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PA-1 BET Overview 

•  Best Estimated Trajectory (BET) objective: 
–  Produce reconstructed trajectory of the PA-1 flight to understand 

vehicle dynamics and aid other post flight analyses 
–  Leverage all measurement sources taken of vehicle during flight 

to produce the most accurate estimate of vehicle trajectory 
– Generate trajectory reconstructions of the Crew Module (CM), 

Launch Abort System (LAS), and Forward Bay Cover (FBC) 
•  BET analysis was started immediately following the PA-1 mission 

and was completed in September, 2010 
– Quick look version of BET released 5/25/2010: initial repackaging 

of SIGI data 
–  Preliminary version of BET released 7/6/2010: first blended 

solution using available sources of external measurements 
–  Final version of BET released 9/1/2010: final blended solution 

using all available sources of data 
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NewSTEP 

•  Numerical approach used in STEP (Statistical Trajectory Estimation 
Program) applied extensively in 1960s-1980s (X-23A PRIME, Viking, 
Pioneer Venus, Shuttle) 

•  AMA developed NewSTEP with numerous enhancements including: 
–  MATLAB Based 
–  Additional Measurements 
–  Numerical Improvements 
–  Updated filters 

•  NewSTEP successfully used for trajectory reconstruction in recent 
flight projects: 

–  Mars Exploration Rover (MER) 
–  X-43A (Hyper-X) Mach 7 and Mach 10 Flights 
–  Ballistic range data reduction for CEV 
–  ARES-1X 
–  MSL MEADS 
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NewSTEP Flow Chart 

•  Based on Iterative Extended Kalman Filter (IEKF) code to compute optimal 
6-DOF trajectory based on all available measurements taken during flight 

•  IEKF is a recursive weighted least-squares estimation that optimally blends 
sensor data and mathematical models to produce minimum variance 
estimates of the system state and uncertainty 
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Sources of Measurement Data 

•  SIGIs provide primary source of acceleration and rate information 
used to derive a deterministic trajectory solution 

•  Measurements from SIGI-1 and SIGI-2 are filtered through low pass 
frequency algorithm before use in NewSTEP 

•  Additional external sources of data: 
–  Radar measurements taken by WSMR range assets 
– Optical measurements taken by WSMR range assets 
–  Atmospheric model derived from day of flight balloon 

measurements (winds, pressure, density, temperature) 
– Mass properties model derived from Abort Motor burn curve (AM 

mass known as function of time) 
•  FADS data measurements were unavailable at time of Final BET 

release 
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SIGI Data Acquisition 

•  Linear acceleration and angular rate measurements were taken from 
SIGI-1 and SIGI-2 using the Dryden Flight Data Archive System 
(FDAS) 

•  SIGI data recorded at 100Hz 
•  Acceleration data provided to NewSTEP was derived from recorded 

SIGI velocities through differentiation 
•  When integrated, derived accelerations provided a strong match to 

the SIGI navigated position solution 
•  Velocities were corrected for lever-arm offset between SIGI and 

center of gravity using the day of flight mass properties model: 
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Windowing Raw Data 

•  SIGI data filtered using a low-pass frequency domain filter 
•  Filtering technique applied using the System Identification Program for 

Aircraft (SIDPAC) toolbox 
•  Different regions of trajectory were filtered at different frequencies depending 

on dynamic behavior during region 
•  Retain dynamics of vehicle while filtering out acoustics, structural, sensor 

noise, etc. 
•  High dynamic windows: Ignition, Sep Events (LAS, Drogue, Main) 
•  Low dynamic windows: Reorientation, Under chutes 
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Transition Between Windows 

•  Fourier filtering method produces anomalous behavior at beginning 
and end of data 

•  To prevent undesired effects due to filtering, windows are overlapped 
and filtered data in overlapping region is computed by weighted 
average 
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Ignition Acceleration 

•  Filtering acceleration at ignition produced high frequency oscillations 
between 0.25 and 0.75 seconds 

•  Oscillations caused by the high filtering frequency required to capture 
the rise rate in x-body acceleration 

•  Undesired frequency content passed through filter as a result 
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Radar Measurement Data 

•  Fourteen track assignments via C-band ground based radars 
•  Three radars provided good track quality of the CM 
•  One radar provided good track quality of the LAS (10 sec after 

jettison) 
•  No radars adequately tracked the FBC 
•  Radar data at low elevation angles (liftoff and landing) were not used 

due to multipath errors 
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Optical Measurement Data 

•  Optical cameras tracked the LAV/CM flight for a majority of the 
mission 

•  As many as 10 tracking stations captured LAV/CM flight providing a 
highly accurate position solution with very low uncertainties 

•  Lever-arm offset correction was made to account for shift between 
optical tracking location and vehicle center of gravity 
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Final BET Results - LAV 
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Final BET Results - LAV 
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Final BET Results - LAV 
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Final BET Results - LAV 
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Final BET Results - CM 
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Final BET Results - CM 
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Final BET Results - CM 
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Final BET Results - CM 
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Summary Slide 

•  PA-1 BET provided high fidelity reconstruction of trajectory using all 
available sources taken onboard and externally 

–  SIGI sensor data 
–  Radar data 
– Optical data 
–  Day of flight atmosphere model and mass properties model 

•  Sources of data not used: 
–  FADS 
–  Vibration accelerometers 

•  Comprehensive analysis and NewSTEP heritage provides strong 
confidence in final results 
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Questions? 


