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Visualization of Global Sensitivity Analysis Results Based on 
a Combination of Linearly Dependent and Independent 

Directions  
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A useful technique for the validation and verification of complex flight 
systems is Monte Carlo Filtering—a global sensitivity analysis that tries to 
find the inputs and ranges that are most likely to lead to a subset of the 
outputs. A thorough exploration of the parameter space for complex 
integrated systems may require thousands of experiments and hundreds of 
controlled and measured variables. Tools for analyzing this space often have 
limitations caused by the numerical problems associated with high-
dimensionality and caused by the assumption of independence of all of the 
dimensions. To combat both of these limitations, we propose a technique that 
uses a combination of the original variables with the derived variables 
obtained during a principal component analysis.  

Nomenclature 

€ 

α  = The angle between the plotting plane and the planes of the projected hyperrectangle 

I. Introduction 
inding bugs in modern flight software is an arduous process. Interdependencies between the 
systems and subsystems of the flight vehicle and the environment are usually explored in the 

design phase using high-fidelity simulations. At this level, the interplay between the interfaces 
can be fully explored. Advances in computing power make it possible to try many thousands of 
combinations of input variables to exercise the behavior of the system. However, a thorough 
exploration of the entire flight envelope results in gigabytes of data that requires expert domain 
knowledge to interpret; and because of the high dimensionality of the data, it is difficult to pick 
out patterns with the human eye.  
 The Robust Software Engineering (RSE) group within the Intelligent Systems Division at 
NASA Ames Research Center has developed a multi-step Monte Carlo Filtering technique1,2 

called the Margins Analysis3-5 that automates much of the process necessary to identify unusual 
behaviors within the system and to isolate the critical ranges for suspicious inputs. We develop 
input test vectors using an n-factor combinatorial process9—the assumption is that most bugs are 
triggered by a maximum combination of two or three input variables; by guaranteeing that each 
combination of n input variables (where n is 2 or 3) appears in the test suite at least once we get a 
coverage guarantee while limiting the number of total test vectors within the suite. The output 
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behavior is analyzed for non-compliance with requirements and for unexpected structure using a 
combination of unsupervised6 and supervised7,8 machine learning techniques. Failures or 
unexpected results are collected and, when enough examples of a particular undesired behavior 
have been gathered, the data is automatically examined to determine which inputs (and ranges) 
demonstrate the most sensitivity with respect to the undesired behavior. This information is 
exploited in order to cause the undesired behavior to occur more often in future runs, and the 
aggregated data over all of the iterations can be used to identify bugs within flight software or 
within the simulation, or to determine the margins to failure as the systems pass from nominal to 
off-nominal behavior. 
 In current practice at NASA, the analysis can involve several hundred parameters over tens of 
thousands of trials. The unsupervised learning technique, a clustering technique that utilizes an 
expectation-maximization algorithm, has numerical difficulties at this level of dimensionality; 
we use a principal component analysis to reduce the dataset. The supervised learning technique, 
a treatment learning algorithm developed at West Virginia University, does not suffer from the 
same numerical difficulties as the clustering technique and can handle large numbers of 
parameters effortlessly. However, the treatment learning algorithm assumes that all of the 
parameters are independent; this assumption, when false, causes parameter ranges to be much 
larger than necessary and can cause the treatment learner to miss important sensitivities. A 
treatment learning analysis performed solely in the principle components space benefits from the 
fact that each transformed variable is linearly independent, but suffers from the difficulty of 
understanding the results in the transformed space. Each new direction in the principal 
component analysis is a linear combination of the original variables, so the answer that the 
treatment returns is a hyperrectangle in the space of the original variables. 
 We utilize the ability of the treatment learner to handle many dimensions, and ask it to 
perform an analysis over the data simultaneously in the original space and in the rotated space of 
the principle component analysis. As a post-processing step, we reduce the hyperrectangles in 
the principle component space to two- and three-dimensional projections in the original variable 
space. We then combine all of the information gained from the non-rotated and rotated spaces 
into two- and three-dimensional plots in the original variable space, so that they can be 
understood and interpreted by domain experts.  

 

II. Methodology 
We will discuss at length how we perform the principal component analysis, how we reduce 

dimensionality for the clustering algorithm, what data is given to the treatment learner and what 
data the treatment learner returns, how we choose the number of plots for each treatment, how 
we determine the dimensionality and axes for each plot, and how we plot the boundaries for the 
treatments. 

