Novel Analog For Muscle Deconditioning

Lori Ploutz-Snyder1,5, Jeff Ryder, 1,5 Roxanne Buxton2,5, Elizabeth Redd2,5, Melissa Scott-Pandrof3,5, Kyle Hackney4,5, James Fiedler1,6, Robert Ploutz-Snyder1,6, Jacob Bloomberg7

1. Universities Space Research Association, Houston, TX, 2. University of Houston, Houston, TX, 3. Wyle Integrated Science and Engineering Group, Houston, TX, 4. Syracuse University, Syracuse, NY, 5. NASA Johnson Space Center Exercise Physiology and Countermeasures Laboratory, Houston, TX, 6. NASA Johnson Space Center Biostatistics Laboratory, Houston, TX, 7. NASA Johnson Space Center Neuroscience Laboratory, Houston, TX

ABSTRACT

Existing models (such as bed rest) of muscle deconditioning are cumbersome and expensive. We propose a new model utilizing a weighted suit to manipulate strength, power, or endurance function relative to body weight (BW).

Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre- and postflight astronaut performance data for the same tasks. Spline regression was used to identify muscle function thresholds below which task performance was impaired.

Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 79 J/kg, isokinetic knee extension (KE)/BW of 6 Nm/kg, and KE torque/BW of 1.9 Nm/kg.

Conclusions: Laboratory manipulation of relative strength has promise as an appropriate analog for spaceflight-induced loss of muscle function, for predicting occupational task performance and establishing operationally relevant strength thresholds.

INTRODUCTION AND PURPOSE

• Lower body muscle strength and power is related to performance of ambulatory tasks of daily living in older adults (1-4).
• Minimal strength / power requirements to perform ambulatory activities of daily living are related to body mass (4).
• Greater body mass requires more strength / power
• Develop and validate a methodology for evaluation leg strength / power requirements of occupational astronaut tasks.

METHODS

• Subjects were tested for leg press (LP) maximal isometric force (MIF), power and work (21 reps at 40% MIF) as well as knee extension MIF and isokinetic peak torque at 60 deg/sec.

• Subjects performed a series of occupational tasks including seated egress & walk, ladder climb, rock translation, hatch opening, recover y from fall, and construction board.

• Tasks were performed wearing a weighted garment loaded with 0, 20, 40, 60, 80, 100 or 120% of body weight distributed over the body according to limb weight segments to minimize changes in the center of gravity.

RESULTS

Weighted suit used to manipulate strength or power/body weight ratio

Spline (red line) and fractional polynomial models, with 95% confidence intervals (black curve with gray shading) predicting time to completion from the seat egress and walk task from leg press power/body weight ratio. Models were estimated from weighted suit experimental subjects (open circles), with the spline model extended throughout the range of astronaut pre-flight (open triangles) and post-flight observations (filled triangles).

STATISTICAL MODELING

Spline Regression

• Extension of OLS regression that estimates the relationship between outcome and predictor as a piecewise linear function composed of two or more linear segments.
• Used to model a single-knot/two-slope linear association between all strength/body weight predictors and the time to completion for each task.
• Modeled a two-slope association, where the intersection of the two segments (knot) represents the threshold where the association between strength/body and performance changes. Separate models were estimated varying the knot location by percentile increments throughout the range of X including a no-spline (linear) model. The model of best-fit was chosen based on the highest multiple R2 coefficient of determination.

Fractional Polynomial Regression

• Generalization of polynomial regression that allows fractional powers and/or powers of the natural log of X in the estimation of a curvilinear relationship.
• Used to estimate the full curvilinear association between individual strength/body weight predictors and time to completion.
• Consistent with our threshold-hypothesis we restricted our models to include, at most, three terms including the Y-intercept.

REFERENCES