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Abstract There are many real-world problems whose mathematical models turn out to be 
linear systems Ax = b, where A is an m x n matrix. Each equation of the linear system 
is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, 
and 5 oranges cost $10, is mathematically modeled as an equation 4xI + 6x2 + 5X3 = 10 , 

where XI' x 2 ' X 3 are each cost of one mango, that of one banana, and that of one orange, 

respectively. All the information put together in a specified context, constitutes the 
physical problem and need not be all distinct. Some of these could be redundant, which 
cannot be readily identified by inspection. The resulting mathematical model will thus 
have equations corresponding to this redundant information and hence are linearly 
dependent and thus superfluous. Consequently, these equations once identified should be 
better pruned in the process of solving the system. The benefits are (i) less computation 
and hence less error and consequently a better quality of solution and (ii) reduced storage 
requirements. In literature, the pruning concept is not in vogue so far although it is most 
desirable. It is assumed that at least one information, i.e. one equation is known to be 
correct and which will be our first equation. 

In a numerical linear system, the system could be slightly inconsistent or inconsistent 
of varying degree. If the system is too inconsistent, then we should fall back on to the 
physical problem (PP), check the correctness of the PP derived from the material 
universe, modify it, if necessary, and then check the corresponding mathematical model 
(MM) and correct it. In nature/material universe, inconsistency is completely non
existent. If the MM becomes inconsistent, it could be due to error introduced by the 
concerned measuring device and/or due to assumptions made on the PP to obtain an MM 
which is relatively easily solvable or simply due to human error. No measuring device 
can usually measure a quantity with an accuracy greater that 0.005% or, equivalently 
with a relative error less than 0.005%. Hence measurement error is unavoidable in a 
numerical linear system when the quantities are continuous (or even discrete with 
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extremely large number). Assumptions, though not desirable, are usually made when we 
find the problem sufficiently difficult to be solved within the available 
means/tools/resources and hence distort the PP and the corresponding MM. The . error 
thus introduced in the system could (not always necessarily though) make the system 
somewhat inconsistent. If the inconsistency (contradiction) is too much then one should 
defmitely not proceed to solve the system in terms of getting a least-squares solution or 
the minimum-norm least-squares solution. All these solutions will be invariably of no 
real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is 
near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing 
solutions are useful. Pruning in such a near-consistent system should be performed based 
on the desired accuracy and on the definition of near-linear dependence. In this article, 
we discuss pruning over various kinds of linear systems and strongly suggest its use as a 
pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the 
solution process (algorithm) of the system, (ii) reduce both computational error and 
complexity of the process, and (iii) take into account the numerical zero defined in the 

context. These are precisely what we achieve through our proposed O(mn2) algorithm 

presented in Matlab, that uses a subprogram of solving a single linear equation and that 
has embedded in it the pruning. 

Keywords: Inconsistency; Linearly dependent rows; Linear system; Linsolver; Pruning
based Matlab implementation 

1. Introduction 

To err is human while Not to err is computer could be two proverbs - the first one was 
existing from time immemorial and will continue to exist eternally. The second one is of 
recent origin and is understood with respect to a modem digital computer of late 
twentieth century and later. Here "err" implies mistake. Any living being - a human 
being including a superman/woman as well as an animal or even an insect - are prone to 
commit mistake while a computer does not. There exists no living being on earth or 
possibly in the universe, who can say that he does not commit a mistake! Under these 
circumstances there is no need to have redundant information to remain in a computing 
system so that an error (mistake) can be detected by this redundant information. 
Redundancy in some physical systems (and consequently in their corresponding 
mathematical models) could be helpful in detecting errors and correcting them [1-3]. In 
the case of linear systems, redundant information is not only of not any use but also does 
contribute to unnecessary computations and consequent additional error injection in the 
solution using a computer [ also refer 4-9]. 