III. Results 
In standard practice, we ask the treatment learner to return a maximum of 10 treatments. Each 

treatment can consist of up to 4 variables. We place no restriction on whether these variables are 
in the original space or the principle component space. Ranges in the principle component space 
are first transformed into hyperrectangles in the original space, and then projected into two- or 
three-dimensional plots depending on the value of 

€ 

α , the angle between the primary two-
dimensional plotting plane and the parallel planes of the projected hyperrectangle. The primary 
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two-dimensional plotting plane is defined by the maximum components of the unit vector in the 
principle component direction when written as a linear combination of the variables in the 
original directions. 

Figure 1 shows an example treatment for a dataset obtained during a bicycle ride. There were 
10 variables for this dataset, and each of the 4435 time steps in the series was treated as a 
different experiment. The power calculation from the measured variables in the dataset was 
particularly noisy. Each data point in the set was rated according to the noise in the power 
calculation for some small time period surrounding the data point; the colormap goes from blue 
to red with the red points in the plots corresponding to the noisiest data points. The treatment 
returned for Figure 1 had 3 components (chosen by the algorithm from 20 components—10 
components in the original variable space and the 10 rotated directions): cadence, wind speed, 
and a principle component direction in 10-dimensional space where the two largest components 
when written in the original space were hill slope and wind speed. The two variables in the 
original space are plotted together as a two-dimensional plot on the left, and the red box shows 
that the noisiest data occurs at the highest wind speeds and cadence. The angle 

€ 

α  for the  

 
Figure 1. An example treatment for data obtained during the operation of a bicycle. The data are color-coded 
from blue to red with red corresponding to the noisiest power data and blue corresponding to the least noisy. The 
red lines outline the regions identified by the treatment learner as the most likely to contain the undesirable noisy 
data. In this treatment, it is clear to see from the first plot that the undesired data (in this case, noisy power data, 
plotted in red and outlined with a black box) occurs most often at high wind speeds when the rider is continuing to 
pedal the bicycle. This second plot in the treatment is a projection of a principal component analysis direction result 
into the original space. This plot shows us that the hill slope and the wind speed have a strong linear correlation 
and that the least desirable data occurs for a linear combination of high wind speed and high hill slope. The two 
plots together constitute a visual representation of the highest scoring treatment. 
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principal direction isolated in this treatment is less than 10 degrees, so the principal component 
information is plotted as a two-dimensional plot on the right. The red lines show the intersection 
of the almost vertical treatment hyperplanes with the plane defined by the hill slope and wind 
speed.  What immediately becomes apparent from the plot on the right is that the hill slope and 
wind speed are negatively linearly correlated, so that the highest wind speeds occur at the 
steepest downhill slopes. Interpreting the two plots together leads to the conclusion that the 
calculated power measurement is most likely to be faulty when the cyclist is free pedaling on the 
downhill slopes. 

IV. Conclusion 
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A useful technique for the validation and verification of complex flight 
systems is Monte Carlo Filtering—a global sensitivity analysis that tries to 
find the inputs and ranges that are most likely to lead to a subset of the 
outputs. A thorough exploration of the parameter space for complex 
integrated systems may require thousands of experiments and hundreds of 
controlled and measured variables. Tools for analyzing this space often have 
limitations caused by the numerical problems associated with high-
dimensionality and caused by the assumption of independence of all of the 
dimensions. To combat both of these limitations, we propose a technique that 
uses a combination of the original variables with the derived variables 
obtained during a principal component analysis.  

I. Introduction 
inding bugs in modern flight software is an arduous process. Interdependencies between the 
systems and subsystems of the flight vehicle and the environment are usually explored in the 

design phase using high-fidelity simulations. At this level, the interplay between the interfaces 
can be fully explored. Advances in computing power make it possible to try many thousands of 
combinations of input variables to exercise the behavior of the system. However, a thorough 
exploration of the entire flight envelope results in gigabytes of data that requires expert domain 
knowledge to interpret; and because of the high dimensionality of the data, it is difficult to pick 
out patterns with the human eye.  
 The Robust Software Engineering (RSE) group within the Intelligent Systems Division at 
NASA Ames Research Center has developed a multi-step Monte Carlo Filtering technique1,2 

