
Should Pruning be a Pre-processor of any Linear System?

Syamal K. Sen, Suja Ramakrishnan, Ravi P. Agarwal I
Department of Mathematical Sciences, Florida Institute of Technology, 150 West

University Boulevard, Melbourne, FL 32901-6975, United States

and

Gholam Ali Shaykhian
National Aeronautics and Space Administration (NASA), Technical Integration Office
(IT-G), Information Technology (IT) Directorate, Kennedy Space Center, FL 32899,

United States

Abstract There are many real-world problems whose mathematical models turn out to be
linear systems Ax = b, where A is an m x n matrix. Each equation of the linear system
is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas,
and 5 oranges cost $10, is mathematically modeled as an equation 4xI + 6x2 + 5X3 = 10 ,

where XI' x 2 ' X 3 are each cost of one mango, that of one banana, and that of one orange,

respectively. All the information put together in a specified context, constitutes the
physical problem and need not be all distinct. Some of these could be redundant, which
cannot be readily identified by inspection. The resulting mathematical model will thus
have equations corresponding to this redundant information and hence are linearly
dependent and thus superfluous. Consequently, these equations once identified should be
better pruned in the process of solving the system. The benefits are (i) less computation
and hence less error and consequently a better quality of solution and (ii) reduced storage
requirements. In literature, the pruning concept is not in vogue so far although it is most
desirable. It is assumed that at least one information, i.e. one equation is known to be
correct and which will be our first equation.

In a numerical linear system, the system could be slightly inconsistent or inconsistent
of varying degree. If the system is too inconsistent, then we should fall back on to the
physical problem (PP), check the correctness of the PP derived from the material
universe, modify it, if necessary, and then check the corresponding mathematical model
(MM) and correct it. In nature/material universe, inconsistency is completely non
existent. If the MM becomes inconsistent, it could be due to error introduced by the
concerned measuring device and/or due to assumptions made on the PP to obtain an MM
which is relatively easily solvable or simply due to human error. No measuring device
can usually measure a quantity with an accuracy greater that 0.005% or, equivalently
with a relative error less than 0.005%. Hence measurement error is unavoidable in a
numerical linear system when the quantities are continuous (or even discrete with

I Corresponding author

E-mail addresses: sksen@fit.edu (S.K. Sen), sramakrishna2009@my.fit.edu (S.
Ramakrishnan), agarwaJ@fit.edu (R. P. Agarwal), ali.shaykhian@nasa.gov (G.A.
Shaykhian)

extremely large number). Assumptions, though not desirable, are usually made when we
find the problem sufficiently difficult to be solved within the available
means/tools/resources and hence distort the PP and the corresponding MM. The . error
thus introduced in the system could (not always necessarily though) make the system
somewhat inconsistent. If the inconsistency (contradiction) is too much then one should
defmitely not proceed to solve the system in terms of getting a least-squares solution or
the minimum-norm least-squares solution. All these solutions will be invariably of no
real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is
near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing
solutions are useful. Pruning in such a near-consistent system should be performed based
on the desired accuracy and on the definition of near-linear dependence. In this article,
we discuss pruning over various kinds of linear systems and strongly suggest its use as a
pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the
solution process (algorithm) of the system, (ii) reduce both computational error and
complexity of the process, and (iii) take into account the numerical zero defined in the

context. These are precisely what we achieve through our proposed O(mn2) algorithm

presented in Matlab, that uses a subprogram of solving a single linear equation and that
has embedded in it the pruning.

Keywords: Inconsistency; Linearly dependent rows; Linear system; Linsolver; Pruning
based Matlab implementation

1. Introduction

To err is human while Not to err is computer could be two proverbs - the first one was
existing from time immemorial and will continue to exist eternally. The second one is of
recent origin and is understood with respect to a modem digital computer of late
twentieth century and later. Here "err" implies mistake. Any living being - a human
being including a superman/woman as well as an animal or even an insect - are prone to
commit mistake while a computer does not. There exists no living being on earth or
possibly in the universe, who can say that he does not commit a mistake! Under these
circumstances there is no need to have redundant information to remain in a computing
system so that an error (mistake) can be detected by this redundant information.
Redundancy in some physical systems (and consequently in their corresponding
mathematical models) could be helpful in detecting errors and correcting them [1-3]. In
the case of linear systems, redundant information is not only of not any use but also does
contribute to unnecessary computations and consequent additional error injection in the
solution using a computer [also refer 4-9].

