Constellation Commodities Studies Summary

Presented to:
Ground Hydrogen Symposium

By:
Eric Dirschka, Hydrogen Program Engineer
NASA Propellants Management

February 25, 2011
KSC Space Life Sciences Laboratory
Constellation Program

♦ (was) NASA's long-term program for space exploration
♦ Heavy-lift Ares V rocket was planned to have LH2 tanks about 2x the volume of the Shuttle.
 ➢ LH2 losses during loading and scrub would likewise increase
 ➢ Requirement to support 5 launch attempts in 5 days
 ▪ 5x loading and scrub losses

Simply increasing the capacities of legacy methods will magnify inefficiencies/losses to gross levels
CxP Studies

♦ Goal
 ➢ Solicit industry expertise in production, storage, and transportation required for future use
 ➢ Improve efficiency and life cycle cost over legacy methods

♦ Objectives
 ➢ Consolidate KSC, CCAFS and other requirements
 ➢ Extract available industry expertise
 ➢ Identify commercial opportunities
 ➢ Synergy with State of Florida partnerships
What We Already Knew

◆ Improve the System

➢ Priority:
 ▪ Reduce Losses
 ▪ Losses that cannot be eliminated; capture and reuse
 ▪ Improve efficiency of Supply
 ▪ Improve Storage

➢ Interdependence of Parameters
 ▪ Example;
 for a given launch campaign; reduced vehicle loading losses reduces the required pad storage and required supply, which results in reduced storage and delivery losses
Results (what industry told us)

♦ Challenging requirements
 ➢ Launch campaigns and associated losses cause a large difference between high short-term demand versus long-term average
 ➢ Direct opposition to steady-state 24/7 production
 ➢ Large cryogenic storage tanks required to handle short-term requirements
 ➢ Access restrictions and narrow delivery time windows

♦ Constructing on-site industry standard production plants, storage tanks and purchasing standard distribution equipment could save money over long-term.

♦ No cost cutting or efficiency improving technologies were identified or proposed.

♦ Several supply architectures compared; no clear winner
Results (cont’d)

♦ Lessons learned
 ➢ “Tight lipped” industrial gas companies
 ▪ Little information on make-or-buy decision
 ▪ Withhold details as proprietary until bidding on a funded project
 ➢ Industry logistics optimized for typical customers, not space launch customers
 ▪ No new technologies revealed
 ➢ Future requirements too uncertain

♦ “Game changing” concept
 ➢ Polygeneration by a Public Utility Authority
 ➢ Utility would produce and deliver LH2, LN2, LO2, and electrical power