called the Margins Analysis3-5 that automates much of the process necessary to identify unusual 
behaviors within the system and to isolate the critical ranges for suspicious inputs. We develop 
input test vectors using an n-factor combinatorial process9—the assumption is that most bugs are 
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triggered by a maximum combination of two or three input variables; by guaranteeing that each 
combination of n input variables (where n is 2 or 3) appears in the test suite at least once we get a 
coverage guarantee while limiting the number of total test vectors within the suite. The output 
behavior is analyzed for non-compliance with requirements and for unexpected structure using a 
combination of unsupervised6 and supervised7,8 machine learning techniques. Failures or 
unexpected results are collected and, when enough examples of a particular undesired behavior 
have been gathered, the data is automatically examined to determine which inputs (and ranges) 
demonstrate the most sensitivity with respect to the undesired behavior. This information is 
exploited in order to cause the undesired behavior to occur more often in future runs, and the 
aggregated data over all of the iterations can be used to identify bugs within flight software or 
within the simulation, or to determine the margins to failure as the systems pass from nominal to 
off-nominal behavior. 
 In current practice at NASA, the analysis can involve several hundred parameters over tens of 
thousands of trials. The unsupervised learning technique, a clustering technique that utilizes an 
expectation-maximization algorithm, has numerical difficulties at this level of dimensionality; 
we use a principal component analysis to reduce the dataset. The supervised learning technique, 
a treatment learning algorithm developed at West Virginia University, does not suffer from the 
same numerical difficulties as the clustering technique and can handle large numbers of 
parameters effortlessly. However, the treatment learning algorithm assumes that all of the 
parameters are independent; this assumption, when false, causes parameter ranges to be much 
larger than necessary and can cause the treatment learner to miss important sensitivities. A 
treatment learning analysis performed solely in the principle components space benefits from the 
fact that each transformed variable is linearly independent, but suffers from the difficulty of 
understanding the results in the transformed space. Each new direction in the principal 
component analysis is a linear combination of the original variables, so the answer that the 
treatment returns is a hyperrectangle in the space of the original variables. 
 We utilize the ability of the treatment learner to handle many dimensions, and ask it to 
perform an analysis over the data simultaneously in the original space and in the rotated space of 
the principle component analysis. As a post-processing step, we reduce the hyperrectangles in 
the principle component space to two- and three-dimensional projections in the original variable 
space. We then combine all of the information gained from the non-rotated and rotated spaces 
into two- and three-dimensional plots in the original variable space, so that they can be 
understood and interpreted by domain experts.  

II. Methodology 
A Hamel basis, or simply basis, is a set of vectors (usually orthonormal) that are used in 

linear combination to describe every other vector in a vector space.  One familiar basis is the 
normal vectors along the x, y, and z axes of the Cartesian coordinate system.  A principal 
components analysis (PCA) is a way of discovering the basis in which some data has the most 
meaning.  Assume we have some two-dimensional data as in Fig. 1.  This data was measured 
using the arbitrary x and y axes, but it is obvious by visual inspection that most of the data falls 
on a line.  A PCA analysis will discover the orthogonal vectors ξ and η in which most of the 
variation is explained (all of the variation occurs in ξ and none in η).  There are several 
techniques for performing a PCA analysis; we use the singular value decomposition (SVD)10.  
The SVD factors a data matrix D with m rows and n columns into three new matrices U, Σ , and 
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€ 

D =UΣVT  (1) 
where U and V are orthogonal and Σ  is diagonal.  For the tests we perform, m is usually much 
larger than n.  The matrix UT is the change of basis matrix from the basis k used to describe D, 

 (2) 
 
Figure 1. An illustration of 
basis transformation. The 
circled data in plots (a) and 
(b) is highly linearly 
correlated.  A PCA finds the 
new basis vectors, shown in 
red, that should be used in 
order to explain most of the 
variation in the data. 

the original data, to the 
basis κ used to describe 
Δ , the transformed data.  
The columns of V are 
the vectors of the new 
basis as described in the 

original basis.  The transformed dataset Δ  is found by 
                                                                     

€ 

Δ =DVT . 
A PCA is usually done as a first step in reducing dimensionality for a dataset.  The values on 

the diagonal of Σ  are the eigenvalues σ of DTD, the covariance matrix of D.  These eigenvalues 
are also known as singular values, and the m by n matrix Σ  is ordered so that that largest singular 
value is at the upper left of the diagonal and the smallest is at the bottom right, or 

                                                     

  

€ 

Σ ≡

σ1 0


0 σm
0

 

 

 
 
 
 

 

 

 
 
 
 

