
Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries 

A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of 

which, the most promising are those containing silicon. 10   One such material is a composite formed via 

the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis.   Two silicon-carbon 

composite materials, carbon microspheres and nanofoams produced from nano-phase silicon 

impregnated RF gel precursors have been synthesized and investigated.   Carbon microspheres are 

produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are 

produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing 

electrode. 1-4,9   Both materials have demonstrated their ability to function as anodes and utilize the 

silicon present in the material.   Stable reversible capacities above 400 mAh/g for the bulk material and 

above 1000 mAh/g of Si have been observed. 
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Lithium Ion Basics

LiMO2 Li1-xMO2+xLi+ +xe-

Li1-xMO2+xLi+ +xe LiMO2

C+xLi++xe- LixC

Cathode 
Charge 

Discharge 

Anode 
Charge 

LixC C+xLi++xe-
Discharge 

Cathode
• Transition Metal Oxide
• LiCO2

Anode
• Most Commonly Carbon
• Graphite
• Hard CarbonCapacity is dependent on number of Li+

ions that can be shuttled back and forth
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NASA Goals
• Future missions of the National Aeronautics and Space 

Administration (NASA) require advanced energy storage 
systems
– High specific energies (Wh/kg)
– High energy densities (Wh/l)

• Develop advanced lithium ion cells
• Anode development is a key component
• the anode represents 24% of cell mass and additional 

opportunity for cell mass reduction
• Key performance parameters

– Threshold value of 600 mAh/g
– Goal of 1000 mAh/g

cathode
anode
electrolyte
separator
aluminum foil
copper foil

Estimates for component 
weight fraction in 30 Ah cell
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Anode Materials
• Graphite 

– Excellent cycling characteristics
– Theoretical capacity of 372 mAh/g

(LiC6)

• Silicon
– Theoretical capacity of 4200 

mAh/g (Li15Si4)
– Expands 400% upon lithiation
– High irreversible capacity loss
– High fade rate
– Poor coulombic efficiency

• Silicon carbon composites
– Carbon matrix absorbs expansion 

of the silicon and maintains 
electrical contact

– Carbon matrix prevents direct 
electrolyte contact

0

100

200

300

400

500

600

700

800

0 100 200 300 400

En
er

gy
 d

en
si

ty
 (W

h/
lit

er
)

Specific energy (Wh/kg)

Li-sulfur
HE

SOA

UHE-Si
UHE-Li

Estimates for cell specific energy and 
energy density



National Aeronautics and Space Administration

www.nasa.gov

In-House Anode Synthesis
• Silicon containing carbon gel microbeads
• Carbon fiber paper supported silicon containing 

carbon nanofoam
• Based on resorcinol-formaldehyde gel precursors 

containing nano-silicon
• Porous carbon matrix will absorb the expansion of 

the silicon and prevent direct silicon-electrolyte 
contact

• Makes use of traditional cost –effective laboratory 
techniques
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10 um

Carbon-Silicon Microbeads Carbon Nanofoam with Nano-
Silicon Supported on Carbon 
Paper

Carbon Cryogel Anode Materials

Originally investigated by Hasegawa, 
Mukkai, Shiratu and  Tamon Carbon
42, 2004 pp. 2573-2579

Carbon nanofoams are currently 
under investigation by J. Long at NRL 
for use in electrochemical capaciters
and as electrode support materials
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cathode
anode
electrolyte
separator
aluminum foil
copper foil

Estimates for Component 
Weight Fraction in 30 Ah 

Cell
Anode copper current collector represents a 
significant weight fraction ( 8%)

Carbon-Silicon Microbeads
Mix microbeads
with binder and 
cast onto copper 
foil current 
collector

Carbon Nanofoam with Nano-
Silicon Supported on Carbon Paper

• Advantage : Uses conventional manufacturing 
techniques

• Disadvantage : Requires heavy copper current 
collector 

• Advantage : “Stand Alone” electrode that does not 
require the use of a current collector (Lighter)

• Disadvantage :  Would require development of new 
electrode and cell manufacturing techniques
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Copper Foil  2g
•Not electrochemically 
active towards lithium

Carbon Paper  0.2 g
•Electrochemically active towards 
Li (250 mAh/g)

Copper Vs. Carbon

Electrode mAh/g
Active 

Material

mAh/g
Electrode

Nanofoam 500 500

Graphite 
With Cu

350 170

Si With Cu 1000 312

Theoretical Specific Capacities at the 
Active Material and Electrode Levels
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Carbon Microbead Testing

