Computation of Unsteady Flow in Flame Trench
For Prediction of Ignition Overpressure Waves

Dochan Kwak and Cetin Kiris
NASA Ames Research Center
October 2010

These slides will be presented at Seoul National University and Hanyang University in Seoul, Korea during the week of October 25, 2010.
The material in this presentation has been widely disseminated in the following publications:

Computation of Unsteady Flow in Flame Trench
For Prediction of Ignition Overpressure Waves

Dochan Kwak and Cetin Kiris
NASA Ames Research Center
October 2010
Technical Challenges of Space Exploration
Performance, Safety, Reliability, Cost

ISS

Human in Space

Ascent & Risk Assessment

Return to Earth: EDL

Ground Operation & Lift Off
T0 (VAB) T0+1.9 sec

In-space Travel
(Earth Departure Stage)

Crew Exploration Vehicle (CEV)

Martian Base
NASA's Exploration Launch Architecture

Space Shuttle
- Height: 184.2 ft
- Gross Liftoff Mass: 4.5M lb
- 55k lbm to LEO

Ares I
- Height: 321 ft
- Gross Liftoff Mass: 2.0M lb
- 48k lbm to LEO

Ares I-X
- Height: 358 ft
- Gross Liftoff Mass: 7.3M lb
- 117k lbm to TLI
- 144k lbm to TLI in Dual-Launch Mode with Ares I
- 290k lbm to LEO

Saturn V
- Height: 364 ft
- Gross Liftoff Mass: 6.5M lb
- 99k lbm to TLI
- 262k lbm to LEO

Upper Stage
- S-IVB (1 J-2 engine)
- 240k lb Lox/LH₂

Core Stage
- S-II (5 J-2 engines)
- 1M lb Lox/LH₂

Lunar Lander
- Earth Departure Stage (EDS) (1 J-2X)
- 499k lb Lox/LH₂

5-Segment Reusable Solid Rocket Booster (RSRB)

5-Segment 2 RSRB's

5-Segment 5 RSRB's
Today's talk: CFD applications to launch environment focusing on unsteady flow in flame trench and prediction of ignition overpressure
Outline

• Introduction / Background
 - Major Sources of Unsteady Loads on Launch System
 - Flow in Flame Trench
 - Historical background
• Prediction of Ignition Overpressure Waves
• CFD Procedures
 - Solver
 - Benchmark Case for Validation
• Application Examples
 - STS-1 and STS-124 Analysis
 - Ares-1X
• Summary and Discussions
Introduction: Major Sources of Unsteady Loads on Launch Systems

1. Ignition Over Pressure (IOP)
 Primary source of transient load on flame trench, launch structure and vehicle at launch
 - High-accuracy simulation of start-up process was first performed at Ames in conjunction with Ares-1X

2. Plume aero-acoustics
 Can impose significant vibration load on vehicle and payload during ascent
 - Experimental correlation based on a single rocket is being used: NASA SP-8072 (1971)

3. Vibration due to turbopump
 Can generate damaging vibration on engine and the whole launch vehicle during ignition, lift-off and ascent
 - Prediction tool not available to quantify cavitation

4. Combustion-related vibrations, such as thrust oscillation and combustion instability

SSME Low Pressure Fuel Pump: instantaneous pressure map & measured pressure fluctuation upstream of the pump
Introduction: Unsteady Flow in Flame Trench

IOP Wave Physics

- During ignition, the exhaust plume injects mass into the confined volume of the flame trench under the Mobile Launch Platform (MLP).

- This additional mass displaces the air within the trench causing a piston-like action.

- Compression waves then travel up and down the trench generating a series of strong pressure waves.

- The pressure waves travel back through the MLP exhaust holes towards the launch vehicle, possibly damaging the vehicle and surrounding structure.
Introduction: Unsteady Flow in Flame Trench

In addition to IOP wave phenomenon, other complex physical processes also occur during ignition and liftoff.

