Agenda

• Advanced Concepts Office (ACO) overview
• Earth-To-Orbit Team / Design Flow
• Modeling concepts in INTegrated ROcket Sizing (INTROS)
• Analyzing trajectory and performance
• Structural analysis
• Model wrap-up
• Typical sensitivities
We Are An Office Specializing In Pre-Phase A & Phase A Concept Definition

- RAVEN
- LTAS
- Habitat / Crew Systems
- CRYOSTAT
- CLARREO
- AXTAR

In-Space

Earth-to-Orbit
ACO Earth-to-Orbit Team

- High level concept performance
- Quick turnaround with high relative degree of accuracy
- Extremely useful for decision makers
 - Identify potential
 - Eliminate poor performers
 - Data input to cost and risk evaluations
 - Sensitivities to mitigate poor concepts and enhance others

- Recent activity
 - Highly integrated in Agency/MSFC Heavy Lift Vehicle evaluations
 - Exploration Systems Architecture Study (ESAS)
 - Constellation
 - Review of U.S. Human Spaceflight Plans (Augustine Commission)
 - Heavy Lift Launch Vehicle Study (HLLV)
 - Heavy Lift Propulsion Technology (HLPT)
 - Human Exploration Framework Team (HEFT)
 - Space Launch System (SLS)
Earth To Orbit Design Flow

Processes can be adjusted if necessary
Integrated Rocket Sizing (INTROS)

- Developed at MSFC
- Written in Visual Basic for Applications
- Approx. 600 subroutines and user defined functions
- Robust Mass Estimating Relationship (MER) database
- Utilizes basic spreadsheet inputs
- Establishes
 - Launch vehicle concept design
 - Stage sizing
- Facilitates
 - Integration of exterior analytical efforts
 - Structures, trajectories, element engineering
 - Vehicle architecture studies
 - Technology and system trades
 - Parameter sensitivities
Building INTROS Model

- Typically begin with established vehicle file(s)
- Top-level vehicle layout
 - Inline, number of stages, crew or cargo, boosters
- Body Geometry
 - Identify primary (load bearing) structures
 - Initially size propellant tanks
- Propulsion System
 - Engine type and arrangement
 - Define: mixture ratio, ullage, propellant properties
 - Evaluate fit and clearances
- Equipment selections and routine
 - Select items to be included in stage design
 - Routine is run that populates a mass accounting sheet
INTROS Mass Accounting

- **Primary Structures**
 - Interstage, intertank, skirts, tanks
 - Thrust/attach structure

- **Secondary Structures**
 - Closeout, fairings
 - Baffles (anti slosh/vortex)
 - Access tunnels

- **Separation Systems**
 - Stage-to-stage, fairing

- **Thermal Systems**
 - Closeout, thermal curtains, cork
 - Tank insulation
 - Equipment cooling
• **Main Propulsion System**
 - Engines
 - Engine installation
 - Feed Systems
 - Pressurization Systems
 - Pneumatic Systems
 - Thrust Vector Control
 - Upperstage Considerations
 - Repressurization
 - He bottles/lines
 - Restart equipment

Shuttle MPS
INTROS Mass Accounting

- **Power – Electrical**
 - Battery system
 - Cells
 - Conversion & distribution
 - Circuitry

- **Power – Hydraulic**
 - Hydraulic Auxiliary Power Units
 - Fuel storage & plumbing
 - Cooling system

- **Avionics**
 - Data mgmt/handling
 - Thrust Vector Control electronics
 - Instrumentation
 - Range safety
 - Guidance Navigation & Control
Mass Accounting Wrap-Ups

- **Stage Dry Mass with Growth**
- **Stage Burnout Mass**
 - Residuals
 - Reserves
 - In-flight losses
- **Stage GLOM**
 - Propellant
 - Purge helium
- **Vehicle GLOM**
 - Payload
 - Shroud
 - Provisions
 - Launch Abort System
 - Boosters