A linear equation in a system is a mathematical model of an information. For 
instance, the mathematical ~odel of the information "3 mangoes, 4 oranges, and 5 
bananas cost $ 6" could be written as 3x} + 4X2 + 5X3 = 6, where x j , i = 1,2,3 are the unit 

cost (in dollar) of one mango, one orange, and one banana, respectively. Similarly, the 
mathematical models of the information "2 mangoes, 2 orange, and 4 bananas cost $ 4" 
and "5 mangos, 6 oranges, and 9 bananas cost $ 10" are 2x} + 2X2 + 4X3 = 4 and 

5x} +6x2 +9X3 = 10, respectively. Not all these three information are distinct. It is not, in 



general, possible to detect by inspection or by any simple trick whether the given 
information are distinct or not. An information may be generated/derived from other 
specified information in a system of information or, equivalently, in a system of linear 
equations. The derived information will not be considered distinct since it does not add to 
the system any new information. Such a derived information or, equivalently, a linear 
equation is redundant and is called linearly dependent on the other equation(s). This 
linearly dependent equation is of no use so far as the/a solution of the system is 
concerned and hence should be pruned/weed out. Such a pruning is not done before or in 
the process of solving a linear system and consequently more storage locations more 
computations, and more errors result. However, there are many linear systems occurring 
in a mathematical model, which could have all the linear equations linearly independent. 
For example, a partial differential equation or a system of partial differential equations -
a mathematical model of a physical (real-world) problem, when approximated by a finite
difference scheme for a numerical solution, could produce a tri-diagonal system of linear 
equations, all of which are linearly independent [10, 11]. In such a situation, the question 
of pruning does not, in general, arise. Even if the system is subjected to pruning, no 
pruning will take place. On the other hand, there are plenty of real-world mathematical 
models, each of which is a linear system consisting of redundant (linearly dependent) 
equations. In the area of operations research, specifically, in the problems of least-squares 
curve fitting and in linear programs consisting of a system of linear equality2 constraints 
(linear equations) we might encounter many linearly dependent (redundant) equations in 
the concerned system. We will consider here numerically linearly dependent equations 
rather than mathematically linearly dependent equations. Mathematically linearly 
dependent equations will always be invariably numerically linearly dependent while the 
converse is not true. These are connected to mathematical zero and numerical zero. While 
the mathematical zero is the absolute zero, a numerical zero is not. A numerical zero is 
any quantity which is less than the minimum permitted relative error (in magnitude). For 
instance, if the quantity of higher order accuracy is Q and that of lower order accuracy is 

Q' , then the relative error in the quantity Q' is 1 Q - Q' 1 I 1 Q I . lithe minimum permitted 

relative error in Q' is 0.5 X 10-4, then any value less than 0.5 x 10 -4 1 Q 1 in magnitude 

will be considered a numerical zero. We will be concerned here with the pruning of the 
numerically linearly dependent equations from the system as these do not add 
numerically any new information to the system. Such a pruning will always remove 
mathematically linearly dependent equations from the system since mathematically 
linearly dependent equations constitute a proper subset of numerically linearly dependent 
equations. In fact, before solving a linear system, i.e., computing a numerical solution of 
the consistent system or obtaining a least-squares solution (may not be unique) of the 
inconsistent system or determining the minimum-norm least-squares solution (unique) of 
the consistent/inconsistent system, we could use pruning as a pre-processor or we could 

2 So far as the linear inequality constraints are concerned, we usually add (subtract) slack (surplus) 
variables to convert inequalities to equations and then deal with the system of equations rather than 
inequalities directly. This is mainly because we have a rich information base for the theory of equations 
unlike that for the theory of inequalities [12]. The resulting equations here will be all linearly independent 
and hence the question of pruning does not arise. . 



use pruning as an integral part of the solution process. In both the cases, the 

computational complexity is O(n 3
). 

In section 2, we provide a physically concise Linsolver algorithm with pruning as its 
integral part of the solution process along with a Matlab - a highest level programming 
language - code. This algorithm produces in addition to the solution vector x of the 
given linear system Ax = b , the rank of the m x n matrix A, the orthogonal projection 

operator P = 1 - A+ A , where A+ is the Moore-Penrose inverse of the matrix A. It also 
detects numerical/mathematical inconsistency. The Matlab program can be easily 
followed just like the algorithm written in a pseudo-code (in English). So we have 
omitted presenting the pseudo-code version of the algorithm. This Matlab code (actual 
program) has additional advantage that allows the reader to use the code readily by 
simply copying, pasting, and execute the code/program with specified inputs A, b . All 

that is required for the reader to have the Matlab software implemented on his 
laptop/desktop. Section 3 consists of numerical examples while section 4 comprises 
conclusions. 

2. Linsolver and Its Pruning-based Matlab Implementation 

We consider the linear system Ax = b , where A is an m x n matrix and b is an m x 1 
vector. Let 1 be an n x n identity (unit) matrix. We provide below an algorithm called 

Linsolver [12] which is used as the starting point for a Matlab implementation of the 
algorithm with pruning as its in-built feature. 

