and 

MWfix (second row), MW adv (third row), and REFAME–GEOmsa (fourth row). 

 

Figure 9. Exploration of a convective precipitins system from initiation to dissipation at 0.08 

degree resolution between 0415 UTC 30 July 2006 and 1245 UTC 30 July 2006. a) 

Brightness temperature, b) Ground radar precipitation rate, c) MW–derived precipitation 

rate.  Panels d-h display performances of GEOmsa, MWfix, MWadv, REFAME, and 

REFAME-GEOmsa respectively. The blacked-out in the third row indicate regions where 

no MW data were recorded.  
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Table captions 

 

Table 1. Overall 3-hour evaluation statistics during the evaluation period.  

 

 

Table 2. Overall 1-hour evaluation statistics during the evaluation period.  
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Figure 1. Stages of the 2D cloud-advection matching algorithm (Source: Bellerby et al. 
2009, Permission required from the publisher). (a) Correlation matching using a 
rectangular sliding window. (b) Mesh replacement using matching results. (c) Mesh 
interpolation. (d) Correlation matching accounting for local image distortion. (e) Mesh 
replacement using matching results. (f) Mesh interpolation. 
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Figure 2. Description of the GEO-IR-derived features used for classification of IR grid-

boxes. 
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Figure 3.  Relation between Tb, ∆Tb (from GEO-IR) and mean precipitation rate (from 

ground radar) for three months of June (solid line), July (dark solid line) and August (dashed 

line) of 2006 over the conterminous United States. a) Relation between Tb and mean 

precipitation rate, b) Relation Between ∆Tb and mean precipitation rate, C) Number of 

precipitation samples in each Tb bin (with the size of 2 units) to derive the displayed 

relationships in panel “a”, d) Number of precipitation samples in each ∆Tb bin (with the size 

of 2 units) to derive the displayed relationships in panel “b” 
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Figure 4. Scatter plot of the mean precipitation rate (MPR) versus cluster average brightness 

temperature for all 400 clusters used in this study. Note that the location of the cluster 

centers are obtained via k-means classification using all four input-features listed in Figure 1.  
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Figure 5. Schematic demonstration of the procedure used in REFAME to modify the 

intensity of MW-derived precipitation as it advected along cloud motion streamline. Note 

that REFAME uses a combination of features listed in Figure 1 and is not limited to Tb-only 

information for each grid-box.  
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Figure 6. Analysis using ground radar precipitating rate during calibration period to identify 

combination weights to combine REFAME and GEOmsa. a) Correlation Coefficient (COR) 

of REFAME, MWfix and GEOmsa with respect to time distance from the most recent MW 

overpass, b) Correlation-based combination weights (WCOR) for REFAME and GEOmsa, c) 

Root mean square error (RMSE) of REFAME, MWfix and GEOmsa with respect to time 

distance from the most recent MW overpass, d) RMSE-based combination weights (WRMSE) 

for REFAME and GEOmsa, e) number of samples collected during the calibration period to 

derive the statistics with respect to time distance from the most recent MW overpass, f) 

Cumulative distribution function of the sample counts with respect to time distance from 

the most recent MW overpass. 
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Figure 7. Analyzing the correlation coefficient of the developed products with respect to 

time-distance from the most recent MW overpass. In this figure the evaluation dataset is 

used (16 July-August 2006).  Hourly ground radar precipitation rate is assumed uniform in 

time to serve as a reference for comparing the half-hourly precipitation rates derived from 

different products. a) Correlation coefficient, b) number of available samples at each time-

distance to derive the correlation coefficients reported in panel a, c) correlation gain for 

MWadv and REFAME calculated from Eq. 9.  
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Figure 8. Three-hour 0.24-degree lat/long statistics over the full area of the study. The first 

row displays the COR (left side) and RMSE (right side) of REFAME. The remaining rows 

demonstrate scatter plots of COR (left side) and RMSE (right side) for REFAME and 

MWfix (second row), MW adv (third row), and REFAME–GEOmsa (fourth row). 

 



 52 

Figure 9. Exploration of a convective precipitins system from initiation to dissipation at 0.08 degree resolution between 0415 UTC 30 July 
2006 and 1245 UTC 30 July 2006. a) Brightness temperature, b) Ground radar precipitation rate, c) MW–derived precipitation rate.  Panels 
d-h display performances of GEOmsa, MWfix, MWadv, REFAME, and REFAME-GEOmsa respectively. The black panels in the third 
row indicate that no MW overpass is obtained.  
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Table 1. Overall 3-hour evaluation statistics during the evaluation period.  

 

 Products 

ETS ETS    

gain (%) 

COR COR  

gain (%) 

RMSE 

mm/hr 

RMSE 

gain (%) 

BIAS 

0.
08

o  L
at

/L
on

g 

MWfix 0.345 0.00 0.459 0.00 0.908 0.00 -0.059 

MWadv 0.353 2.17 0.514 12.14 0.855 -5.82 0.022 

REFAME 0.361 4.37 0.562 22.59 0.789 -13.08 -0.003 

GEOmsa 0.333 -3.71 0.516 12.45 0.950 4.63 0.033 

REFAME-GEOmsa 0.389 12.51 0.612 33.36 0.749 -17.44 0.006 

         

         

0.
24

o  L
at

/L
on

g 

MWfix 0.343 0.00 0.527 0.00 0.675 0.00 -0.079 

MWadv 0.350 1.95 0.585 11.06 0.609 -9.85 0.002 

REFAME 0.359 4.43 0.637 20.81 0.578 -14.42 -0.023 

GEOmsa 0.329 -4.17 0.564 7.08 0.835 23.60 0.013 

REFAME-GEOmsa 0.391 13.95 0.676 28.29 0.565 -16.30 -0.014 
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Table 2. Overall 1-hour evaluation statistics during the evaluation period.  

 

 Products 

ETS ETS    

gain (%) 

COR COR  gain 

(%) 

RMSE 

mm/hr 

RMSE gain 

(%) 

BIAS 

0.
08

o  L
at

/L
on

g 

MWfix 0.289 0.00 0.334 0.00 1.215 0.00 -0.052 

MWadv 0.295 2.29 0.384 14.90 1.184 -2.54 0.018 

REFAME 0.307 6.30 0.427 27.61 1.128 -7.15 -0.005 

GEOmsa 0.281 -2.63 0.394 17.80 1.220 0.39 0.023 

REFAME-GEOmsa 0.335 15.93 0.483 44.48 1.051 -13.48 0.002 

         

         

0.
24

o  L
at

/L
on

g 

MWfix 0.309 0.00 0.421 0.00 0.943 0.00 -0.072 

MWadv 0.321 3.75 0.483 14.91 0.893 -5.30 -0.002 

REFAME 0.334 8.12 0.533 26.78 0.850 -9.79 -0.025 

GEOmsa 0.292 -5.50 0.472 12.29 0.997 5.80 0.003 

REFAME-GEOmsa 0.365 17.91 0.581 38.10 0.809 -14.19 -0.019 
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