• Carbon microbeads were slurried with NaCMC
• 0.005” film cast onto copper foil
• Anodes placed in coin cells using lithium as the 

counter electrode
• Electrolyte: 1M LiPF6 1:1:1 ethylene carbonate, 

diethyl carbonate and dimethyl carbonate
• Cells formed at C/10 and cycled from 10mV to 1.5 V
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Electrochemical Cycling of Carbon Microbeads
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As Cast Nano- Silicon Carbon Gel Microbead Electrode  

Cast Nano- Silicon Carbon Gel Microbead Electrode  After Cycling 

Carbon-Silicon Microbead Electrodes
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Carbon Nanofoam Half Cells

• Pouch cells
• Nanofoam material placed on copper foil current 

collectors
• Nickel tab spot-welded instead of the copper foil
• Lithium counter electrode
• First formation at approximately C/5
• Second formation at C/20
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Electrochemical Cycling of Carbon Nanofoam Electrodes
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Si-Carbon Microbeads Cell 1 
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Formation of Lithium Ion Diffusion Pathways

Silicon

Carbon

Li+ Ions

Li+ Ion Diffusion Pathways

Pre-Formation

Full  Intercalation of  Li+
Ions Into Carbon Matrix 

and Si

Establishment of 
Diffusion Pathways 
into Carbon Matrix

Intercalation  of Li+
Ions Into Carbon 

Matrix and Surface Si

Establishment of 
Diffusion Pathways 

Through Carbon 
Matrix to Si
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Initial Results
• Microbeads

– 425 mAh/g
– Short of threshold value of 600 mAh/g and goal of 1000 mAh/g

• Nanofoam
– Initial results showed 400 mAh/g at the electrode level
– “Stand Alone” anode 100% active material
– Determined to have a higher potential to meet or exceed goals
– Decided to focus on development of the carbon nanofoam

anodes

Electrode mAh/g
Active Material

mAh/g
Electrode

Nanofoam 500 500
Graphite 
With Cu

350 170

Si With Cu 1000 312

Theoretical Specific Capacities at the Active 
Material and Electrode Levels
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New Experiments

• Improve the performance of the Si-carbon nanofoams
by addition of conductive additives or binders
– Addition of graphite to resorcinol formaldehyde gel
– Coat with polyaniline doped with LiPF6

• New formation procedure 



National Aeronautics and Space Administration

www.nasa.gov

New Formation Procedure 

• Very slow initial formation to 10 mV
• Replace taper charge with very low constant current 

to 10mV
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Silicon-Carbon Nanofoams
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Carbon-Silicon Nanofoam Electrodes

Carbon-Silicon-Graphite Nanofoam Carbon-Silicon Nanofoam
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Polyaniline Coated Carbon-Silicon Nanofoam

Carbon-Silicon-Graphite Nanofoam Carbon-Silicon Nanofoam
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Nyquist Plot For Si-Carbon Nanofoam Anodes

• The nanofaom containing graphite has a lower impedance than the 
nanofoam which does not contain graphite 

• Samples coated with polyaniline/LiPF6  show drastically lower 
impedances than those without the coating

• The presence of graphite in combination with the polyaniline coating  
resulted in a higher impedance than that of a coated sample not 
containing graphite
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Conclusions
• A “Stand Alone” anode has been synthesized with  specific 

capacities that meet and/or exceed the ETDP threshold value 
of 600 mAh/g and would likely compare favorably, with regard 
to specific capacity, at the electrode level to conventional 
coated anode materials 

• “Stand Alone” carbon-silicon nanofoam anodes have the 
greater potential to address NASA goals

• “Stand Alone” carbon-silicon nanofoam anodes have the 
potential to significantly increase the specific energies (Wh/kg) 
for lithium-ion cells

• Addition of  graphite to the silicon containing carbon nanofoam
dramatically increases capacity

• Use of the conductive binder polyaniline doped with LiPF6
dramatically increases capacity

• Very slow formation cycle is required to fully lithiate silicon
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Future Work

• Investigate the use of various conductive additives
–Graphites
–Carbon Nanotubes
–Carbon Nanofibers