Linsolver Let a/ be the i - th row of A. Then a; is the column vector. The following 

algorithm - a modified version of the algorithms in Lord et al. [15, 16] - finds a 
particular solution x. It obtains as a by-product the orthogonal projection operator 

P = 1 - A+ A [17-23] , where A+ is the minimum-norm least-squares inverse of A and 
the rank r of A . 

The Linsolver 

P = 1; x = 0; r = 0; for i = 1 to m do begin eqn(a;,bp P,x); r = r + c end 

procedure eqn(a,b,P, x ); (*obtains a solution of the equation d x = b *) 

begin c = 0; u = Pa; v =11 u 11 2; inconsistency = b - at x; if "* 0 then 

begin P = P - uu t / v; x = x + inconsistency x u / v; c = 1 end else 

if inconsistency "* 0 then Ax = b is inconsistent and exit 

end; (*The foregoing x is simply multiplication of vector u by a scalar. *) 

Complexity of Linsolver The computational complexity of the procedure eqn is O(n\ 

Since the number of applications of eqn cannot exceed m, Linsolver is O(mn2
). 



Computational Linsolver Since the numerical zero in a floating-point arithmetic is not the 
same as the mathematical zero [4], the algorithm Linsolver needs the following 
modifications, if we need k significant digit accuracy, before it is implemented on a 
digital computer. Let ~ denote 'is to be replaced by'. 

v :;t:0~ v ~0 .5 x l0 -k a and 

inconsistency :;t: 0 ~ inconsistency ~ 0.5 x I O-k b 
m n m 

where a = (L L I a ij I) I( mn) , b = L I bi I 1m. If we desire k decimal digit accuracy 
i= \ j =\ i= \ 

then a and b should be removed or, equivalently, a = b = 1 should be taken. It can be 
seen that 10glo(lIrelative error) gives the number of significant digits up to which the 
result/quantity is correct while 10glO(lIabsolute error) provides the number of decimal 
digits up to which the quantity is correct. The later one, however, is not useful in most 
applications. 

The following Matlab program which is self-explanatory (i) computes the orthogonal 
projection operator P = 1 - A+ A of the matrix A , where A+ is the Moore-Penrose 
inverse of the rectangular matrix A , (ii) produces a solution to the system if the system is 
consistent, (iii) prunes the redundant (linearly dependent) rows of the system if the 
system is consistent, depicts the rank of the matrix A, (iv) displays the pruned system, 
where the pruned matrix is evidently full-row rank and the system is consistent, (v) 
provides a solution to the system, and (vi) also produces a nontrivial solution of the 
system if the system is homogeneous, i.e. , if Ax = 0 (null column vector). 

function pruningbasedlinsolver2(A,b); 
B=A; c=b; rrow=O; 
[m n]=size(A); p=O; 
x=zeros(n,l); r=O; P=eye(n); k=l; 
abar=sum(sum(abs(A»)/(m*n); bbar=sum(abs(b»/m; 
for i = l:m 

a=A(i,:)'; brow=b(i); u=P*a; v=(norm(u»A2; inconsistency = brow-
a'*x; 

end 

if abs(v) >= O.00005*abar %Permits 4 significant digit accuracy 
P=P-u*u'/v; x = x + inconsistency*u/v; r=r+l; 

else 

else 

end 
end 

if abs(inconsistency) > O.00005*bbar 
disp( ' Linear system Ax=b is inconsistent . ' ); p=l; 
break ; 

% Store indices of redundant rows in a vector . 
redrow(k)=i; k=k+l ; rrow=l; 

disp( 'The orthogonal projection operator P=I-AA+A is' ) ; P 
%If the system is homogeneous, i . e. ifAx=O (always consistent) , then 
% a solution is x=Pz , where z is an arbitrary column vector . 
if bbar==O 

z=rand(n,l) ;disp( 'A nontrivial solution to Ax=O is ' ) ;P*z 
end 
% Prune the redundant rows of the augmented matrix (A , b) of Ax=b. 



if rrow==l 
c(redrow)=[]; B(redrow,:)=[]; 
end 
% Display the results. 
if p -= 1 

S=size(B); 
if S(l)<=m 

disp( 'A solution to the system is ' ); disp(x); 
disp( 'The rank of the matrix A is ' ); disp(r); 
disp( 'The pruned system Bx=c has Band cas' ) ; B, c 

else 
disp( 'The solution to the system is ' ); disp(x); 

end 
end 

3. Numerical Examples 

We illustrate the foregoing algorithm in section 2 by considering the following numerical 
examples. 

