Enhancing Team Performance for Long-Duration Space Missions

Judith Orasanu, NASA Ames Research Center

ESA Technical Team Meeting on Human Performance in Space Operations

Paris, November 19-20, 2009
NASA BHP Team Risk

- **Risk of team performance decrements due to inadequate**
 - Cooperation
 - Coordination
 - Communication
 - Psychosocial Adaptation

- **Potential issues in space**
 - System failures in habitat
 - EVA gear
 - Health of crew: illness, injuries
 - Space threats
 - Psychosocial conflicts/tensions

High-Risk Environments
Preface - Historical Research Shifts

Naturalistic Decision Making
(not analytic, lab based)

Teams
(subset of groups)

\[\text{KNOWLEDGE} \]
\[\text{PROCESS} \]
\[\text{TEAM PERFORMANCE} \]
Efficiency
Accuracy

Overview

I. Features of Effective Team Cognition
- Shared Mental Models
- Collaborative Decision Making
 - NDM
 - Risk Assessment
 - Metacognitive Strategies
 - Communication
- Teamwork
 - Social processes
 - Cohesion

II. Challenges to Effective Team Cognition
- Limits of expertise
- Individual stress effects
- Sleep deprivation
- Interpersonal stresses
- Diversity factors

III. Supporting Effective Team Cognition
- Training
- Support tools
I. Features of Effective Team Cognition

Some definitions

• Teams: Two or more individuals with specified roles interacting adaptively, interdependently, and dynamically toward a common and valued goal. (Dyer, 1984; Salas, et al., 1992)

• Coordination
 – Tasks are largely procedural, with specific subtasks assigned to different members of the team. Often scripted contributions

• Collaboration
 – Tasks are non-procedural. Contributions to joint problem solving, decision making or task completion involve unscripted contributions

• Cooperation
 – Team orientation, motivation to work together as a team

I. Features of Effective Team Cognition

Shared Mental Models

• Mental Models
 – Understand, explain, predict
 – Models for
 • System
 • Tasks
 • Procedures - including roles & responsibilities
 • Teamwork - interaction and coordination processes
 • Individual team members
I. Features of Effective Team Cognition

Shared Mental Models

- How much overlap? Original view

Goal = Maximize overlap

New View of “Shared” Knowledge

Shared = Common + Complementary

+ Shared GOALS
I. Features of Effective Team Cognition

Collaborative Decision Making

- **Needed to cope with unexpected events**
 - E.g., UA 232, Apollo-13

- **Difficult events**
 - Ambiguous cues
 - Dynamic conditions --> shifting goals
 - Uncertain outcomes
 - High workload
 - Time pressure

I. Features of Effective Team Cognition

Collaborative Decision Making - NDM

- **Two major components**
 - Assess the situation
 - Choose a course of action

- **Recognition-Primed Decisions (RPD)**
 - Knowledge-based
 - Good under time pressure
 - Serial vs. concurrent comparison of options
 - (Klein, 1989, 1993)
I. Features of Effective Team Cognition

Collaborative Decision Making - Aero DM

CUES

What's the problem?
How much time is available?
How risky (present and future)?

Time Limited:
Risk High:
Problem Understood OR NOT Understood
Rule Available
Multiple Options Available
Apply Rule

Time Available:
Risk Variable:
Problem Understood
Multiple Options Available
Multiple Tasks To Do
Choose Option
Schedule
Create Solution
Gather more Information

Risk Assessment

- Implicit process - but evident in data
 - Monitoring - challenging study
 - MIT-LL study: pilots diverting around thunderstorms

- Make explicit: low-fidelity sim study

Captain: “Smell the rain. Smell it?”
First officer: “Yup. Got lightning in it too.”

“Managers pursue risky actions because they fail to perceive accurately the risks involved.”

(Rhoda & Pawlak, 1999)
Risk perception drives action

Half Empty
Focus = negative:
Weather approaching
Windshear likely
Avoid risk ->
CHANGE plan
Action: Delay departure until weather improves

Half Full
Focus = positive:
Windshear diminishing
Accept mitigated risk-> CONTINUE with plan
Action: Review takeoff windshear procedures,
Adjust T/O configuration

How Do Pilots Manage Risks?