- Transient build up of the chamber stagnation conditions (very fast time scales).
- Multispecies interaction of exhaust gases with the ambient air.
- Fuel rich exhaust gas afterburning (chemical reactions).
- After burning effects of solid aluminum particles in SRB plumes.
- Multiphase interaction of the exhaust gases with the IOP wave suppression system (for example, water jet, water bag etc).
Introduction: Historical Background

• STS-1 & 2 Flight Data Comparison
 - STS-1 data shows very high ignition pulse
 - STS-2 shows the impact of water suppression system

STS-1&2 IOP Flight Data
Introduction: Historical Background

• STS-124 Trench Wall Damage
 During the launch of space shuttle Discovery on May 31, 2008, flame trench wall was damaged. Debris shown in the photo is the residue from this damage.

 Repairs are done before space shuttle Atlantis’ STS-125 mission to NASA’s Hubble Telescope.
• Objectives of CFD Simulation
 - Characterize/quantify IOP wave for new and existing launch vehicles (as a part of the entire ascent simulation).
 - IOP trend analysis can contribute to launch pad design.

• Approach
 - Evaluate current capabilities and develop high-fidelity methods/tools
 - Algorithm and solution procedure
 - Space time resolution requirements
 - Idealized test case
 - 2-D impinging jet: Experiment by JAXA
 - STS-1 case
 - Single-phase applications (Ares-1X)
 - Multi-phase modeling issue (STS-4)

(Currently collaborating with JAXA to develop numerical methods, enhance supercomputing performance, and develop advanced multi-phase flow modeling)
CFD Procedures

- **State-of-the-art CFD technology**
 - Grid generators, solvers (and associated algorithms) are generally available (either in-house or commercial codes).
 - Engineering-level physical models are also available for steady state solutions.
 - Prediction capability is limited to small regions, primarily in steady-state (generally good for interpolation).
 - Supercomputers at Petaflops level are becoming more available, requiring to look into parallel efficiency, data management…
 - Jaguar at ORNL (224,000 cores)
 - Pleiades at NASA Ames (81,000 cores, theoretical peak of 973.3TF)
 - …and others

- **Current Procedure**
 - Rigorous error estimate/control methods, validation procedures are not available – “Best Practices” are current approach.

> Next, will demonstrate how space and time resolution requirements are determined for IOP simulation.
Computational Model and Flow Solver

• **Computational Model and Grid:**
 Overset grid:
 - e.g. STS-1 Shuttle configuration
 • 2 SRB’s and external tank
 • 129 overset grids
 • 92 Million grid points

• **Flow Solver : OVERFLOW-2**
 - Compressible Navier-Stokes flow solver
 - Automatic domain connectivity including grid splitting for parallel computations
 - Spalart-Allmaras Turbulence Model
 - Diagonalized Beam-Warming scalar pentadiagonal scheme for LHS terms
 - Second-order in time with sub-iteration procedure (20 subiterations)
 - Physical time step used : 8.0e-5 seconds

• **Assumptions**
 - Single species calculations
 - Single Phase (no water effects)
Reynolds Averaged Navier-Stokes Equations

\[
\frac{\partial Q}{\partial t} + \frac{\partial (F - F_v)}{\partial x} + \frac{\partial (G - G_v)}{\partial y} + \frac{\partial (H - H_v)}{\partial z} = 0
\]

\[
Q = \begin{bmatrix} \rho & \rho u & \rho v & \rho w \\ \rho u & \rho u^2 + p & \rho u v & \rho u w \\ \rho v & \rho u v & \rho v^2 + p & \rho v w \\ \rho w & \rho u w & \rho v w & \rho w^2 + p \end{bmatrix}
F = \begin{bmatrix} \rho u & \rho u v & \rho w \\ \rho u v & \rho u^2 + p & \rho u w \\ \rho v & \rho u v & \rho v^2 + p \\ \rho w & \rho w^2 + p \end{bmatrix}
G = \begin{bmatrix} \rho v & \rho v u & \rho v w \\ \rho v u & \rho v^2 + p & \rho v w \\ \rho w & \rho v w & \rho w^2 + p \end{bmatrix}
H = \begin{bmatrix} \rho w & \rho w u & \rho w v \\ \rho w u & \rho w^2 + p & \rho w v \\ \rho v w & \rho w v & \rho v w \end{bmatrix}
\]
Governing Equations