A linear equation in a system is a mathematical model of an information. For
instance, the mathematical ~odel of the information "3 mangoes, 4 oranges, and 5
bananas cost $ 6" could be written as 3x} + 4X2 + 5X3 = 6, where x j , i = 1,2,3 are the unit

cost (in dollar) of one mango, one orange, and one banana, respectively. Similarly, the
mathematical models of the information "2 mangoes, 2 orange, and 4 bananas cost $ 4"
and "5 mangos, 6 oranges, and 9 bananas cost $ 10" are 2x} + 2X2 + 4X3 = 4 and

5x} +6x2 +9X3 = 10, respectively. Not all these three information are distinct. It is not, in

general, possible to detect by inspection or by any simple trick whether the given
information are distinct or not. An information may be generated/derived from other
specified information in a system of information or, equivalently, in a system of linear
equations. The derived information will not be considered distinct since it does not add to
the system any new information. Such a derived information or, equivalently, a linear
equation is redundant and is called linearly dependent on the other equation(s). This
linearly dependent equation is of no use so far as the/a solution of the system is
concerned and hence should be pruned/weed out. Such a pruning is not done before or in
the process of solving a linear system and consequently more storage locations more
computations, and more errors result. However, there are many linear systems occurring
in a mathematical model, which could have all the linear equations linearly independent.
For example, a partial differential equation or a system of partial differential equations -
a mathematical model of a physical (real-world) problem, when approximated by a finite
difference scheme for a numerical solution, could produce a tri-diagonal system of linear
equations, all of which are linearly independent [10, 11]. In such a situation, the question
of pruning does not, in general, arise. Even if the system is subjected to pruning, no
pruning will take place. On the other hand, there are plenty of real-world mathematical
models, each of which is a linear system consisting of redundant (linearly dependent)
equations. In the area of operations research, specifically, in the problems of least-squares
curve fitting and in linear programs consisting of a system of linear equality2 constraints
(linear equations) we might encounter many linearly dependent (redundant) equations in
the concerned system. We will consider here numerically linearly dependent equations
rather than mathematically linearly dependent equations. Mathematically linearly
dependent equations will always be invariably numerically linearly dependent while the
converse is not true. These are connected to mathematical zero and numerical zero. While
the mathematical zero is the absolute zero, a numerical zero is not. A numerical zero is
any quantity which is less than the minimum permitted relative error (in magnitude). For
instance, if the quantity of higher order accuracy is Q and that of lower order accuracy is

Q' , then the relative error in the quantity Q' is 1 Q - Q' 1 I 1 Q I . lithe minimum permitted

relative error in Q' is 0.5 X 10-4, then any value less than 0.5 x 10 -4 1 Q 1 in magnitude

will be considered a numerical zero. We will be concerned here with the pruning of the
numerically linearly dependent equations from the system as these do not add
numerically any new information to the system. Such a pruning will always remove
mathematically linearly dependent equations from the system since mathematically
linearly dependent equations constitute a proper subset of numerically linearly dependent
equations. In fact, before solving a linear system, i.e., computing a numerical solution of
the consistent system or obtaining a least-squares solution (may not be unique) of the
inconsistent system or determining the minimum-norm least-squares solution (unique) of
the consistent/inconsistent system, we could use pruning as a pre-processor or we could

2 So far as the linear inequality constraints are concerned, we usually add (subtract) slack (surplus)
variables to convert inequalities to equations and then deal with the system of equations rather than
inequalities directly. This is mainly because we have a rich information base for the theory of equations
unlike that for the theory of inequalities [12]. The resulting equations here will be all linearly independent
and hence the question of pruning does not arise. .

use pruning as an integral part of the solution process. In both the cases, the

computational complexity is O(n 3
).

