Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

Joel Susskind
NASA GSFC
Laboratory for Atmospheres
Sounder Research Team

NOAA Satellite Hyperspectral Spectrometer Workshop
March 29-31, 2011
Miami, Florida
AIRS

AIRS is a grating detector array spectrometer launched on Eos Aqua in May 2002.

Provides information about surface and atmospheric temperature, water vapor and constituent profiles, and clouds.

Measures upwelling radiance \hat{R}_i in 2360 spectral channels i between 650 cm$^{-1}$ and 2665 cm$^{-1}$.

$\nu_i/\Delta\nu_i \approx 1200$ \hspace{1em} $\Delta\nu_i$ goes from 0.5 cm$^{-1}$ - 2.2 cm$^{-1}$

Spatial resolution \approx 13 km at nadir from 705 km orbit.

Referred to as AIRS Field of View (FOV).

AIRS was accompanied by AMSU-A.

Microwave temperature profile sounder.

Spatial resolution \approx 45 km at nadir.

Referred to as AIRS Field of Regard (FOR).

9 AIRS FOV’s fall within one FOR.

AIRS was designed specifically to have very low noise at short wavelengths.

IASI, a high spectral resolution IR interferometer on METOP-A, has much higher noise at short wavelengths.
AIRS and IASI NEDT evaluated for a tropical atmosphere

Noise Equivalent Delta Temperature [K]

frequency [1/cm]

AIRS
IASI
Overview of AIRS Science Team Retrieval Methodology

Physically based retrieval system

Independent of GCM except for surface pressure - used to compute expected radiances

Uses cloud cleared radiances \hat{R}_i valid for AIR FOR to determine the solution

\hat{R}_i represents what AIRS would have seen in the absence of clouds

Derivation of \hat{R}_i is updated in different steps of the retrieval process

Basic steps

- Initial cloud clearing produces \hat{R}_i^0 - based on statistical initial guess using observed radiances R_i

- Sequentially determine surface parameters, $T(p)$, $q(p)$, $O_3(p)$, CO(p), CH$_4$(p), using \hat{R}_i^0

 Each step uses its own set of channels

- Generate error estimates $\delta T(p)$, $\delta q(p)$ and use for Quality Control (QC)

Retrieval system can be used with AIRS/AMSU radiances or in “AIRS Only” mode without AMSU radiances

Goddard DISC had been analyzing AIRS/AMSU data using AIRS Version-5 algorithm

Retrievals are near real time

Analyzed data from September 2002 through the present

AIRS Science Team Version-6 algorithm will become operational in late 2011
Objectives of AIRS/AMSU

Provide real time observations to improve numerical weather prediction via data assimilation

Could be R_i (used by NCEP, ECMWF) or $T(p)$, $q(p)$

Accuracy of \hat{R}_i, $T(p)$, $q(p)$ degrades slowly with increasing cloud fraction

There is a trade-off between accuracy and spatial coverage

Assimilation of soundings or radiances only in clear cases limits utility of the data

Assimilation of poorer quality retrievals can degrade forecast skill

Provide observations to measure and explain interannual variability and trends

Must provide good spatial coverage but also be unbiased

Can be less accurate than needed for data assimilation

Use of AIRS product error estimates allows for QC optimized for each application

Tighter QC is better for data assimilation

Looser QC is better for climate applications
Significant Improvements in AIRS Retrieval Methodology

Improvements in AIRS Version-5

Improved radiative transfer parameterization accounts for effects of Non-Local Thermodynamic Equilibrium (non-LTE)

Allows for complete use of 4.3 μm CO₂ sounding channels to determine T(p)

Following theoretical considerations:

\[R_i \] for 15 μm CO₂ channels are used only for cloud clearing coefficients

Gives clear column radiances \(\hat{R}_i \) for all channels

\(\hat{R}_i \) for 4.3 μm CO₂ channels are used to determine temperature profile T(p)

This allows for accurate T(p) soundings under more difficult cloud conditions

Further improvements in Version-6

Only shortwave window channels are now used to determine \(T_{\text{skin}} \), shortwave surface spectral emissivity \(\varepsilon_{\text{SW}(v)} \), and bi-directional reflectance \(\rho_{\text{SW}(v)} \)