Example J (A 5 x 4 consistent matrix equation) 

»A=[12 3 4;2 4 6 8; 3 6 9 12;1 1 1 1; 1 -2 1 -3], b=[10 
20 30 4 -3]' ,pruningbased1inso1ver2(A,b) 

A = 

b 

1 
2 
3 
1 
1 

10 
20 
30 

4 
- 3 

2 
4 
6 
1 

-2 

3 
6 
9 
1 
1 

4 
8 

12 
1 

- 3 

The orthogonal projection operator P=I-A A+A is 

P 

0 . 28 1 6 
- 0.3218 
-0.2011 

0 . 2414 

- 0.32 1 8 
0.3678 
0.2299 

- 0.2759 

- 0.2011 
0.2299 
0.1437 

- 0.1724 

A solution to the system is 

0 . 2414 
- 0 . 2759 
- 0 . 1724 

0.2069 



1. 00 00 
1. 0000 
1 .0 000 
1. 0000 

The rank of t h e ma t ri x A is 
3 

The p run e d s yst e m Bx =c h as Ban d c as 

B = 

c = 

1 
1 
1 

1 0 
4 

- 3 

2 
1 

- 2 

3 
1 
1 

4 
1 

- 3 

Example 2 (A 5 x 4 inconsistent matrix equation) 

» A=[1 2 3 4;2 4 6 8; 3 6 9 12;1 1 1 1; 1 -1 1 -1], b=[10 20 20 4 
0]' ,pruningbasedlinsolver2(A,b) 

A= 

b= 
10 
20 
20 
4 
o 

1 
2 
3 
1 
1 

2 
4 
6 
1 

-1 

3 
6 
9 
1 
1 

4 
8 

1 2 
1 

- 1 

Linear system Ax=b is inconsistent (no solution). 

The orthogonal projection operator P=I-AI\+A is 

p= 
0.9667 -0.0667 -0.1000 -0.1333 

-0.0667 0.8667 -0.2000 -0.2667 

l 



-0.1000 -0.2000 0.7000 -0.4000 
-0.1333 -0.2667 -0.4000 0.4667 

Example 3 (An 8 x 5 random linear system (overdetermined)) 

» A=rand(8,S), b=sum(A ')' ,pruningbasedlinsolver2(A,b) 

A= 
0.4018 
0.0760 
0.2399 
0.1233 
0.1839 
0.2400 
0.4173 
0.0497 

b= 
3.3091 
2.2020 
1.8550 
1.8206 
1.9863 
1.5837 
2.5163 
1.4749 

0.9027 
0.9448 
0.4909 
0.4893 
0.3377 
0.9001 
0.3692 
0.1112 

0.7803 0.5752 0.6491 
0.3897 0.0598 0.7317 
0.2417 0.2348 0.6477 
0.4039 0.3532 0.4509 
0.0965 0.8212 0.5470 
0.1320 0.0154 0.2963 
0.9421 0.0430 0.7447 
0.9561 0.1690 0.1890 

The orthogonal projection operator P=I-N'+A is 

p= 
1.0e-014 * 
0.0912 -0.0163 0.1846 -0.0090 -0.0291 
-0.0163 -0.0999 0.1277 0.1166 0.0083 
0.1846 0.1277 -0.1110 -0.1499 -0.0971 
-0.0090 0.1166 -0.1499 0.1277 -0.0916 
-0.0291 0.0083 -0.0971 -0.0916 0.0791 

A solution to the system is 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

The rank of the matrix A is 5 

-- 1 
I 
I 



The pruned system Bx=c has Band c as 

B= 
0.4018 0.9027 0.7803 0.5752 0.6491 
0.0760 0.9448 0.3897 0.0598 0.7317 
0.2399 0.4909 0.2417 0.2348 0.6477 
0.1233 0.4893 0.4039 0.3532 0.4509 
0.1839 0.3377 0.0965 0.8212 0.5470 

c= 
3.3091 
2.2020 
1.8550 
1.8206 
1.9863 

Example 4 (Another 8 x 5 over-determined random system) 

» A=rand(8,5), b=sum(A')' ,pruningbasedlinsolver2(A,b) 