\[
F_v = \begin{bmatrix}
0 & 0 & 0 \\
\tau^{xx} & \tau^{xy} & \tau^{xz} \\
u \tau^{xx} + \nu \tau^{xy} + \omega \tau^{xz} - q_1 \\
\end{bmatrix}
G_v = \begin{bmatrix}
0 & 0 & 0 \\
\tau^{yx} & \tau^{yy} & \tau^{yz} \\
u \tau^{yx} + \nu \tau^{yy} + \omega \tau^{yz} - q_2 \\
\end{bmatrix}
H_v = \begin{bmatrix}
0 & 0 & 0 \\
\tau^{zx} & \tau^{zy} & \tau^{zz} \\
u \tau^{zx} + \nu \tau^{zy} + \omega \tau^{zz} - q_3 \\
\end{bmatrix}
\]

\[
\tau_{ij} = (\mu + \mu_T) \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} (\mu + \mu_T) \delta_{ij} \frac{\partial u_k}{\partial x_k} \quad \vec{q} = -(\kappa + \kappa_T) \nabla T
\]

\[
\mu = 1.45 \times 10^{-6} \left(\frac{T^{1.5}}{T + 110} \right) \text{ kg/(m.s)} \quad \kappa = \frac{C_p \mu}{\text{Pr}} \quad \text{(Pr - Prandtl Number)}
\]

\[
\mu_T - \text{Turbulent Eddy Viscosity} \quad \kappa_T - \text{Turbulent Thermal Conductivity}
\]

(Computed from turbulence model)
Dual Time Step Formulation in OVERFLOW 2

\[
\frac{\partial \hat{Q}}{\partial \tau} + \frac{\partial \hat{Q}}{\partial t} + \frac{\partial (\hat{F} - \hat{F}_v)}{\partial \xi} + \frac{\partial (\hat{G} - \hat{G}_v)}{\partial \eta} + \frac{\partial (\hat{H} - \hat{H}_v)}{\partial \zeta} = 0
\]

Generalized Coordinate Transformation
\[\hat{\xi} \equiv \xi(x,y,z), \ \eta \equiv \eta(x,y,z), \ \zeta \equiv \zeta(x,y,z)\]

\[\hat{Q} = J^{-1}Q, \text{ where } J^{-1} \text{ is the Jacobian of the transformation}\]

\[\hat{F} = J^{-1}(\xi_x F + \xi_y G + \xi_z H)\]
\[\hat{F}_v = J^{-1}(\xi_x F_v + \xi_y G_v + \xi_z H_v)\]

\[\hat{G} = J^{-1}(\eta_x F + \eta_y G + \eta_z H)\]
\[\hat{G}_v = J^{-1}(\eta_x F_v + \eta_y G_v + \eta_z H_v)\]

\[\hat{H} = J^{-1}(\zeta_x F + \zeta_y G + \zeta_z H)\]
\[\hat{H}_v = J^{-1}(\zeta_x F_v + \zeta_y G_v + \zeta_z H_v)\]
Discretizations can be done, e.g. by fully-discrete formulation

\[
\begin{bmatrix}
I + \frac{3}{2} \frac{\Delta \tau}{\Delta t} + J \Delta \tau \left(\frac{\partial \hat{R}}{\partial Q} \right)
\end{bmatrix}
\Delta Q^m = -J \Delta \tau \left(\frac{3\hat{Q}^m - 4\hat{Q}^n + \hat{Q}^{n-1}}{2\Delta t} + \hat{R}^m \right)
\]

High-order RHS

\[
\hat{R}^m = (\hat{F}^m_{j+1/2} - \hat{F}^m_{j-1/2}) + (\hat{G}^m_{k+1/2} - \hat{G}^m_{k-1/2}) + (\hat{H}^m_{l+1/2} - \hat{H}^m_{l-1/2})
- (\hat{F}^m_{v,j+1/2} - \hat{F}^m_{v,j-1/2}) - (\hat{G}^m_{v,k+1/2} - \hat{G}^m_{v,k-1/2}) - (\hat{H}^m_{v,l+1/2} - \hat{H}^m_{v,l-1/2})
\]

