
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

New Results in Software Model Checking and Analysis

Corina S. Păsăreanu

Carnegie Mellon University/NASA Ames Research Center,
Moffett Field, CA 94035, USA,
e-mail: corina.s.pasareanu@nasa.gov

The date of receipt and acceptance will be inserted by the editor

Modern software, which often involves complex con-
current computations and operates in an uncertain envi-
ronment, must be highly reliable and secure. Commonly
used techniques for addressing the reliability and safety
of modern software systems include model checking and
testing. Testing is widely used but it usually involves
manual effort and it is ill-suited for finding concurrency
errors. Model checking [3], on the other hand, has shown
great promise in finding subtle program errors in a com-
pletely automated way.

Given a (model of a) system and a property, model
checking systematically enumerates, explicitly or sym-
bolically, all the (reachable) system configurations and
it checks if they conform with the property. The result of
model checking is either “true”, if the property holds, or
“false” if the property does not hold; in the latter case
the model checking procedure also provides a detailed
counter-example trace that leads to the property viola-
tion. Properties of interest include absence of deadlocks
and data races in concurrent programs, or more general
assertions and temporal logic formulae. Such formulae
encode the expected behavior of the system in terms of
safety and liveness, as well as timed, probabilistic or se-
curity properties.

To ensure that the model checking terminates, some
form of abstraction is usually necessary to reduce the
large search space for the original system into a smaller
one that is more amenable for verification. Alternately,
model checking can be used as an effective bug-finding
technique, and the detailed counter-example traces pro-
vided can help debugging the discovered errors. The
number of possible system configurations that needs to
be explored is very large for most realistic practical ap-
plications. Consequently there has been continuous effort
spent over the years to address this scalability problem.

The articles enclosed here describe new model check-
ing techniques, supported by robust and scalable tools,
for the automated analysis of modern software systems.

The articles have been carefully reviewed and they are
based on papers that were considered to be among the
best at the SPIN 2009 model checking workshop [11].
The topics addressed range from probabilistic model
checking and parallelization techniques for improved
scalability to data race detection, symbolic analysis and
model checking for security.

The first article [5], presents an effective technique
for computing the probability of reaching a given set
of states in a parametric Markov model. Such models
can be used to reason about quantitative properties in
systems where certain aspects are not fixed, but rather
depend on parameters. Previous work [4] has suggested
to convert the Markov chain into a finite automaton,
equivalent to a regular expression. The expression can
be evaluated to a closed form function representing the
reachability probability. The bottleneck of the approach
lies in the growth of the regular expression with the num-
ber of states. The authors propose to remedy the prob-
lem by intertwining the regular expression computation
with its evaluation. This results into a practical method
that has been implemented in the PARAM tool and has
been demonstrated experimentally on network protocols.

The second article [2] is also concerned with prob-
abilistic reasoning, in the context of the PRISM model
checking tool [9], where the satisfaction of desired prop-
erties is quantified with some probability. The au-
thors propose algorithms for parallel probabilistic model
checking using general purpose graphic processing units.
The proposed improvements target the numerical com-
putations of the traditional sequential algorithms since
these computations can be parallelized efficiently on
graphic processors. The parallel algorithms have been
implemented in the PRISM model checker and have
been evaluated on several case studies, showing signif-
icant speed-up.

The third article [8] addresses the problem of verify-
ing data consistency in concurrent Java programs. The



2 Corina S. Păsăreanu: New Results in Software Model Checking and Analysis

work targets data races caused by inconsistent accesses
to multiple fields of an object – the so-called atomic-set
serializability problem. Previous work used abstraction
techniques to translate a concurrent Java program into
an EML program, a modeling language based on push-
down systems and a finite set of re-entrant locks, and
used only a semi-decision procedure to check the pro-
gram. The present article extends that work by describ-
ing a full decision procedure for verifying data consis-
tency, i.e., atomic-set serializability, of an EML program.
The procedure has been implemented and it has been ap-
plied to detect both single-location and multi-location
data races in models of concurrent Java programs.