A= 
0.4018 
0.0760 
0.2399 
0.1233 
0.1839 
0.2400 
0.4173 
0.0497 

b= 
3.3091 
2.2020 
1.8550 
1.8206 
1.9863 
1.5837 
2.5163 
1.4749 

0.9027 
0.9448 
0.4909 
0.4893 
0.3377 
0.9001 
0.3692 
0.1112 

0.7803 0.5752 0.6491 
0.3897 0.0598 0.7317 
0.2417 0.2348 0.6477 
0.4039 0.3532 0.4509 
0.0965 0.8212 0.5470 
0. l320 0.0154 0.2963 
0.9421 0.0430 0.7447 
0.9561 0.1690 0.1890 

The orthogonal projection operator P=I-AA+A is 

P= 
1.0e-014 * 
0.0912 -0.0163 0.1846 -0.0090 -0.0291 



-0.0163 -0.0999 0.1277 0.l166 0.0083 
0.1846 0.1277 -0.1110 -0.1499 -0.0971 

-0.0090 0.1166 -0.1499 0.l277 -0.0916 
-0.0291 0.0083 -0.0971 -0.0916 0.0791 

A solution to the system is 

l.0000 
l.0000 
l.0000 
l.0000 
l.0000 

The rank of the matrix A is 5 

The pruned system Bx=c has Band c as 

B= 
0.4018 0.9027 0.7803 0.5752 0.6491 
0.0760 0.9448 0.3897 0.0598 0.7317 
0.2399 0.4909 0.2417 0.2348 0.6477 
0.l233 0.4893 0.4039 0.3532 0.4509 
0.1839 0.3377 0.0965 0.8212 0.5470 

c= 
3.3091 
2.2020 
1.8550 
1.8206 
l.9863 

Example 5 (A 5 x 8 under-determined random system) 

» A=rand(5,8), b=sum(A ')' ,pruningbasedlinsolver2(A,b) 

A= 
0.6868 0.0811 0.4468 0.7948 0.3507 0.5870 0.8443 
0.1835 0.9294 0.3063 0.6443 0.9390 0.2077 0.l948 
0.3685 0.7757 0.5085 0.3786 0.8759 0.3012 0.2259 
0.6256 0.4868 0.5108 0.8116 0.5502 0.4709 0.l707 
0.7802 0.4359 0.8176 0.5328 0.6225 0.2305 0.2277 

b= 
4.2273 
3.7162 
4.3578 

0.4357 
0.3111 
0.9234 
0.4302 
0.1848 



4.0568 
3.8320 

The orthogonal projection operator P=I-N'+A is 

p= 
0.4883 0.1331 -0.4478 -0.1349 0.0336 -O.l 089 0.0187 -0.0057 
0.1331 0.4814 -0.0104 -0.1338 -0.4370 0.0617 0.1338 -0.0353 

-0.4478 -0.0104 0.4404 0.1181 -0.l531 0.0893 0.0183 0.0082 
-0.l349 -0.1338 0.1181 0.2611 -0.0251 -0.3530 0.0017 0.1327 
0.0336 -0.4370 -0.1531 -0.0251 0.5126 0.1035 -0.1472 -0.0357 

-0.1089 0.0617 0.0893 -0.3530 0.l035 0.6940 -0.0404 -0.2275 
0.0187 0.1338 0.0183 0.0017 -0.1472 -0.0404 0.0440 0.0114 

-0.0057 -0.0353 0.0082 0.1327 -0.0357 -0.2275 0.0114 0.0783 

A solution (minimum norm least squares or simply minimum norm here) to the system is 

1.0236 
0.8065 
0.9371 
1.1332 
1.1484 
0.7813 
0.9597 
1.0736 

The rank of the matrix A is 5 

The pruned system Bx=c has Band c as 

B= 
0.6868 
0.1835 
0.3685 
0.6256 
0.7802 

c= 
4.2273 
3.7162 
4.3578 
4.0568 
3.8320 

0.0811 0.4468 0.7948 
0.9294 0.3063 0.6443 
0.7757 0.5085 0.3786 
0.4868 0.5108 0.8116 
0.4359 0.8176 0.5328 

0.3507 0.5870 
0.9390 0.2077 
0.8759 0.3012 
0.5502 0.4709 
0.6225 0.2305 

Example 6 (A 5 x 5 consistent linear system with rank 2) 