Approximate LHS

\[
\left(\frac{\partial \hat{R}}{\partial Q} \right) \approx \left[\delta_x (\hat{A} - \hat{A}_v) + \delta_y (\hat{B} - \hat{B}_v) + \delta_z (\hat{C} - \hat{C}_v) \right]
\]

\[
\hat{A} = \frac{\partial \hat{F}}{\partial Q}, \quad \hat{B} = \frac{\partial \hat{G}}{\partial Q}, \quad \hat{C} = \frac{\partial \hat{H}}{\partial Q}
\quad \text{and} \quad
\hat{A}_v = \frac{\partial \hat{F}_v}{\partial Q}, \quad \hat{B}_v = \frac{\partial \hat{G}_v}{\partial Q}, \quad \hat{C}_v = \frac{\partial \hat{H}_v}{\partial Q}
\]
Time Step Sensitivity Analysis

Test Problem-2D Flame Trench
Time-Accurate Pressure Point Locations

Select Points of Interest:
10, 13, 20, 22, 29, 39

Initial Conditions: Atmospheric Pressure and Density, Zero Velocity.

Boundary Conditions: Time-accurate plenum conditions at the nozzle.
Time Step Sensitivity Analysis

<table>
<thead>
<tr>
<th>Δt/nums</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0e-04</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.0e-05</td>
<td>#</td>
<td>#</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.0e-05</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.0e-06</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.0e-06</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Time History of pressure at ptap :10](image1)

![Time History of pressure at ptap :20](image2)

![Time History of pressure at ptap :39](image3)
Time Step Sensitivity Analysis

<table>
<thead>
<tr>
<th>(\Delta t/\text{nsubs})</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0e-04</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.0e-05</td>
<td>#</td>
<td>#</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.0e-05</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.0e-06</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.0e-06</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Time Step Sensitivity Analysis

<table>
<thead>
<tr>
<th>Δt/nsubs</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0e-04</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.0e-05</td>
<td>#</td>
<td>#</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.0e-05</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.0e-06</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0e-06</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis is performed using the dual time stepping framework to analyze the sensitivity of unsteady IOP wave propagation with respect to both time step and convergence.

- The largest possible pseudo time CFL numbers should be used for efficiency.
- Larger pseudo time CFL numbers were examined, but lead to sub-iteration instabilities.
- Large physical time steps with small pseudo time CFL numbers and a small number of sub-iterations lead to nonphysical results (without numerical instability).
- For a fixed time step and pseudo time CFL, the sub-iterations should be increased until a sub-iteration invariant solution is obtained.

\[
1.0 \times 10^{-05} \leq \Delta t \leq 5.0 \times 10^{-05} \quad \text{for } n_{subs} = 10 \text{ and } 20
\]

\[
5.0 \times 10^{-05} \leq \Delta t \leq 1.0 \times 10^{-04} \quad \text{for } n_{subs} \geq 50
\]
Test Case Introduced by NASA-JAXA collaboration:

2D Impinging Jet
- Focus on basic methods for capturing IOP and launch acoustics
- Conical Mach 2 nozzle
- Single-species ($\gamma = 1.4$)
- $P_0/P_{atm} = 7.825$
- Over inclined flat plate

Density Gradient

Source: JAXA
Simulating Ignition Overpressure Waves

Numerical experiments

- Jet Impingement Physics
- Sensitivity Analysis
- Sub-Iteration
- Physical Time-Step
- Space-Time

Parameter Matrix

- Seven sub-iteration counts:
 - NSUB = 5, 10, 20, 50, 100, 200, 400
- Six physical time levels:
 - CFL = 1, 2, 5, 10, 50, 100
- Three grid resolution levels:
 - Coarse Δx = 0.005 m, 1.4e-05 <= Δt <= 1.4e-04
 - Medium Δx/2, Δt/2
 - Fine Δx/4, Δt/4

\[\Delta t = \frac{CFL \cdot \Delta x}{Cref} \]
Jet Impingement Time Sequence

Overset

\(t = 0.0036 \, \text{s} \) \(t = 0.0072 \, \text{s} \) \(t = 0.0108 \, \text{s} \)