In section 2, we provide a physically concise Linsolver algorithm with pruning as its
integral part of the solution process along with a Matlab - a highest level programming
language - code. This algorithm produces in addition to the solution vector x of the
given linear system Ax = b , the rank of the m x n matrix A, the orthogonal projection

operator P = 1 - A+ A , where A+ is the Moore-Penrose inverse of the matrix A. It also
detects numerical/mathematical inconsistency. The Matlab program can be easily
followed just like the algorithm written in a pseudo-code (in English). So we have
omitted presenting the pseudo-code version of the algorithm. This Matlab code (actual
program) has additional advantage that allows the reader to use the code readily by
simply copying, pasting, and execute the code/program with specified inputs A, b . All

that is required for the reader to have the Matlab software implemented on his
laptop/desktop. Section 3 consists of numerical examples while section 4 comprises
conclusions.

2. Linsolver and Its Pruning-based Matlab Implementation

We consider the linear system Ax = b , where A is an m x n matrix and b is an m x 1
vector. Let 1 be an n x n identity (unit) matrix. We provide below an algorithm called

Linsolver [12] which is used as the starting point for a Matlab implementation of the
algorithm with pruning as its in-built feature.

Linsolver Let a/ be the i - th row of A. Then a; is the column vector. The following

algorithm - a modified version of the algorithms in Lord et al. [15, 16] - finds a
particular solution x. It obtains as a by-product the orthogonal projection operator

P = 1 - A+ A [17-23] , where A+ is the minimum-norm least-squares inverse of A and
the rank r of A .

The Linsolver

P = 1; x = 0; r = 0; for i = 1 to m do begin eqn(a;,bp P,x); r = r + c end

procedure eqn(a,b,P, x); (*obtains a solution of the equation d x = b *)

begin c = 0; u = Pa; v =11 u 11 2; inconsistency = b - at x; if "* 0 then

begin P = P - uu t / v; x = x + inconsistency x u / v; c = 1 end else

if inconsistency "* 0 then Ax = b is inconsistent and exit

end; (*The foregoing x is simply multiplication of vector u by a scalar. *)

Complexity of Linsolver The computational complexity of the procedure eqn is O(n\

Since the number of applications of eqn cannot exceed m, Linsolver is O(mn2
).

Computational Linsolver Since the numerical zero in a floating-point arithmetic is not the
same as the mathematical zero [4], the algorithm Linsolver needs the following
modifications, if we need k significant digit accuracy, before it is implemented on a
digital computer. Let ~ denote 'is to be replaced by'.

v :;t:0~ v ~0 .5 x l0 -k a and

inconsistency :;t: 0 ~ inconsistency ~ 0.5 x I O-k b
m n m

where a = (L L I a ij I) I(mn) , b = L I bi I 1m. If we desire k decimal digit accuracy
i= \ j =\ i= \

then a and b should be removed or, equivalently, a = b = 1 should be taken. It can be
seen that 10glo(lIrelative error) gives the number of significant digits up to which the
result/quantity is correct while 10glO(lIabsolute error) provides the number of decimal
digits up to which the quantity is correct. The later one, however, is not useful in most
applications.

The following Matlab program which is self-explanatory (i) computes the orthogonal
projection operator P = 1 - A+ A of the matrix A , where A+ is the Moore-Penrose
inverse of the rectangular matrix A , (ii) produces a solution to the system if the system is
consistent, (iii) prunes the redundant (linearly dependent) rows of the system if the
system is consistent, depicts the rank of the matrix A, (iv) displays the pruned system,
where the pruned matrix is evidently full-row rank and the system is consistent, (v)
provides a solution to the system, and (vi) also produces a nontrivial solution of the
system if the system is homogeneous, i.e. , if Ax = 0 (null column vector).

function pruningbasedlinsolver2(A,b);
B=A; c=b; rrow=O;
[m n]=size(A); p=O;
x=zeros(n,l); r=O; P=eye(n); k=l;
abar=sum(sum(abs(A»)/(m*n); bbar=sum(abs(b»/m;
for i = l:m

a=A(i,:)'; brow=b(i); u=P*a; v=(norm(u»A2; inconsistency = brow-
a'*x;

end

if abs(v) >= O.00005*abar %Permits 4 significant digit accuracy
P=P-u*u'/v; x = x + inconsistency*u/v; r=r+l;

else

else

end
end

if abs(inconsistency) > O.00005*bbar
disp(' Linear system Ax=b is inconsistent . '); p=l;
break ;

