Hydrogen Leak Detection Sensor Database

Barton D. Baker
NASA – Marshall Space Flight Center
Integrated System Health Management and Sensors Branch (EV43)
Huntsville, AL

Joint Army Navy NASA Air Force (JANNAF)
December 8, 2010
Outline

• Background information
• Overview of database details
• Database Snapshot
• Sensor types
• Examples
• Technology use
• Acknowledgements
Background Information

• NASA remains interested in improving its ability to detect and assess hydrogen gas leaks in its space applications

• MSFC/EV43 looks to support the Technology Evaluation for Environmental Risk Mitigation (TEERM) activities
 – Surveyed existing hydrogen leak detection sensors
 – Received input from other NASA centers:
 • Glenn Research Center (GRC)
 • Kennedy Space Center (KSC)
 • White Sands Test Facility (WSTF)
Overview

• Hydrogen Leak Detection Database Specifics
 – Manufacturer
 – Sensor specification sheet
 – Target gas (hydrogen)
 – Concentration range (ppm or % of lower flammable limit)
 – Operating temperature
 – Dimensions
 – Weight
 – Manufacturer website
 – Technology use
 – General notes about the sensor
Database Snapshot

<table>
<thead>
<tr>
<th>#</th>
<th>Manufacturer</th>
<th>Sensor/Detector Specification Sheet</th>
<th>Target Gas</th>
<th>Concentration Range</th>
<th>Operation Temperature Range (°C)</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AppliedSensor Inc</td>
<td>HLS-440</td>
<td>Hydrogen (H2)</td>
<td>0 - 44,000 ppm; 0 - 4.4 % H2 in air</td>
<td>-40 -> +110 °C</td>
<td>82.2 x 42 x 17.3 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Manufacturer</th>
<th>Weight</th>
<th>Website</th>
<th>Technology Use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AppliedSensor Inc</td>
<td>50 g</td>
<td>http://www.appliedsensor.com/</td>
<td>H2 Storage/Fueling Facility; Test Area</td>
<td>The HLS-440 Hydrogen Leak Sensor incorporates a heated field-effect transistor with a catalytic metal gate stack as the gas-sensing layer.</td>
</tr>
</tbody>
</table>
Sensor Types

- Microelectromechanical Systems (MEMS)
- Dye
- Electrochemical
- Catalytic

<table>
<thead>
<tr>
<th>#</th>
<th>H2 Detection Approach</th>
<th>Mass (g)</th>
<th>Power (mW)</th>
<th>Sensitivity (ppm)</th>
<th>Accuracy at 2 % (%)</th>
<th>Inert/Cryogenic Operation</th>
<th>Response Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H2 MEMS</td>
<td>72</td>
<td>300</td>
<td>10</td>
<td>< 2</td>
<td>Yes</td>
<td>< 1</td>
</tr>
<tr>
<td>2</td>
<td>Dye</td>
<td>370</td>
<td>4000</td>
<td>15</td>
<td>3</td>
<td>No</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Electrochemical</td>
<td>500</td>
<td>2400</td>
<td>2</td>
<td>0.0001</td>
<td>No</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Catalytic</td>
<td>975</td>
<td>< 1000</td>
<td>15</td>
<td>3</td>
<td>No</td>
<td>< 12</td>
</tr>
</tbody>
</table>

JANNAF

December 2010
Sensor Type Examples

- Microelectromechanical Systems (MEMS) Device
 - GRC/Makel Engineering Sensor Unit
 - Kebaili Corporation – KHS-200 MEMS Micro-Pellistor Hydrogen Sensor

- Dye
 - Element One Chemochromic Sensing Material

- Electrochemical
 - Air Test Technologies – TR3200 Electrochemical Gas Sensor
 - Honeywell – Hydrogen Sensor Switch
 - Sensidyne, LP – Part No. 101236-D-1 H2 Sensor

- Catalytic
 - AppliedSensor Inc – HLS-440
 - Neodym Technologies Inc – ProtiSen - Catalytic Hydrogen Gas Sensor
 - US Industrial Products Co., Inc. – USI Catalytic H2 Sensor Model 7100
Technology Use

• Currently, there are 65 hydrogen leak detection sensors in the database.

• An attempt was made to determine the potential uses for each sensor.
 – Ground (Storage/Fueling Facility or Test Area)
 – Vehicle

• Most were determined to be used for ground purposes only.
Acknowledgements

Chris Conn
NASA - MSFC
Huntsville, AL

Gary Hunter
NASA - GRC
Cleveland, OH

Wade Olsen
NASA - KSC
Kennedy Space Center, FL

Steve Woods
NASA - WSTF
Los Cruces, NM