Introduction
In late 2006, the Mission Operations Directorate (MOD) at NASA began looking at ways to make training more efficient for the flight controllers who support the International Space Station. The average certification times for flight controllers spanned from 18 months to three years and the MOD, responsible for technical training, was eager to develop creative solutions that would reduce the time to 12 months. Additionally, previously trained flight controllers sometimes participated in more than 50 very costly, eight-hour integrated simulations before becoming certified. New trainees needed to gain proficiency with far fewer lessons and training simulations than their predecessors.

Approach
- Semi-structured critical incidents interviews conducted with seven experienced flight controllers.
- Model extracted from interviews by SME group.
- Model compared to nine existing models in literature and refined by SME group.
- Model tested and verified in reverse back to interviews by a research group.

Conclusions (to date)
- The modeling process promoted interest and learning within the organization.
- Having an explicit model increased the flexibility and fidelity of training plans.

Resulting Training
- Several model-based training options were proposed, including a classroom portion, paper-based simulations, mini-simulations with facilitated debriefs, and problem solving-focused mentoring sessions.
- Model can be used to help debrief and learn generalizable problem solving skills (rather than specific solutions unique to that particular case).

The Problem: How do we help novices quickly become expert problem solvers?

The Model: What does expert problem solving look like in Mission Control?

The Solution: Explicitly model how experts solve problems in our context.

Novices can be taught how to question and “re-sort” problem solving steps for different situations.

Ls Schmidt1, Kelley Slack1, Kathryn Keeton1, Immanuel Barshi2, Lynne Martin3, Robert Mauro4, William O’Keefe5, Evelyn Baldwin5, & Therese Huning5

https://ntrs.nasa.gov/search.jsp?R=20110010266

It is cyclical! Experts repeat iterations, and check points for these iterations can be provided to novices.