% Store indices of redundant rows in a vector .
redrow(k)=i; k=k+l ; rrow=l;

disp('The orthogonal projection operator P=I-AA+A is') ; P
%If the system is homogeneous, i . e. ifAx=O (always consistent) , then
% a solution is x=Pz , where z is an arbitrary column vector .
if bbar==O

z=rand(n,l) ;disp('A nontrivial solution to Ax=O is ') ;P*z
end
% Prune the redundant rows of the augmented matrix (A , b) of Ax=b.

if rrow==l
c(redrow)=[]; B(redrow,:)=[];
end
% Display the results.
if p -= 1

S=size(B);
if S(l)<=m

disp('A solution to the system is '); disp(x);
disp('The rank of the matrix A is '); disp(r);
disp('The pruned system Bx=c has Band cas') ; B, c

else
disp('The solution to the system is '); disp(x);

end
end

3. Numerical Examples

We illustrate the foregoing algorithm in section 2 by considering the following numerical
examples.

Example J (A 5 x 4 consistent matrix equation)

»A=[12 3 4;2 4 6 8; 3 6 9 12;1 1 1 1; 1 -2 1 -3], b=[10
20 30 4 -3]' ,pruningbased1inso1ver2(A,b)

A =

b

1
2
3
1
1

10
20
30

4
- 3

2
4
6
1

-2

3
6
9
1
1

4
8

12
1

- 3

The orthogonal projection operator P=I-A A+A is

P

0 . 28 1 6
- 0.3218
-0.2011

0 . 2414

- 0.32 1 8
0.3678
0.2299

- 0.2759

- 0.2011
0.2299
0.1437

- 0.1724

A solution to the system is

0 . 2414
- 0 . 2759
- 0 . 1724

0.2069

1. 00 00
1. 0000
1 .0 000
1. 0000

The rank of t h e ma t ri x A is
3

The p run e d s yst e m Bx =c h as Ban d c as

B =

c =

1
1
1

1 0
4

- 3

2
1

- 2

3
1
1

4
1

- 3

Example 2 (A 5 x 4 inconsistent matrix equation)

» A=[1 2 3 4;2 4 6 8; 3 6 9 12;1 1 1 1; 1 -1 1 -1], b=[10 20 20 4
0]' ,pruningbasedlinsolver2(A,b)

A=

b=
10
20
20
4
o

1
2
3
1
1

2
4
6
1

-1

3
6
9
1
1

4
8

1 2
1

- 1

Linear system Ax=b is inconsistent (no solution).

The orthogonal projection operator P=I-AI\+A is

p=
0.9667 -0.0667 -0.1000 -0.1333

-0.0667 0.8667 -0.2000 -0.2667

l

-0.1000 -0.2000 0.7000 -0.4000
-0.1333 -0.2667 -0.4000 0.4667

Example 3 (An 8 x 5 random linear system (overdetermined))

» A=rand(8,S), b=sum(A ')' ,pruningbasedlinsolver2(A,b)

A=
0.4018
0.0760
0.2399
0.1233
0.1839
0.2400
0.4173
0.0497

b=
3.3091
2.2020
1.8550
1.8206
1.9863
1.5837
2.5163
1.4749

0.9027
0.9448
0.4909
0.4893
0.3377
0.9001
0.3692
0.1112

0.7803 0.5752 0.6491
0.3897 0.0598 0.7317
0.2417 0.2348 0.6477
0.4039 0.3532 0.4509
0.0965 0.8212 0.5470
0.1320 0.0154 0.2963
0.9421 0.0430 0.7447
0.9561 0.1690 0.1890

The orthogonal projection operator P=I-N'+A is

p=
1.0e-014 *
0.0912 -0.0163 0.1846 -0.0090 -0.0291
-0.0163 -0.0999 0.1277 0.1166 0.0083
0.1846 0.1277 -0.1110 -0.1499 -0.0971
-0.0090 0.1166 -0.1499 0.1277 -0.0916
-0.0291 0.0083 -0.0971 -0.0916 0.0791

A solution to the system is

1.0000
1.0000
1.0000
1.0000
1.0000

The rank of the matrix A is 5

-- 1
I
I

The pruned system Bx=c has Band c as

B=
0.4018 0.9027 0.7803 0.5752 0.6491
0.0760 0.9448 0.3897 0.0598 0.7317
0.2399 0.4909 0.2417 0.2348 0.6477
0.1233 0.4893 0.4039 0.3532 0.4509
0.1839 0.3377 0.0965 0.8212 0.5470

c=
3.3091
2.2020
1.8550
1.8206
1.9863

Example 4 (Another 8 x 5 over-determined random system)