 (3) 

where 

€ 

σ1 ≥σ i ≥σm .  This means that the leftmost column of V is the basis vector that contains 
the most information about the data in D and the rightmost column of V is the basis vector that 
contains the least.  A zero singular value signifies that there is no variation in the data when 
represented in the transformed basis κ.   
 The PCA is traditionally used to reduce dimensionality for a dataset.  To decide how many 
eigenvectors in the new basis to keep we set a bottom threshold 

€ 

0 ≤ Imin ≤1and define I as  

                                                           

€ 

I =

σ i
i=1

k

∑

σ j
j=1

m

∑
. (4) 

We keep the smallest number k columns of V such that I is larger than Imin.  In practice for the 
large aerospace and space simulations run within the RSE group, choosing an Imin of 1 
(essentially telling the algorithm to keep all principal directions that can explain any variation in 
the data), results in keeping about 50% of the principal directions.  The reduced dataset Δ reduced is 



 

 
American Institute of Aeronautics and Astronautics 

 

 

4 

the first k columns of Δ . Most clustering algorithms, including the one used by the RSE group, 
are subject to numerical errors for data of high-dimensionality; giving the reduced dataset to the 
clustering algorithm increases performance and accuracy. 
  For our Monte Carlo Filtering analysis, we also perform supervised learning in the guise of 
treatment learning.  Treatment learning is a fast sampling method that finds a minimum set of 
rules that predict a known outcome.  In our case, we are usually looking for a set of inputs and 
ranges for a simulation that will cause some failure of a requirement.  Treatment learning is not 
subject to the sorts of numerical errors that plague clustering algorithms, so there is no need to 
give the treatment learner a reduced dataset.  However, treatment learning is subject to an error 
that many rule-learners make, and that is the assumption that all of the data parameters are 
independent.  We use the PCA in a novel way to eliminate the independence assumption when 
data is highly linearly correlated.  Figure 2 gives an illustrative hypothetical example.  In Fig. 2, 
assuming the linear independence of the data forces the treatment learner to provide ranges much 
larger than necessary.  If the ranges can be defined in the transformed basis, the graphical picture 
is easier to understand. 

 
Figure 2. A simplified example of the difference between a treatment result in the independent and 
dependent directions. The data in plots (a) through (c) is highly linearly correlated; the data marked by squares is 
the data of interest.  The treatment learner is forced to find rules only on x and y for plot (b) because the data 
directions x and y were assumed to be independent.  In plot (c), the treatment learner was allowed to use ranges in 
the transformed basis.  This results in a treatment with a smaller area.  If the data had been more highly linearly 
correlated, the volume of the box would have been even smaller. 

  The treatment learner does not know which basis the data is defined in.  As a result, the result 
from the treatment learner that the data of interest lies in the transformed basis direction between 
the values 0 and 1 may be difficult to interpret when the transformed basis direction is a linear 
combination of the original meaningful variables.  In order to make sense of the treatment learner 
results when transformed data is used, we must transform the result back into the original basis 
and plot it graphically. 
 Assume that the treatment learner gives a result that transformed basis vector 

€ 

ˆ t j  should be 
restricted to values between a and b, and the original n variables form the basis 

€ 

ˆ d i  where i ranges 
between 1 and n.  The first step is to use the jth  column of V to discover that 

  

€ 

ˆ t j = c1
ˆ d 1 ++ cn

ˆ d n .  
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In general, the human eye becomes confused when trying to interpret two-dimensional plots with 
more than two dimensions, so we will use the two original variables 

€ 

ˆ d i with the largest values of 
c as the axes for the plot, cmax and camax.  The range given by the treatment learner is two 
hyperplanes that intersect this two-dimensional plane in a line. 
 In order to interpret the plot, we also need to know how much information we’ve lost by 
projecting the data into two-dimensions.  In order to do this, we project our hyperplane into a 
two-dimensional plane slicing through three-dimensional space.  The three-dimensional space is 
itself a projection—two dimensions are formed by our two-dimensional plot and the third 
dimension contains all of the other original basis vectors.  If our projected hyperplane is 
orthogonal to the two-dimensional plot, the graphical construction we’ve created is easily 
interpreted.  Each transformed basis plot is labeled with the angle 

€ 

α , the angle between the 
orthonormal vector to our two-dimensional plot and the projected hyperplane.  Figure 3 gives an 
example. 

