Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO$_2$) and ytterbium silicate, HfO$_2$-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO$_2$) and/or HfO$_2$-silicon composite bond coats, along with ZrO$_2$, HfO$_2$ and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.
Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

Samantha Benkel *1, 2 and Dongming Zhu 1

1 Durability and Protective Coatings Branch
 Structures and Materials Division
 NASA Glenn Research Center
 Cleveland, Ohio 44135

2 Carnegie Mellon University
 Pittsburgh, Pennsylvania

This work was supported by NASA Fundamental Aeronautics Program and *
 NASA LERCIP Internship Program

The 35th International Conference on Advanced Ceramics & Composites
 Daytona Beach, Florida
 January 23-28, 2011
Motivation

• Environmental barrier coatings (EBCs) for light-weight SiC/SiC ceramic matrix composite (CMC) components critical for advanced propulsion engines

• Higher temperature and higher strength capable coatings highly desirable

• Composite environmental barrier coatings have promise for improved temperature capability, stability and performance
 – High temperature stability is still of concern
 – HfO$_2$-Si and HfO$_2$-SiCNT bond coats as a major emphasis
 – HfO$_2$-Yb$_2$Si$_2$O$_7$ and/or HfO$_2$-Yb$_2$SiO$_5$ top coats

• Advanced coating systems were also tested
Outline

• **Synthesis of Silicon Carbide Nanotubes (SiCNT)**
 – Process optimization and scale up
 – TGA stability study in air

• **Furnace Testing of Hot-Processed HfO$_2$-Si and HfO$_2$-SiCNT Composite Systems**
 – Phase stability at 1400-1450°C

• **Thermal Conductivity of HfO$_2$-Si and HfO$_2$-SiCNT systems**

• **High Pressure Burner Rig (HPBR) Stability of EBC-CMCs**

• **Cyclic Durability of Advanced Coating-CMC systems**
Experimental

- SiC nanotubes synthesized by Si reaction with multiwall carbon nanotubes (CNTs) at 1400°C in Ar + H₂ environments
- Materials/specimens (hot-press): 1” diameter x ~3 mm thick HfO₂+Si and HfO₂+SiCNT disc specimens or coating HfO₂+Si and HfO₂+SiCNT specimens on CMCs
- Furnace stability testing in air by Thermogravimetric Analysis (TGA)
- X-ray diffraction and SEM characterization
- 3500 W continuous wave (cw) CO₂ laser (10.6 micron wavelength) used for high temperature thermal conductivity testing and high heat flux cyclic durability testing
- High Pressure Burner Rig Stability Testing
SiCNT Processing and Stability Testing

- Optimized SiCNT processing with Si to Carbon nanotube (CNT) weight ratio 55:45 for environmental barrier coating applications
- Obtained almost full β-SiC phase for the SiCNT based on X-ray diffraction
- Retained excellent nanotube morphologies based on SEM characterizations
- Scaled up the process with increased High quality SiCNT yields at 0.2 g/batch
- Demonstrated SiCNT stability in air using TGA

SiCNT processing and TGA stability evaluation

SEM and EDS characterizations of SiCNTs
Laser Steady-State Heat Flux Thermal Conductivity Testing Approach

Schematic of the laser heat flux test principles

Uniformly distributed laser beam through an integrated lens

Pyrometer

Specimen fixture

Cooling air nozzle

7.9 μm pyrometer for $T_{\text{ceramic-surface}}$

$q_{\text{reflected}}$

$q_{\text{delivered}}$

q_{radiated}

q_{thru}

c_{ceramic}

$\Delta T_{\text{ceramic}} = T_{\text{surface}} - \Delta T_{\text{back}}$

$7.9 \mu m$ pyrometers for $T_{\text{ceramic-back}}$

q_{thru}
Furnace Testing of Hafnia-Silicon Systems

- Optimum mixture composition found between 25wt% and 50wt% Si

<table>
<thead>
<tr>
<th>Temperature</th>
<th>HfO_2+25%Si</th>
<th>HfO_2+50%Si</th>
<th>HfO_2+75%Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>1350°C</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>1400°C</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>1450°C</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
The HfO$_2$+SiCNT Bond Coats Showed High Temperature Stability in Oxidizing Environments

- HfO$_2$, SiCNT and HfO$_2$ silicate are major phases after the 100hr testing

Before Testing $+$ 1400°C/50hr $+$ 1450°C/50hr

SiC nanotube (SiCNT) and HfO$_2$-based nano-composite coatings
The HfO$_2$+Si Bond Coats Showed Significantly Improved Temperature Capability

- Higher stability observed even after 1450°C testing

Cross-section, Hot-pressed HfO$_2$-50wt%Si on CMC, 1350°C tested

HfO$_2$-HfO$_2$+30Si bond coat on CMC, 1500°C tested for 200 hours
High Pressure Burner Rig Recession Testing

- HfO₂/ytterbium silicate/HfO₂-Si composite bond coat tested at 200 m/s in high pressure burner rig and showed excellent stability

![Image of HfO₂-(Y,Gd,Yb)₂O₃+Yb₂Si₂O₇/ Yb₂Si₂O₇+20BSAS/ HfO₂+30wt%Si on the test rig]

No detectable weight loss, after the 5 hr HPBR Testing
High Heat Flux Thermal Gradient Cyclic Durability Evaluation of Environmental Barrier Coating and Bond Coat Systems

- Laser high heat flux rig thermal gradient thermal cyclic testing at surface temperature of 1482°C (2700°F)
- Advanced bond coats tested at up to 1375°C

![Graph showing thermal conductivity over time](image)

HfO$_2$-ytterbium silicate coating with HfO$_2$-Si bond coat, after 100hr testing at T(surface) 1482°C/T(interface) 1375°C
Heat flux, W/cm²

Surface Temperature, ºC

Thermal conductivity, W/m-K

qthru, W/cm²

kcera

Thermal Conductivity of HfO₂-12.4wt%SiCNT

- Effect of nanotube fractions on thermal conductivity is being evaluated and modeled
Thermal Conductivity of HfO$_2$-Si Systems

- Thermal conductivity maintained stable after high temperature 100 hr annealing
Summary

- Composite HfO$_2$-Si and HfO$_2$-SiCNT bond coats synthesized for high temperature environmental barrier coating applications

- The stability of HfO$_2$-Si and HfO$_2$-SiCNT bond coats demonstrated for stability up to 1450°C (1500°C for advanced processed coatings)

- Thermal conductivity of HfO$_2$-Si and HfO$_2$-SiCNT bond coats evaluated

- Multilayer EBC composite coatings showed combustion gas stability and thermal gradient durability in high pressure burner rig and laser high heat flux rig
Acknowledgements

The work was supported by NASA Fundamental Aeronautics Program (FAP) Supersonics Project (Manager: Dale A. Hopkins) and NASA Integrated Systems Research Program (ISRP) Environmentally Responsible Aviation (ERA) Project (Manager: Janet Hurst).

The authors wish to thank Ms. Joyce A. Dever, Chief of Durability and Protective Coatings Branch, for her kind help and support in the research during the NASA Internship project.

Also Many Thanks to:
• Bob Angus (Hot Press Operation)
• Dr. Richard Rogers (X-ray Diffraction)
• Terry McCue (SEM)
• Don Humphrey, SiCNT TGA
• Dennis Fox, EBC coating processing
• Bob Pastel, High Pressure Burner Rig testing
• NASA Lewis' Educational and Research Collaborative Internship Project (LERCIP)