\(t = 0.0144 \, \text{s} \) \(t = 0.0180 \, \text{s} \) \(t = 0.0216 \, \text{s} \)
Sub-Iteration Sensitivity Test

Location 6 and 10:
 - NSUB >= 20: Appear Converged
 - NSUB/CFL >= 20: Sufficient

Overset
Time-step Sensitivity Analysis

Location 6 and 10:
- CFL <= 10: Appear Converged
- NSUB/CFL >= 40: Sufficient

Overset
Space-Time Sensitivity Analysis

Location 6

Coarse
• Low-frequency

Medium
• Increasing frequency

Fine
• High frequency develops after IOP
• Numerical experiments have been performed for an idealized test problem. Comparison with experiments will be done as data become available.

• Preliminary conclusion from the numerical tests:
 – For a fixed ratio NSUB/CFL, the sub-iteration convergence is approximately independent.

 – If time-integrated functionals (e.g. RMS) are of interest, then coarser space-time resolutions may be acceptable.

 – When high-frequency wave content is important (e.g. Min/Max functionals), then viscous effects should be included.
Applications to Shuttle and Ares-1X

• Assumptions for CFD simulations
 – Single species flow with corrected nozzle boundary conditions such the correct thrust, temperature, and Mach number are retained at the nozzle exit.
 – Influence of multispecies gas effects are negligible.
 – Influence of solid aluminum particles in the exhaust gas and afterburning effects are negligible.
 – IOP water suppression system is neglected, thus no multiphase flow effects are included in the present results.
 – All relevant geometric structures are included in the model.
 – Full unsteady RANS simulation is carried out.

• Required information for CFD simulation
 – Time accurate conservative quantities for a perfect gas at the nozzle plenum.
 – Quantities prescribed at the plenum must generate the correct thrust, temperature, and Mach number at the nozzle exit.

• Given information
 – Pressure and mass flow rate at the nozzle plenum.
 – Mixture exhaust gas properties.
 – Approximate temperature of exhaust gas at the plenum.
Flame Trench Flow Analysis for STS-1

Pressure Contours
STS-1 IOP Flight Data vs. Computations

Left SRB skirt area ET side
Flame Trench Flow Analysis for Ares-1X

Pressure Contours
Flame Trench Flow Analysis for Ares-1X

Pressure Contours
STS-1 and Ares-1X IOP computations
CFD Support for STS-125 Launch Environment

After STS-124 wall damage on May 31, 2008, trench wall had to be repaired before STS-125 mission to Hubble Telescope.

- To quantify flow in flame trench (pressure, temperature etc.)
 - Computations were carried out up to 1.15 seconds by using 504 CPU's (completed in less than 4 days)
 - CFD results were compared against STS-4 flight data.

- Single-phase computations produced conservative results compared to STS-4 data.

- Time-dependent computational data were provided to Ground Operations to determine load environment.
Computed Results (Overflow) vs. STS-4 Data
Computed Results (Overflow) vs. STS-4 Data
Computed Flame Trench Wall Pressure
Computed Flame Trench Flowfield
Summary and Discussions

Computational processes/issues for supporting mission tasks are discussed using an example from launch environment simulation

- Entire CFD process has been discussed using an existing code
- STS-124 conditions were revisited to support wall repair effort for STS-125 flight
- When water bags were not included, computed results indicate that IOP waves with the peak values have been reflected from SRB’s own exhaust hole.
- ARES-1X simulations show that there is a shock wave going through the unused exhaust hole, however, plays a secondary role
- All three ARES-1X cases and STS-1 simulations showed very similar IOP magnitudes and patterns on the vehicle. With the addition of water bags and water injection, it will further diminish the IOP effects.

For more complete flame trench simulation, need to include

- Water suppression system
- More complete nozzle (and plum) condition
- Multi-species (variable γ) effects

For more predictive launch environment analysis (supporting space exploration system development and operation in general), need

- Predictive unsteady flow simulation capability (algorithm + physical model)
 (This is a current CFD pacing item)