  
Figure 3. The projected hyperplane from the 
treatment results. The basis vectors are variables 
from the original data—the variables labeled d are 
the original variables we are using for the two-
dimensional plot.  The vertical basis vector is the 
projected dimension of all of the other original 
variables. The treatment results form a hyperplane in 
the basis of the original data.  This hyperplane is 
projected to a two-dimensional plane in the new 
three-dimensional space. The angle alpha is the 
angle between the vertical dimension and the 
projected hyperplane.  If this angle is small, the two-
dimension plot in di and dj will be easy to interpret. 

III. Results 
In standard practice, we ask the treatment 

learner to return a maximum of 10 treatments. 
Each treatment can consist of up to 4 variables 
along with the implicated ranges. We place no 
restriction on whether these variables are in 
the original space or the principle component 

space; both sets of data are handed simultaneously to the treatment learner. Ranges in the 
principle component space are first transformed into hyperrectangles in the original space, and 
then projected into two-dimensional plots. Each plot that uses the transformed basis reports the 
value of 

€ 

α , the angle between the normal vector to the primary two-dimensional plotting plane 
and the parallel planes of the projected hyperrectangle. The primary two-dimensional plotting 
plane is defined by the maximum components of the unit vector in the principle component 
direction when written as a linear combination of the variables in the original directions. 

Figure 4 shows an example treatment for a dataset obtained during a bicycle ride. There were 
10 variables for this dataset, and each of the 4435 time steps in the series was treated as a 
different experiment. The power calculation from the measured variables in the dataset was 
particularly noisy. Each data point in the set was rated according to the noise in the power 
calculation for some small time period surrounding the data point; the colormap goes from blue 
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to red with the red points in the plots corresponding to the noisiest data points. The data for this 
figure contained information only in the primary basis.  

 
Figure 4. An example treatment 
using only the original variables. 
The data are color-coded from blue to 
red with red corresponding to the 
noisiest power data and blue 
corresponding to the least noisy. The 
red lines outline the regions identified 
by the treatment learner as the most 
likely to contain the undesirable noisy 
data. In this treatment, it is clear to 
see that the undesired data (in this 
case, noisy power data, plotted in red) 
occurs most often at high wind speeds 
when the rider is continuing to pedal 
the bicycle.  

 
The treatment returned for 
Figure 5 had 3 components 
(chosen by the algorithm from 
20 components—10 of these 
components were in the original 
variable space and the 10 were 
in the rotated directions).  The 
treatment implicated cadence, 
wind speed, and a principle 
component direction in 10-
dimensional space where the 
two largest components when 
written in the original space 
were hill slope and wind speed. 
The two variables in the 

original space are plotted together as a two-dimensional plot on the left, and the red box shows 
that the noisiest data occurs at the highest wind speeds and cadence. The angle 

€ 

α  for the 
principal direction isolated in this treatment is less than 10 degrees, so the principal component 
information is plotted as a two-dimensional plot on the right and is easy to interpret. The red 
lines show the intersection of the almost vertical treatment hyperplanes with the plane defined by 
the hill slope and wind speed.  What immediately becomes apparent from the plot on the right is 
that the hill slope and wind speed are negatively linearly correlated, so that the highest wind 
speeds occur at the steepest downhill slopes. Interpreting the two plots together leads to the 
conclusion that the calculated power measurement is most likely to be faulty when the cyclist is 
free pedaling on the downhill slopes. 
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Figure 5. An example treatment for data obtained during the operation of a bicycle. The data are color-coded 
from blue to red with red corresponding to the noisiest power data and blue corresponding to the least noisy. The 
red lines outline the regions identified by the treatment learner as the most likely to contain the undesirable noisy 
data. In this treatment, it is clear to see from the first plot that the undesired data (in this case, noisy power data, 
plotted in red) occurs most often at high wind speeds when the rider is continuing to pedal the bicycle. This second 
plot in the treatment is a projection of a principal component analysis direction result into the original space. This 
plot shows us that the hill slope and the wind speed have a strong linear correlation and that the least desirable 
data occurs for a linear combination of high wind speed and high hill slope. The two plots together constitute a 
visual representation of the highest scoring treatment. 

IV. Conclusion 
These results demonstrate how the PCA can be used to overcome the limitations given by 

machine learning algorithms that assume the linear independence of data.  In order to interpret 
the results, the transformed basis dimensions must be translated back to the original basis.  
Graphical representations of the rules given by these learners are then easy to interpret, and 
correlations between the original variables are easy to understand. 
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