0.8443 0.4357 
0.1948 0.3111 
0.2259 0.9234 
0.1707 0.4302 
0.2277 0.1848 



» A=[1 2 3 4 5; 2 4 6 8 10; 3 6 9 12 15; 1 1 1 1 1; 2 2 2 2 2J; b=sum(A'); 
pruningbasedlinsolver2(A,b) 

The orthogonal projection operator P=I-A"+A is 

P= 
0.4000 -0.4000 -0.2000 

-0.4000 0.7000 -0.2000 
-0.2000 -0.2000 0.8000 
-0.0000 -0.1000 -0.2000 
0.2000 -0.0000 -0.2000 

A solution to the system is 

l.0000 
l.0000 
l.0000 
l.0000 
l.0000 

The rank of the matrix A is 2 

-0.0000 
-0.1000 
-0.2000 
0.7000 

-0.4000 

The pruned system Bx=c has Band c as 

B= 

c= 

1 2 345 
1 1 1 1 1 

15 
5 

4. Conclusions 

0.2000 
-0.0000 
-0.2000 
-0.4000 
0.4000 

Assumption We have seen that each information is represented as an equation. It is 
necessary for us to be sure about the correctness of one information, i.e. one equation. 
Once we identify such an equation, we put it as the first equation of the linear system. In 
a physical problem, obtaining such a correct equation out of a large number of equations 
is not difficult. This will allow us to detect both numerical inconsistency (contradiction) 
as well as numerical redundancy (linear dependence) appropriately. 

Mathematical linear dependence versus numerical linear dependence The linear 
dependence of some rows of the augmented matrix (A , b) of the system Ax = b on other 

rows includes both the mathematical (exact) linear dependence as well as numerical 
linear dependence. The mathematical linear dependence is exact/error-free and is 
implicitly based on infmite precision computation. Numerical linear dependence, on the 

-- 1 



other hand, is connected to relative error and is based on a finite precision computation. 
The Matlab program presented here takes care of both. By appropriately changing the 
factor 0.5 x 10-4 in the program we will achieve (higher or lower) accuracy as required 
subject, however, to the specified precision of computation. Here we have 15 digit 
accuracy in Matlab's standard precision. For higher accuracy, the Matlab vpa (variable 
precision arithmetic) command may be used/explored. 

Least squares/Minimum norm least-squares solution of the linear system The linear 
system Ax = b, under- or over-determined, consistent or not, its least-squares solution 
can be obtained from solving the ever-consistent system A'x = b' , where 
A' = AI A, b' = AI b. The system A'x = b' should be subjected to pruning if more 

accuracy, less storage, and possibly less computational resources are desired. Some 
systems, however, can be readily/a priori recognized to be the ones where there exist no 
redundant rows. In such a case, pruning is not to be used since it will be unnecessary 
though completely harmless. 

Numerical zero versus mathematical zero A mathematically redundant (linearly 
dependent) row differs from a numerically redundant row in that the former one is 
exactly redundant and carries absolutely no new information for the system and hence 
should always be pruned as soon as it is detected. The difference is essentially due to the 
difference between a numerical zero and the mathematical zero. The mathematical zero is 
unique while a numerical zero is not. There are infinite possible numerical zeros which 
always include the mathematical zero and is any value less than 0.5 x lO-k I Q I [13] in 

magnitude, where k is a positive integer and Q is the quantity of higher order accuracy. 

k could be taken as, say, 4 or larger depending on the relative accuracy desired. The 
higher the accuracy desired, the higher will be the value of the positive integer k. The 
proposed pruning-based Linsolver algorithm weeds out both numerically as well as 
mathematically redundant rows from the given system 

Rank and orthogonal projection operator: What they are and what their use is The 
algorithm produces a solution along with rank (number of non-redundant or, equivalently 
linearly independent rows) of the system, and the orthogonal projection operator 
P = I - A+ A often required not only for solving a linear program 

Max c l x subject to Ax = b, x ~ 0 using an interior-point method [14] but also for 

obtaining a non-trivial solution x = Pz , where z is an arbitrary non-zero column vector, 
of a homogeneous linear system Ax = o. The rank of the system conceptually/physically 
is a measure of the information content of the system. The higher the rank of the system 
is, the more is the information content of the system. Here the information content is 
measured in terms of the number of linearly independent (non-redundant) rows of the 
augmented system (A, b), where each row of the augmented matrix, that represents a 

linear equation is essentially an information. An information or, equivalently, an 
equation that could be generated from the existing equations is always redundant and will 
be of no use for any purpose so far as the system is concerned. 