All decisions aimed at PREVENTING LOSS while achieving GOALS

- **AVOID safety risk**
 - Delay takeoff or divert

- **MITIGATE safety risk**
 - Request priority handling to avoid fuel critical situation

- **Prepare for worst case**
 - Take precautions (e.g., review windshear procedures)
I. Features of Effective Team Cognition

Collaborative DM - Metacognitive Processes

• Awareness of demands of situation + crew resources available to meet them

• Core of ADAPTIVE processes
 – Critical to
 • High workload situations
 • Unfamiliar situations
 • Ambiguous cues/incomplete information
 • Uncertain outcomes

• C.f. Cohen, Freeman & Wolf (1996)
 – Recognitional/Metacognitive training - Mil C2

Collaborative DM - Communication Processes

• Taskwork
 – Share information - explicit (build shared sit model)
 – Closed loop
 – Efficient: Grice’s maxims

• Teamwork
 – Briefings
 • CDR’s intent, strategies, plans, contingencies
 • Involve all crewmembers
 – Error correction (Monitoring/challenging)
 • Maintain positive crew climate - fix problem
 – Relational communication
 • Important to cohesion
 – INDIRECT techniques to assess
 • C.f. EXEMSI (Cazes, Rosnet, Bachelard, Le Scanff, Rivolier (1996))
I. Features of Effective Team Cognition

Collaborative DM - Communication Processes

United Team (328)

Tending to Polarize Team

II. Threats to Effective Team Cognition

- Evidence of poor team cognition?
 - Limits of Expertise (Dismukes, Berman & Loukopoulos, 2008)
 - Unfamiliar problems
 - Difficult situations: competing goals, no good options
 - PCE - Why?
 - Fail to update models
 - Poor team process
 - Monitoring-Challenging

Table 2. Distribution of Error Types Across Original and Present Datasets

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Cont. Errors</td>
<td>24.1</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Non-Plan Cont. Errors</td>
<td>16.8</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>Aircraft handling - AH</td>
<td>15.2</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Situational awareness - SA*</td>
<td>5.9</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Systems operation - SO</td>
<td>4.6</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Communication - CO</td>
<td>4.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Resource management - RM*</td>
<td>3.6</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>Navigation - NV</td>
<td>1.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Monitoring & challenging</td>
<td>22.8</td>
<td>16.5</td>
<td></td>
</tr>
</tbody>
</table>

* x < 0.025
II. Threats to Effective Team Cognition

- **Inherent in Distributed Teams**
 - Alternative perspectives
 - Differences in goals, risk perception, expertise
 - Pilots - ATC
 - Risk perception and action
 - Breakdowns (Bearman et al., 2005; in press)
 - Informational, Operational, Cognitive

- **Individual stressors**
 - Loss of cognitive resource
 - Focus shifts to own highest priority - Lose team orientation
 - Driskell & Salas
 - **Sleep deprivation**
 - Indirect cognitive effects rel to DM
 - Information updating failures
 - Underweight new information
 - Rigidity - loss of cognitive flexiblity
 - Degrades mood
 - Affects communication
 - Less task-relevant information transferred
 - Less discussion of strategies
 - Comprehension degrades
 - Simplified vocabulary - pronominalization
 - “How’s IT coming along up there?”
II. Threats to Effective Team Cognition

- **Interpersonal stress - conflict**
 - Failures to monitor each other, back up, correct errors
 - Reduced information sharing
 - Withdraw social / emotional support
 - Lose team orientation

- **Social pressures**
 - Status, face
 - B-747 study
 - USS Greeneville sinks Ehe

- **Diversity pressures**
 - SFINCSS
 - Mt. Everest

III. Supporting Effective Team Collaboration

- **Training**
 - Turn a TEAM of EXPERTS into an EXPERT TEAM
 - Self-managing, adaptive, flexible
 - Integrate TEAMWORK training w/ TECHNICAL
 - TEM = Threat and Error Management
 - Updated CRM
 - Validated Approaches
 - TACT (Team Adaptation and Coordination Training)
 - TDT (Team Dimensional Training)
 - Cross-Training
 - Interpersonal Training
 - Team Development (cohesion)
 - Multicultural
 - Meta-analysis of training approaches: Salas, DiazGranados, Klein, Burke, Stagl, Goodwin, & Halpin (2008)
 - Pos effects on team cognition, affect, process and performance
III. Supporting Effective Team Collaboration

