Ultimate Temperature of Pulse Tube Cryocoolers

Peter Kittel
Consultant

This work was funded through University Affiliated Research Center (UARC) Subcontract S0181769. UARC is managed by the University of California, Santa Cruz under NASA Ames Research Center Contract NAS2-03144
Introduction

- Ideal pulse tube cooler with real gas
 - No losses (entropy generation) except in orifice / inertance tube

- T_{min}; result of real gas properties
Regenerator Thermodynamics

Constraint: \(dT = 0 \)

General expression Ideal gas Real gas

\[ds = c_P \frac{dT}{T} - R \frac{dP}{P} \]

\[ds = (\frac{V}{T}) \ dP \]

\[ds = -V \beta \ dP \]

\[dh = c_P \ dT + [1 - T \beta] \ V \ dP \]

\[dh = 0 \]

\[dh = [1 - T \beta] \ V \ dP \]

Volume expansivity: \(\beta = \frac{1}{V} \frac{dV}{dT} \bigg|_P \)

Ideal gas: \(T \beta = 1 \)
Pulse Tube Thermodynamics

Constraint: \(ds = 0 \)

<table>
<thead>
<tr>
<th>General expression</th>
<th>Ideal gas</th>
<th>Real gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ds = c_P , dT/T - R , dP/P)</td>
<td>(ds = 0)</td>
<td>(ds = 0)</td>
</tr>
<tr>
<td>(dT/dP = V/c_P)</td>
<td>(dT/dP = T , \beta , V/c_P)</td>
<td>(dT/dP = T , \beta , V/c_P)</td>
</tr>
<tr>
<td>(dh = c_P , dT + [1 - T , \beta]V , dP)</td>
<td>(dh = V , dP)</td>
<td>(dh = V , dP)</td>
</tr>
</tbody>
</table>

Volume expansivity: \(\beta = 1/V \, dV/dT \big|_P \)

Ideal gas: \(T \, \beta = 1 \)
Cooling Power

Change in Enthalpy flow at cold heat exchanger

<table>
<thead>
<tr>
<th>General expression</th>
<th>Ideal gas</th>
<th>Real gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dq = \Delta dh)</td>
<td>(dq = V , dP)</td>
<td>(dq = T , \beta , V , dP)</td>
</tr>
<tr>
<td>minimum (T)</td>
<td>(T_{min} = 0)</td>
<td>when (\beta = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((dV/dT</td>
</tr>
</tbody>
</table>

Volume expansivity: \(\beta = 1/V \, dV/dT|_P \)

Ideal gas: \(T \, \beta = 1 \)
Calculated Loci of $\beta = 0$

ref: HE3PAK v1.2, HEPAK v3.4, and HEPAK v4a
Meaning of $\beta \neq 0$?

- $\beta > 0 \implies$ Conventional PT
 - Can PT operate below 0.5 K?

- $\beta < 0 \implies$ What does this mean?

- Effect of mixing ^3He and ^4He?
\(\beta \) of \(^3\)He and \(^4\)He

- **Volume Expansivity vs. Temperature**
 - For \(^3\)He and \(^4\)He at different pressures (0.1 MPa, 0.5 MPa, 1.0 MPa, 2.0 MPa).
 - Graphs show the change in volume expansivity with temperature for each isobaric condition.
\(\beta \) of \(^3\text{He}\) and \(^4\text{He}\)

\[\begin{align*}
\beta < 0: & \text{ reverse enthalpy flow or } \Delta \Phi \text{ between } \dot{m} \text{ and } P \text{ by } \sim 180^\circ \\
\beta_3 < 0, \ T < 1 \text{ K}: & \beta \text{ is small} \\
\beta_4 > 0, \ T < 1 \text{ K}: & \beta \text{ is very small} \quad \text{to small to be useful}
\end{align*} \]
$\beta = 0$; Mixed $^3\text{He} / ^4\text{He}$

- all data at SVP
- limited data in He-I region
 \approx straight line fit
- more data in He-II region
- lower $\beta > 0$ region
 over estimated

Esel'son, B.N., et.al.,
Solutions of He3 - He4 Quantum Liquids,

Ebner, C. and Edwards, D.O.,
“The Low Temperature Thermodynamic Properties of Superfluid Solutions of ^3He in ^4He,”
Physics Reports 2, pp. 77-154 (1971)
Los Alamos superfluid pulse tube

3He in Superfluid 4He

- 2-fluid behavior
 - \(T < 1 \text{ K} \): 3He low-density gas moving in fixed 4He background
 - Los Alamos pulse tube cooler
 - filled with 17% 3He and operated between 1 K and 0.6 K
 - Compressor does not cause pressure oscillations
 - causes the 3He concentration, \(x_3 \), and the osmotic pressure, \(\Pi_3 \), to oscillate.
 - in regenerator, heat exchangers, and orifices
 - \(\nabla P \) replaced by \(\nabla \Pi_3 \)
 - In the pulse tube
 - constraint that \(\nabla P = 0 \) is replaced by \(\nabla \mu_4 = 0 \)
 - \(\mu_4 \) is the chemical potential of the 4He.
Loci of Constant μ_4

- Dashed line: approx operation of Los Alamos cooler

- $T_{\text{min}} = \text{phase separation}$

- Lowest $T \Rightarrow$

 $x_3 < 6.4 \% \ @ \text{cold hx}$

 $x_3 < 1 \% \ @ 0.6 \text{ K}$

 - Low density of ^3He limits the mass flow and cooling in practical cooler

Radebaugh, R., “Thermodynamic Properties of He3-He4 Solutions with Applications to the He3-He4 Dilution Refrigerator,” NBS TN 362 (1967)
Summary

- Below \(\approx 1\) K, \(^3\text{He}\) concentration driven pulse tube
 - possible with no known ultimate limiting temperature
 - lack of thermodynamic data at very low \(T\)

- Limit of conventional pulse tube cryocoolers: \(\beta = 0\)
 - \(^4\text{He}\) limit \(T >\approx 2.2\) K
 - \(^3\text{He}\) limit \(T >\approx 1\) K
 - mixture of \(^4\text{He}\) and \(^3\text{He}\):
 - limit adjustable
 - mixing ratio not constant throughout the cooler
 - because \(\mu_4(T, P)\)
 - \(T_{\text{min}}\) depends on the mixing ratio at the cold hx