Monitoring Delamination of Thermal Barrier Coatings During Interrupted High-Heat-Flux Laser
Testing Using Luminescence Imaging

This presentation showed progress made in extending luminescence-base delamination
monitoring to TBCs exposed to high heat fluxes, which is an environment that much better
simulates actual turbine engine conditions. This was done by performing upconversion
luminescence imaging during interruptions in laser testing, where a high-power CO2 laser was
employed to create the desired heat flux. Upconverison luminescence refers to luminescence
where the emission is at a higher energy (shorter wavelength) than the excitation. Since there
will be negligible background emission at higher energies than the excitation, this methods
produces superb contrast. Delamination contrast is produced because both the excitation and
emission wavelengths are reflected at delamination cracks so that substantially higher
luminescence intensity is observed in regions containing delamination cracks. Erbium was
selected as the dopant for luminescence specifically because it exhibits upconversion
luminescence. The high power CO2 10.6 micron wavelength laser facility at NASA GRC was used
to produce the heat flux in combination with forced air backside cooling. Testing was
performed at a lower (95 W/cm2) and higher (125 W/cm2) heat flux as well as furnace cycling
at 1163C for comparison. The lower heat flux showed the same general behavior as furnace
cycling, a gradual, “spotty” increase in luminescence associated with debond progression;
however, a significant difference was a pronounced incubation period followed by acceleration
delamination progression. These results indicate that extrapolating behavior from furnace
cycling measurements will grossly overestimate remaining life under high heat flux conditions.
The higher heat flux results were not only accelerated, but much different in character. Extreme
bond coat rumpling occurred, and delamination propagation extended over much larger areas
before precipitating macroscopic TBC failure. This indicates that under the higher heat flux (and
surface & interface temperatures), the TBC was more tolerant of damage. The main conclusions
were that high heat flux conditions can not only accelerate TBC debond progression but can
also grossly alter the pathway of delamination.
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Objective

 Extend luminescence-based delamination monitoring
to TBCs subjected to high heat flux.

— Previous delamination monitoring by upconversion
luminescence imaging limited to furnace cycling.

— Furnace cycling does not adequately simulate engine
conditions.

— Thermal gradients present in high-heat-flux engine
environment contribute additional driving forces for TBC
delamination and may alter delamination progression
pathway.

— Valid diagnostics for predicting TBC remaining life must be
based on measurements of TBCs exposed to engine-like
high-heat-flux conditions.

Approach

e Perform upconversion luminescence imaging during
Interrupted high-heat-flux laser testing.



TBC Temperature Profile Progression
Furnace vs. High-Heat-Flux Laser Heating
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Detecting TBC Delamination by Reflectance-Enhanced
Upconversion Luminescence

562 nm Er3* emission

980 nm (high intensity) 562 nm Er3* emission
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NiPtAl bond coat delamlnatlon reflects excitation & emission
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« Two-photon excitation of Er®* produces upconversion luminescence at
562 nm with near-zero background for strong delamination contrast.

e Yb3* absorbs 980 nm excitation and excites luminescence in Er3* by
energy transfer.

« Delamination contrast achieved because of increased reflection of \
excitation & emission at TBC/crack interface.



Upconversion Luminescence Imaging
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High Heat-Flux Laser Testing
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High-Heat-Flux Laser Testing Conditions

Furnace Cycling

e g =0 W/cm?

y Tsurface ~ 1163°C
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¢ Tinterface
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Heat Flux Test #1
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Heat Flux Test #2

e g =125 W/cm?

° Tsurface ~ 1345°C
~ 1175°C

¢ Tinterface

e AT = 170°C

1 cycle = 60 min laser on + 3 min laser off




Upconversion Luminescence Images During Interrupted Laser Cycling
Heat Flux Test #1, g = 95 W/cm?

1 laser furnace cycle = 60 min laser on + 3 min laser off acquisition
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Comparison of Upconversion Luminescence Intensity
During Interrupted Furnace vs. Laser Cycling
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Comparison of Upconversion Luminescence Intensity
During Interrupted Furnace vs. Laser Cycling
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Laser cycling exhibits an initial
incubation stage followed by
accelerated delamination progression.
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Temperature Sequence During High-Heat Flux Laser Testing
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Upconversion Luminescence Images During Interrupted Laser Cycling
Heat Flux Test #2, g = 125 W/cm?

1 laser furnace cycle = 60 min laser on + 3 min laser off
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Comparison of Upconversion Luminescence Intensity
During Interrupted Furnace vs. Laser Cycling
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TBC Failure Occurs When Delamination Driving
Force Exceeds Delamination Resistance

Energy Release Rate G or Fracture Resistance Gp —
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® Ceramic through-thickness/interfacial cracking and damage accumulation
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eLarge transient thermal stresses at start of heating/cooling.
eInterface temperature increases as TBC thermal conductivity decreases.

*AT across crack produces energy release.



Summary

* Upconversion luminescence imaging successfully monitors
delamination progression for TBCs exposed to high heat flux
conditions.

* High-heat-flux conditions produce TBC debond progression that
accelerates (relative to isothermal conditions).

» High-heat-flux conditions change path of TBC debond
propagation (allowing bond coat rumpling).

» Diagnostic life prediction based on damage evolution occurring
during isothermal exposures will grossly overestimate TBC
remaining life under high heat flux conditions (even with same
starting interface temperature).

Acknowledgments

 Funding by the NASA Fundamental Aeronautics Program Subsonic
Fixed Wing Project.

15