\(\hat{R}_i \) in longwave window channels are used in a subsequent retrieval step to determine \(\varepsilon_{\text{LW}(v)} \) given \(T_{\text{skin}} \)

This provides accurate surface soundings under more difficult cloud conditions

Version-6 also has other improvements compared to Version-5
Sample AIRS Cloud Free Brightness Temperature Version 6 Channels

(K)
Wavenumber 650 to 785 cm⁻¹

(K)
Wavenumber 785 to 1150 cm⁻¹

(K)
Wavenumber 1200 to 1650 cm⁻¹

(K)
Wavenumber 2175 to 2700 cm⁻¹

Cloud Clearing *Temperature Profile* *Surface Skin and T(p)*
Water Vapor *Ozone* *CO*
CH₄ *LW Emissivity*
Methodology Used for T(p) Quality Control

Version-5

Define a profile dependent pressure, p_{best}, above which the temperature profile is flagged as good - otherwise flagged as bad.

Use error estimate $\delta T(p)$ to determine p_{best}.

Start from 70 mb and set p_{best} to be the pressure at the first level below which $\delta T(p) > \text{threshold } \Delta T(p)$ for 3 consecutive layers.

Temperature profile statistics include errors of $T(p)$ down to $p = p_{\text{best}}$.

Version-5 used $\Delta T(p)$ thresholds optimized simultaneously for weather and climate: $\Delta T^{\text{standard}}(p)$.

Subsequent experience showed $\Delta T^{\text{standard}}(p)$ was not optimal for data assimilation (too loose) or for climate (too tight).

Use of new tighter thresholds $\Delta T^{\text{tight}}(p)$ resulted in retrievals with lower yield but with RMS errors $\approx 1K$.

Performed much better when used in data assimilation experiments.

Version-6

QC is analogous to Version-5 but has tight thresholds $\Delta T_A(p)$ for data assimilation and loose thresholds $\Delta T_C(p)$ for climate applications.

ΔT_A thresholds define p_{best} and ΔT_C thresholds define p_{good}.

ΔT_A thresholds designed to give RMS errors $\approx 1K$.

ΔT_C thresholds are used to generate level-3 gridded products.
Forecast Impact Tests using Version-5 T(p)

Forecast impact tests were done at GSFC using GOES-5

Ran four sets of experiments, covering different seasons and years.
 October 15 – November 19, 2005
 August 10 – September 16, 2006
 April 15 – May 18, 2008

Four sets of assimilations were performed for each time period
 Control – uses no AIRS data but all other observations assimilated operationally
 Radiance – assimilates AIRS radiances as done operationally
 AIRS Standard assimilates AIRS T(p) down to p_{best} defined by standard thresholds
 AIRS Tight assimilates AIRS T(p) down to p_{best} defined by tight thresholds

7-day forecasts run from each 0 Z Analysis for each experiment

The accuracy is judged against anomaly correlation of 7-day forecasts vs. ECMWF Analysis for that time
An anomaly correlation of 1.0 represents a perfect forecast
An anomaly correlation of 0.6 is the lower bound of a useful forecast
AIRS Tight improves 7-day forecast skill by about 4 hours.
Summary

AIRS Science Team Version-6 algorithm determines tropospheric $T(p)$ and T_{skin} using only shortwave channels 2197 cm\(^{-1}\) – 2664 cm\(^{-1}\). The 15 μm tropospheric sounding CO\(_2\) channels are used only for cloud clearing (as in Version-5)

Use of only shortwave channels to determine T_s and tropospheric $T(p)$ results in:

- “AIRS Only” retrievals that are comparable to AIRS/AMSU
 Slightly lower yield with comparable accuracy
- Improved soundings of $T(p)$ and SST, day and night
 Improvements are larger with increasing cloud cover
- Performance during day is actually superior to performance at night
 - Higher yields and lower errors, especially at larger cloud fraction

This new approach is practical with AIRS because

- Solar radiation reflected by the surface is solved for in the surface retrieval step
- Solar radiation reflected by clouds is accounted for in the cloud clearing step
- **AIRS channels have very low noise at short wavelengths**

This approach is not practical with IASI because shortwave NEDT is too large

It is optimal for future (GEO) high-spectral resolution IR sounders to have low NEDT out to 2500 cm\(^{-1}\). There is no need for a GEO MW sounder.