References 



1. http ://en.wikipedia.org/wikilError detection and correction 
2. K. S. Andrews, D. Divasalar, S. Dolinar, J. Harnkins, C.R. Jones, and F. Pollara, 

The Development of Turbo and LDPC Codes for Deep-Space Applications, 
Proceedings of the IEEE, 95, No. 11, Nov. 2007. 

3. W. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge 
University Press, ISBN 9780521782807,2003. 

4. S.K. Sen, Near-singularlill-conditioned singular systems: Nclinsolver versus 
Matlab solvers, Chapter 17 of the book Advances in Mathematical Problems in 
Engineering Aerospace and Sciences (ed. Dr. Seenith Sivasundaram) , Ooh 
Publishing, United Kingdom, pp. 183-200, 2008. Also includes, as an appendix, 
the article "Dr. Lak.: The man I know of'. 

5. S.K. Sen, R.P. Agarwal, and G.A. Shaykhian, Ill- Versus Well-conditioned 
Singular Linear Systems: Scope of Randomized Algorithms, 1. Appl. Math. & 
Informatics, 27, No. 3-4, pp. 621-638. Website: http://www.kcam.biz 

6. S.K. Sen and Sagar Sen, Linear systems: Relook, concise algorithms, and 
Matlab programs, National Journal of Jyoti Research Academy, 1, 1, 1-8, 2007. 

7. S.K. Sen, Open problems in computational linear algebra, Nonlinear Analysis 
63(2005),926-934 (Available online at www.sciencedirect.com). 

. 3 
8. S.K. Sen and Sagar Sen, O(n) g-inversion-free noniterative near-consistent 

linear system solver for minimum-norm least-squares and nonnegative 
solutions, 1. Computational Methods in Sciences and Engineering, 6, Nos. 1,4, 
pp. 71-85,2006. 

9. V. Lakshmikantham, S.K. Sen, and S. Sivasundaram, Concise row-pruning 
algorithm to invert a matrix, Applied Mathematics and Computation, 60, 1994, 
17-24. 

10. E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in 
Science and Engineering, Affiliated East-West Press, New Delhi, 2007. 

11. G. D. Smith, Numerical Solution of Partial Differential Equations, Oxford 
University Press, Oxford, 1965. 

12. S.K. Sen, H. Agarwal, and S. Sen, Chemical equation balancing: An integer 
programming approach, Mathematical and Computer Modelling, 44, 2006, 678-
691. 

13. V. Lakshmikantham and S.K. Sen, Computational Error and Complexity in 
Science and Engineering, Elsevier, Amsterdam, 2005. 

14. S.K. Sen, S. Ramakrishnan, and R.P. Agarwal, Solving Linear Program as 
Linear System in Polynomial-time, Mathematical and Computer Modelling, 53, 
2011,1056-1073. 

15. E.A. Lord, V. Ch. Venkaiah and S.K. Sen, A concise algorithm to solve under
lover-determined linear systems, SIMULATION, 54, 239-240, (1990). 

16. E.A. Lord, V. Ch. Venkaiah and S.K. Sen, A shrinking polytope method for 
linear programming, Neural, Parallel & Scientific Computations, 4, 325-340, 
(1996). 

17. E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in 
Science and Engineering, Affiliated East-West Press, New Delhi, (2001) . 



18. c.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and Its Application, 
Wiley, New York, (1971). 

19. V. Lakshmikantham, S.K. Sen and G.W. Howell, Vectors versus matrices: p
inversion, cryptographic applications, and vector implementation, Neural, 
Parallel & Scientific Computations, 4, 129-140, (1996). 

20. R. Penrose, A generalized inverse for matrices, Proc. Chemb. Phil. Soc., 51, 
406-413, (1955). 

21. E.H. Moore, On the reciprocal of the general algebraic matrix Cabs.), Bull. 
Amer. Math. Soc., 26, 394-395, (1920). 

22. S.K. Sen and E.V. Krishnamurthy, Rank-augmented LV-algorithm for 
computing generalized matrix inverses, IEEE Trans. Computers, C-23, 199-
201, (1974). 

23. S.K. Sen and S.S. Prabhu, Optimal iterative schemes for computing Moore
Penrose matrix inverse, Int. J. Systems. Sci., 8, 748-753, (1976). 