» A=rand(8,5), b=sum(A')' ,pruningbasedlinsolver2(A,b)

A=
0.4018
0.0760
0.2399
0.1233
0.1839
0.2400
0.4173
0.0497

b=
3.3091
2.2020
1.8550
1.8206
1.9863
1.5837
2.5163
1.4749

0.9027
0.9448
0.4909
0.4893
0.3377
0.9001
0.3692
0.1112

0.7803 0.5752 0.6491
0.3897 0.0598 0.7317
0.2417 0.2348 0.6477
0.4039 0.3532 0.4509
0.0965 0.8212 0.5470
0. l320 0.0154 0.2963
0.9421 0.0430 0.7447
0.9561 0.1690 0.1890

The orthogonal projection operator P=I-AA+A is

P=
1.0e-014 *
0.0912 -0.0163 0.1846 -0.0090 -0.0291

-0.0163 -0.0999 0.1277 0.l166 0.0083
0.1846 0.1277 -0.1110 -0.1499 -0.0971

-0.0090 0.1166 -0.1499 0.l277 -0.0916
-0.0291 0.0083 -0.0971 -0.0916 0.0791

A solution to the system is

l.0000
l.0000
l.0000
l.0000
l.0000

The rank of the matrix A is 5

The pruned system Bx=c has Band c as

B=
0.4018 0.9027 0.7803 0.5752 0.6491
0.0760 0.9448 0.3897 0.0598 0.7317
0.2399 0.4909 0.2417 0.2348 0.6477
0.l233 0.4893 0.4039 0.3532 0.4509
0.1839 0.3377 0.0965 0.8212 0.5470

c=
3.3091
2.2020
1.8550
1.8206
l.9863

Example 5 (A 5 x 8 under-determined random system)

» A=rand(5,8), b=sum(A ')' ,pruningbasedlinsolver2(A,b)

A=
0.6868 0.0811 0.4468 0.7948 0.3507 0.5870 0.8443
0.1835 0.9294 0.3063 0.6443 0.9390 0.2077 0.l948
0.3685 0.7757 0.5085 0.3786 0.8759 0.3012 0.2259
0.6256 0.4868 0.5108 0.8116 0.5502 0.4709 0.l707
0.7802 0.4359 0.8176 0.5328 0.6225 0.2305 0.2277

b=
4.2273
3.7162
4.3578

0.4357
0.3111
0.9234
0.4302
0.1848

4.0568
3.8320

The orthogonal projection operator P=I-N'+A is

p=
0.4883 0.1331 -0.4478 -0.1349 0.0336 -O.l 089 0.0187 -0.0057
0.1331 0.4814 -0.0104 -0.1338 -0.4370 0.0617 0.1338 -0.0353

-0.4478 -0.0104 0.4404 0.1181 -0.l531 0.0893 0.0183 0.0082
-0.l349 -0.1338 0.1181 0.2611 -0.0251 -0.3530 0.0017 0.1327
0.0336 -0.4370 -0.1531 -0.0251 0.5126 0.1035 -0.1472 -0.0357

-0.1089 0.0617 0.0893 -0.3530 0.l035 0.6940 -0.0404 -0.2275
0.0187 0.1338 0.0183 0.0017 -0.1472 -0.0404 0.0440 0.0114

-0.0057 -0.0353 0.0082 0.1327 -0.0357 -0.2275 0.0114 0.0783

A solution (minimum norm least squares or simply minimum norm here) to the system is

1.0236
0.8065
0.9371
1.1332
1.1484
0.7813
0.9597
1.0736

The rank of the matrix A is 5

The pruned system Bx=c has Band c as

B=
0.6868
0.1835
0.3685
0.6256
0.7802

c=
4.2273
3.7162
4.3578
4.0568
3.8320

0.0811 0.4468 0.7948
0.9294 0.3063 0.6443
0.7757 0.5085 0.3786
0.4868 0.5108 0.8116
0.4359 0.8176 0.5328

0.3507 0.5870
0.9390 0.2077
0.8759 0.3012
0.5502 0.4709
0.6225 0.2305

Example 6 (A 5 x 5 consistent linear system with rank 2)