TACT, TDT

- **TACT** *(Serfaty, Entin, & Johnson, 1998)*
 - Adjust coordination and communication strategies to maintain successful task performance under high WL and time pressure
 - Grounded in
 - Shared situation models
 - Team metacognition
 - Mutual team models of interacting team members’ tasks and abilities, including stress and WL
 - Generate shared expectations for how situation will evolve
 - Reduce communication overhead
 - Implicit coordination
 - Anticipation ratio of information sharing/requested info

- **TDT** *(Smith-Jentsch, Zeisig, Acton & McPherson, 1998)*
 - Similar to TACT but --
 - **Team self-diagnosis, correction and debriefing skills**
 - **Four dimensions**
 - Information exchange
 - Communication
 - Backup (supporting behaviors)
 - Initiative/leadership
 - **Validation study**
 - More accurate teamwork MM
 - More effective outcomes
III. Supporting Effective Team Collaboration

Cross-Training

- **Important for LD space missions**
 - Limited number of crew
 - Cover if one member is disabled
- **Rotate positions in training**
 - Taskwork vs. teamwork training
- **Most critical when**
 - High team WL
 - Tasks must be reallocated
 - Contributes to implicit coordination
 (Cannon-Bowers, Salas, Blickensderfer & Bowers, 1998)
- **Measuring Team Knowledge**
 - Teamwork training develops best in context of Taskwork training
 - Full cross-training better than conceptual cross-training

III. Supporting Effective Team Collaboration

Interpersonal Skills, Team Building

- **Fosters cohesion**
 - Working with others
 - Leadership
 - Positive communication
 - Conflict management
- **Evaluation - business environments**
 - Meta-analysis: IST had greatest benefits to productivity, cohesion, morale, job satisfaction
- **BUT other meta-analysis**
 - Team development/affect = most difficult to impact
 - Compared IST w/other training approaches: TACT etc.
 - Do NOT have good understanding of how to develop cohesion
 - Hint: Transformational Leadership is key
Team Effectiveness Framework

III. Supporting Effective Team Collaboration

Technology Supports

- **Distributed teams**
 - Locally distributed (within space crews)
 - Crew - ground (no time lag)
 - Crew - ground (time lag)

- **Face-to-face vs. Video vs. Audio**
 - Maintain team SA and collaboration
 - Face to Face (F2F)
 - Understand others’ actions, intentions
 - Computer-mediated = F2F for idea-generation
 - Lack of F2F
 - Difficulty in establishing conventions
 - Neg impact on performance on complex tasks / judgments
 - Video
 - Facilitates problem solving vs. email
 - Audio, Email
 - OK when no time restrictions
 - OK when onboard info is adequate
III. Supporting Effective Team Collaboration

Technology Supports

• **Asynchronous collaboration**
 (Krauss & Bricker, 1966; Kraut, Fussell, Brennan & Siegel, 2002)
 – Time lags in Mars communication
 – Even small delays affect establishment of common ground
 – Requires more explicit message formulation
 – Reduces efficiency, especially w/complex problem

• **Autonomous crew performance**
 – Requires onboard information systems
 • Easily searchable data architectures
 • Access to relevant systems data
 • Simplified procedures
 • Support medical care
 – On-board countermeasures
 • Psychosocial support
 • Conflict management

Graphical representation of high-level relationship between the ‘Big Five’ and coordination mechanisms

Salas, Sims, & Burke, 2006
Questions?

- I look forward to your input
- Judith.Orasanu@nasa.gov

We all THANK YOU!

Happy campers
Distributed Problem Solving in Aviation

- Flight crews
 - Naturalistic DM
 - Shared mental models
 - Error detection & correction
- ATC
- Airline Ops Centers
 - Risk perception/DM
 - Conflict resolution