The fourth article [10] presents a generic technique
for creating the basic primitives used in symbolic pro-
gram analysis: forward symbolic evaluation, weakest lib-
eral precondition, and symbolic composition. Using this
technique, one can automatically generate an implemen-
tation of a (forward or backward) symbolic program exe-
cution at the cost of writing only the specification of the
concrete program semantics – in the form of an inter-
preter for the language of interest. The technique can be
used for programming languages with pointers and arith-
metic operations. The technique has been implemented
and it has been used to generate symbolic-analysis prim-
itives for the x86 and PowerPC instruction sets. The
symbolic analysis generated with the generic technique
presented here can be used in software model checking
tools such as SLAM [1] and Blast [6], as well as in other
automated bug-finding tools that rely on symbolic rea-
soning [14, 15]

Finally, the fifth article [13] presents an application of
the SPIN model checker [7] to checking signature spec-
ifications. Signatures are matching rules that are used
in intrusion detection systems when searching for attack
traces in the recorded audit data based on pre-defined
patterns. Intrusion detection systems are one of the most
important means to protect information technology sys-
tems [12]. The effectiveness of an intrusion detection sys-
tem depends on the adequacy of the signatures, which
are usually defined empirically. Modeling a new signa-
ture is time-consuming and error-prone; consequently
the modeled signature needs to be tested carefully. In
this article, the authors present an approach to automat-
ically checking signature specifications using the SPIN
model checker. The signatures are modeled in the speci-
fication language EDL (a variant of Petri-nets) and then
translated into PROMELA, the input language of the
SPIN model checking tool. SPIN is used to find specifi-
cation errors, which are modeled using linear temporal
logic.

In conclusion, the articles enclosed here describe new
results in software model checking and analysis. The pre-
sented techniques are most useful at finding subtle and
costly errors that can not be found with traditional test-
ing alone. The techniques have been implemented in ro-

bust tools and therefore show good promise for adoption
in industry.

References

1. Thomas Ball, Rupak Majumdar, Todd Millstein, and
S. Rajamani. Automatic predicate abstraction of C
programs. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation (PLDI
2001), Snowbird, Utah, June 2001.

2. Dragan Bosnacki, Stefan Edelkamp, Damian Sulewski,
and Anton Wijs. Parallel probabilistic model checking
on general purpose graphics processors. International
Journal on Software Tools for Technology Transfer, this
volume.

3. Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. The MIT Press, 2000.

4. Conrado Daws. Symbolic and parametric model checking
of discrete-time markov chains. In Proc. ICTAC, pages
280–294, 2004.

5. Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang.
Probabilistic reachability for parametric markov models.
International Journal on Software Tools for Technology
Transfer, this volume.

6. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,
and Gregoire Sutre. Lazy abstraction. In Proceedings of
the 29th Annual Symposium on Principles of Program-
ming Languages (POPL), 2002.

7. Gerard J. Holzmann. The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley, 2003.

8. Nicholas Kidd, Thomas Reps, Tayssir Touili, and Peter
Lammich. A decision procedure for detecting atomic-
ity violations for communicating processes with locks.
International Journal on Software Tools for Technology
Transfer, this volume.

9. Marta Kwiatkowska, Gethin Norman, and David Parker.
Prism: Probabilistic model checking for performance and
reliability analysis. ACM SIGMETRICS Performance
Evaluation Review, 36(4):40–45, March 2009.

10. Junghee Lim, Akash Lal, and Thomas Reps. Sym-
bolic analysis via semantic reinterpretation. Interna-
tional Journal on Software Tools for Technology Trans-
fer, this volume.

11. Corina S. Păsăreanu, editor. Model Checking Software,
16th International SPIN Workshop, Grenoble, France,
June 26-28, 2009. Proceedings, volume 5578 of Lecture
Notes in Computer Science. Springer, 2009.

12. Karen Scarfone and Peter Mell. Guide to intrusion de-
tection and prevention systems (IDPS). Computer Se-
curity Resource Center (National Institute of Standards
and Technology) (800-94), 2007.

13. Sebastian Schmerl, Michael Vogel, and Hartmut Konig.
Using model checking to identify errors in intrusion de-
tection signatures. International Journal on Software
Tools for Technology Transfer, this volume.

14. Koushik Sen, Darko Marinov, and Gul Agha. CUTE:
A concolic unit testing engine for C. In Proceedings of
ESEC/FSE’05, 2005.

15. Yichen Xie, Andy Chou, and Dawson Engler. ARCHER:
Using symbolic, path-sensitive analysis to detect memory
access errors. In Proceedings of ESEC/FSE’03, 2003.