0.8443 0.4357
0.1948 0.3111
0.2259 0.9234
0.1707 0.4302
0.2277 0.1848

» A=[1 2 3 4 5; 2 4 6 8 10; 3 6 9 12 15; 1 1 1 1 1; 2 2 2 2 2J; b=sum(A');
pruningbasedlinsolver2(A,b)

The orthogonal projection operator P=I-A"+A is

P=
0.4000 -0.4000 -0.2000

-0.4000 0.7000 -0.2000
-0.2000 -0.2000 0.8000
-0.0000 -0.1000 -0.2000
0.2000 -0.0000 -0.2000

A solution to the system is

l.0000
l.0000
l.0000
l.0000
l.0000

The rank of the matrix A is 2

-0.0000
-0.1000
-0.2000
0.7000

-0.4000

The pruned system Bx=c has Band c as

B=

c=

1 2 345
1 1 1 1 1

15
5

4. Conclusions

0.2000
-0.0000
-0.2000
-0.4000
0.4000

Assumption We have seen that each information is represented as an equation. It is
necessary for us to be sure about the correctness of one information, i.e. one equation.
Once we identify such an equation, we put it as the first equation of the linear system. In
a physical problem, obtaining such a correct equation out of a large number of equations
is not difficult. This will allow us to detect both numerical inconsistency (contradiction)
as well as numerical redundancy (linear dependence) appropriately.

Mathematical linear dependence versus numerical linear dependence The linear
dependence of some rows of the augmented matrix (A , b) of the system Ax = b on other

rows includes both the mathematical (exact) linear dependence as well as numerical
linear dependence. The mathematical linear dependence is exact/error-free and is
implicitly based on infmite precision computation. Numerical linear dependence, on the

-- 1

other hand, is connected to relative error and is based on a finite precision computation.
The Matlab program presented here takes care of both. By appropriately changing the
factor 0.5 x 10-4 in the program we will achieve (higher or lower) accuracy as required
subject, however, to the specified precision of computation. Here we have 15 digit
accuracy in Matlab's standard precision. For higher accuracy, the Matlab vpa (variable
precision arithmetic) command may be used/explored.

Least squares/Minimum norm least-squares solution of the linear system The linear
system Ax = b, under- or over-determined, consistent or not, its least-squares solution
can be obtained from solving the ever-consistent system A'x = b' , where
A' = AI A, b' = AI b. The system A'x = b' should be subjected to pruning if more

accuracy, less storage, and possibly less computational resources are desired. Some
systems, however, can be readily/a priori recognized to be the ones where there exist no
redundant rows. In such a case, pruning is not to be used since it will be unnecessary
though completely harmless.

Numerical zero versus mathematical zero A mathematically redundant (linearly
dependent) row differs from a numerically redundant row in that the former one is
exactly redundant and carries absolutely no new information for the system and hence
should always be pruned as soon as it is detected. The difference is essentially due to the
difference between a numerical zero and the mathematical zero. The mathematical zero is
unique while a numerical zero is not. There are infinite possible numerical zeros which
always include the mathematical zero and is any value less than 0.5 x lO-k I Q I [13] in

magnitude, where k is a positive integer and Q is the quantity of higher order accuracy.

k could be taken as, say, 4 or larger depending on the relative accuracy desired. The
higher the accuracy desired, the higher will be the value of the positive integer k. The
proposed pruning-based Linsolver algorithm weeds out both numerically as well as
mathematically redundant rows from the given system

Rank and orthogonal projection operator: What they are and what their use is The
algorithm produces a solution along with rank (number of non-redundant or, equivalently
linearly independent rows) of the system, and the orthogonal projection operator
P = I - A+ A often required not only for solving a linear program

Max c l x subject to Ax = b, x ~ 0 using an interior-point method [14] but also for

obtaining a non-trivial solution x = Pz , where z is an arbitrary non-zero column vector,
of a homogeneous linear system Ax = o. The rank of the system conceptually/physically
is a measure of the information content of the system. The higher the rank of the system
is, the more is the information content of the system. Here the information content is
measured in terms of the number of linearly independent (non-redundant) rows of the
augmented system (A, b), where each row of the augmented matrix, that represents a

linear equation is essentially an information. An information or, equivalently, an
equation that could be generated from the existing equations is always redundant and will
be of no use for any purpose so far as the system is concerned.