Mass Accounting Table

<table>
<thead>
<tr>
<th>Mass Category</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGE DRY MASS W/O GROWTH</td>
<td>Dry mass growth allowance</td>
</tr>
<tr>
<td>STAGE DRY MASS W/GROWTH (mdry)</td>
<td>Residuals: Main propellant (liquid residual)</td>
</tr>
<tr>
<td></td>
<td>Prop Tank Pressurization Gases: Liquid Oxygen tank</td>
</tr>
<tr>
<td></td>
<td>Liquid Hydrogen tank</td>
</tr>
<tr>
<td></td>
<td>Subsystems Reserves: Main propellant (FPR)</td>
</tr>
<tr>
<td></td>
<td>Fuel bias</td>
</tr>
<tr>
<td></td>
<td>APU reactants</td>
</tr>
<tr>
<td></td>
<td>In-flight Fluid Losses: APU reactants</td>
</tr>
<tr>
<td>STAGE BURNOUT MASS (mbo)</td>
<td>Main Ascent Propellant: Liquid Oxygen</td>
</tr>
<tr>
<td></td>
<td>Main Oxidizer Tank Main Fuel Tank</td>
</tr>
<tr>
<td></td>
<td>Oxidizer Feedlines Fuel Feedlines</td>
</tr>
<tr>
<td></td>
<td>Liquid Hydrogen Engine purge helium</td>
</tr>
<tr>
<td>STAGE GROSS LIFTOFF MASS (mgross)</td>
<td>Stage start propellant Stage start propellant</td>
</tr>
<tr>
<td>STAGE PRELAUNCH GROSS MASS (mplgross)</td>
<td>Vehicle Stackup: Payload Payload shroud</td>
</tr>
<tr>
<td></td>
<td>Payload shroud provisions (external PL.)</td>
</tr>
<tr>
<td></td>
<td>Launch escape system (LES)</td>
</tr>
<tr>
<td></td>
<td>Upper stage(s), gross</td>
</tr>
<tr>
<td></td>
<td>Strap-on(s), gross liftoff</td>
</tr>
<tr>
<td></td>
<td>Prelaunch gross</td>
</tr>
<tr>
<td></td>
<td>Less strap-on start consumption</td>
</tr>
<tr>
<td>VEHICLE GROSS LIFTOFF MASS (mgross_veh)</td>
<td>Stage start propellant Stage start propellant</td>
</tr>
<tr>
<td></td>
<td>Strap-on start consumption</td>
</tr>
<tr>
<td>VEHICLE PRELAUNCH GROSS MASS (mplgross_veh)</td>
<td>Vehicle Stackup: Payload Payload shroud</td>
</tr>
<tr>
<td></td>
<td>Payload shroud provisions (external PL.)</td>
</tr>
<tr>
<td></td>
<td>Launch escape system (LES)</td>
</tr>
</tbody>
</table>
Transfer to Trajectory

• **Program to Optimize Simulated Trajectories**
 - POST 3D
 - FORTRAN 77 based developed at Langley
 - Targets and optimizes point mass trajectories for powered/unpowered vehicle near arbitrary rotating, oblate planet
 - Offers discrete parameter optimization capability

• **POST inputs from INTROS**
 - Target payload
 - Gross Liftoff Mass/Stage dry masses
 - Propellant load
 - Reference areas
 - Booster data
 - Engine data
 - Shroud/LAS mass
 - Injected weight estimate

• **Additional inputs**
 - Initial position and orientation
 - Wind profile
 - Atmosphere model
 - Gravity model
Trajectory Analysis

- **Constraints**
 - Determined by ground rules
 - Acceleration
 - Dynamic pressure
 - Final orbit
 - Free molecular heating rate: determines shroud drop

- **Outputs**
 - Optimized injected mass/payload
 - Flight profile to reach desired orbit
 - Vehicle orientation in orbit
 - Final state vector of vehicle
INTROS Model Revision

• Data from performance run is fed into vehicle model
 – Event timing with velocity
 ▪ Booster burn/jettison
 - SRB overboard mass
 ▪ Shroud jettison
 ▪ Main Engine Cutoff and staging
 ▪ Sub-orbital events
 – Injected mass
 – Total velocity change

• Data used to resize stages
 – Plus/minus propellant
 – Plus/minus payload
 – Propellant offload if stage fixed

• Redundant calculations are performed
 – Verifications
 ▪ Engine power levels and throttle settings
 ▪ Propellant flow rates and transient mass
 ▪ Stage impulse

• Eliminates a lot of common errors and adds scrutiny
Specific information is passed to the structural analyst.
Structural Analysis - LVA

- Standalone application for quick turnaround launch vehicle structural design and analysis
 - Provides itemized masses for primary structural elements
- Written at MSFC in Visual Basic
- Uses time proven engineering analysis methods
 - Material properties, load factors, aerodynamic loads, stress, elastic stability
 - Loads are run as single combined worst case
 - Also capable of analyzing event-specific loads
- Program designed to operate with minimum input
- LVA and predecessors serving NASA for over 26 years
• **Itemized primary structure mass**
 – Tanks, skirts, shroud, intertank, interstage, thrust structure

• **Shear/bending moment/compression diagram**

![Graph of LVA Output](image)
• **Scale depiction of concept**
 – Station numbering
 – CG, CP, and concentrated masses
 – Identifies interferences and illustrates margins

• **LVA-determined masses are incorporated in INTROS**
• **For resizing purposes, new unit mass ratios are integrated**
Closing the Loop

- Iterative trajectory runs are made until injected mass predictions and actuals close within 300 lbm
- If loads break boundaries another LVA iteration is required
- Final report is generated (baseball card)
Sensitivities Short List

• Engine performance
 – Power level, thrust, impulse, mass
• Cargo or crew
• Shroud variables
 – Geometry, material, jettison time, payload density
• Boosters
 – Propellant, trace, case material, size, thrust, attach point
• Structural materials & design
 – Composites integration, battleship construction, tank location, hammerhead
• Mass Growth Allowance
• Ullage
• Flight Propellant Reserve
• Trajectory
 – Insertions orbit/inclination
 – Aerodynamic load constraints
 – Throttle profiles/engine out
• ACO ETO Team provides unique capability for NASA and MSFC
• Supported every agency / center level vehicle study from ESAS (2005) forward
• Jacobs ESTS employees are integral to this team
• The covered process is very streamlined & efficient
• Continued value through exterior input

• Thanks!

• Questions?