• Investigate different binders or coatings
• Investigate different gel formulations
• Remove oxygen from matrix
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Updated Results for Carbon-Silicon Nanofoam
Electrodes
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Updated Results for Carbon-Silicon Nanofoam
Electrodes Continued
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Contribution of Non-silicon Components to the  Specific 
Capacities Carbon-Silicon Nanofoam Electrodes
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• Carbon-Silicon Microspheres
• Resorcinol-Formaldehyde containing 50 nm silicon is dispersed in a 

solution of cyclohexane and Span 80 surfactant
• Sonicated
• Stirred for two days a room temperature
• Recovered and rinsed 
• Freeze dried in t-butanol
• Pyrolyzed at 1000o in argon

• Carbon-Silicon Nanofoam
• Carbon fiber paper impregnated with resorcinol-formaldehyde gel 

containing 50 nm silicon particles
• Sealed in plastic bags and placed between glass plates
• Cured at room temperature for2 days
• Freeze dried in t-butanol
• Pyrolyzed at 1000o C in argon
Hasegawa, T.; Mukai, S. R.; Shirato, Y.; Tamon, H. Carbon 2004, 42, 2573‐2579.
Yamamoto, Sugimoto, Suzuki, Mukai, Tamon Carbon 2002, 40, 1345‐1351.

Synthetic Conditions
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Customer 
Need

Performance 
Parameter

State-of-the-Art Current Value Threshold 
Value

Goal

Safe, reliable 
operation

No fire or flame Instrumentation/control-
lers used to prevent 
unsafe conditions. There is 
no non-flammable 
electrolyte in SOA

Preliminary results indicate 
a small reduction in 
performance using safer 
electrolytes and cathode 
coatings

Tolerant to electrical and 
thermal abuse such as over-
temperature, over- charge, 
reversal, and short circuits 
with no fire or thermal 
runaway***

Tolerant to electrical and 
thermal abuse such as 
over-temperature, over-
charge, reversal, and 
short circuits with no fire 
or thermal runaway***

Specific 
energy
Lander:
150 – 210 Wh/kg
10 cycles

Rover:
160-200 Wh/kg
2000 cycles

EVA:
270Wh/kg
100 cycles

Battery-level specific 
energy*
[Wh/kg]

90 Wh/kg at C/10 & 30°C
83 Wh/kg at C/10 &   0°C
(MER rovers)

160 at C/10 & 30°C (HE)
170 at C/10 & 30°C (UHE)
80 Wh/kg at C/10 &   0°C
(predicted)

135 Wh/kg at C/10 & 0°C 
“High-Energy”**
150 Wh/kg at C/10 & 0°C 
“Ultra-High Energy”**

150 Wh/kg at C/10 & 0°C 
“High-Energy”
220 Wh/kg at C/10 & 0°C 
“Ultra-High Energy”

Cell-level specific 
energy
[Wh/kg]

130 Wh/kg at C/10 & 30°C
118 Wh/kg at C/10 &   0°C

199 at C/10 &  23oC (HE)
213 at C/10 &  23oC (UHE)
100 Wh/kg at C/10 &   0oC
(predicted)

165 Wh/kg at C/10 & 0°C 
“High-Energy”
180 Wh/kg at C/10 & 0°C 
“Ultra-High Energy”

180 Wh/kg at C/10 & 0°C 
“High-Energy”
260 Wh/kg at C/10 & 0°C 
“Ultra-High Energy”

Cathode-level specific 
capacity
[mAh/g]

180 mAh/g 252 mAh/g at C/10 & 25oC
190 mAh/g at C/10 &   0oC

260 mAh/g at C/10 & 0°C 280 mAh/g at C/10 & 0°C 

Anode-level
specific capacity
[mAh/g]

280 mAh/g (MCMB) 330  @ C/10 & 0oC (HE)
1200 mAh/g @ C/10 & 0oC 
for 10 cycles (UHE)

600 mAh/g at C/10 & 0°C 
“Ultra-High Energy”

1000 mAh/g at C/10  0°C
“Ultra-High Energy”

Energy 
density
Lander: 311 Wh/l
Rover:   TBD
EVA: 400 Wh/l

Battery-level energy 
density

250 Wh/l n/a 270 Wh/l “High-Energy”
360 Wh/l “Ultra-High”

320 Wh/l “High-Energy”
420 Wh/l “Ultra-High”

Cell-level energy 
density

320 Wh/l n/a 385 Wh/l “High-Energy”
460 Wh/l “Ultra-High”

390 Wh/l “High-Energy”
530 Wh/l “Ultra-High”

Operating 
environment
0oC to 30oC, 
Vacuum

Operating 
Temperature

-20oC to +40oC 0oC to +30oC 0oC to 30oC 0oC to 30oC

Key Performance Parameters for Battery Technology 
Development