References

1. http ://en.wikipedia.org/wikilError detection and correction
2. K. S. Andrews, D. Divasalar, S. Dolinar, J. Harnkins, C.R. Jones, and F. Pollara,

The Development of Turbo and LDPC Codes for Deep-Space Applications,
Proceedings of the IEEE, 95, No. 11, Nov. 2007.

3. W. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge
University Press, ISBN 9780521782807,2003.

4. S.K. Sen, Near-singularlill-conditioned singular systems: Nclinsolver versus
Matlab solvers, Chapter 17 of the book Advances in Mathematical Problems in
Engineering Aerospace and Sciences (ed. Dr. Seenith Sivasundaram) , Ooh
Publishing, United Kingdom, pp. 183-200, 2008. Also includes, as an appendix,
the article "Dr. Lak.: The man I know of'.

5. S.K. Sen, R.P. Agarwal, and G.A. Shaykhian, Ill- Versus Well-conditioned
Singular Linear Systems: Scope of Randomized Algorithms, 1. Appl. Math. &
Informatics, 27, No. 3-4, pp. 621-638. Website: http://www.kcam.biz

6. S.K. Sen and Sagar Sen, Linear systems: Relook, concise algorithms, and
Matlab programs, National Journal of Jyoti Research Academy, 1, 1, 1-8, 2007.

7. S.K. Sen, Open problems in computational linear algebra, Nonlinear Analysis
63(2005),926-934 (Available online at www.sciencedirect.com).

. 3
8. S.K. Sen and Sagar Sen, O(n) g-inversion-free noniterative near-consistent

linear system solver for minimum-norm least-squares and nonnegative
solutions, 1. Computational Methods in Sciences and Engineering, 6, Nos. 1,4,
pp. 71-85,2006.

9. V. Lakshmikantham, S.K. Sen, and S. Sivasundaram, Concise row-pruning
algorithm to invert a matrix, Applied Mathematics and Computation, 60, 1994,
17-24.

10. E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in
Science and Engineering, Affiliated East-West Press, New Delhi, 2007.

11. G. D. Smith, Numerical Solution of Partial Differential Equations, Oxford
University Press, Oxford, 1965.

12. S.K. Sen, H. Agarwal, and S. Sen, Chemical equation balancing: An integer
programming approach, Mathematical and Computer Modelling, 44, 2006, 678-
691.

13. V. Lakshmikantham and S.K. Sen, Computational Error and Complexity in
Science and Engineering, Elsevier, Amsterdam, 2005.

14. S.K. Sen, S. Ramakrishnan, and R.P. Agarwal, Solving Linear Program as
Linear System in Polynomial-time, Mathematical and Computer Modelling, 53,
2011,1056-1073.

15. E.A. Lord, V. Ch. Venkaiah and S.K. Sen, A concise algorithm to solve under
lover-determined linear systems, SIMULATION, 54, 239-240, (1990).

16. E.A. Lord, V. Ch. Venkaiah and S.K. Sen, A shrinking polytope method for
linear programming, Neural, Parallel & Scientific Computations, 4, 325-340,
(1996).

17. E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in
Science and Engineering, Affiliated East-West Press, New Delhi, (2001) .

18. c.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and Its Application,
Wiley, New York, (1971).

19. V. Lakshmikantham, S.K. Sen and G.W. Howell, Vectors versus matrices: p
inversion, cryptographic applications, and vector implementation, Neural,
Parallel & Scientific Computations, 4, 129-140, (1996).

20. R. Penrose, A generalized inverse for matrices, Proc. Chemb. Phil. Soc., 51,
406-413, (1955).

21. E.H. Moore, On the reciprocal of the general algebraic matrix Cabs.), Bull.
Amer. Math. Soc., 26, 394-395, (1920).

22. S.K. Sen and E.V. Krishnamurthy, Rank-augmented LV-algorithm for
computing generalized matrix inverses, IEEE Trans. Computers, C-23, 199-
201, (1974).

23. S.K. Sen and S.S. Prabhu, Optimal iterative schemes for computing Moore
Penrose matrix inverse, Int. J. Systems. Sci., 8, 748-753, (1976).

