Orion Pad Abort 1 Flight Test
Ground and Flight Operations

Davis Hackenberg
Davis.L.Hackenberg@nasa.gov

Wayne Hicks
Wayne.Hicks@Zeltech.com

The Operations Team with the PA-1 Test Vehicle
Presentation Overview

• Operational Planning
• Facilities Preparation
• Integration and Testing
• Flight Ops
• Other Challenges and Successes
OPERATIONAL PLANNING
Approach to Operational Planning

PROJECTS

- Develop top-level operational concepts and integration sequences.
- For each major sequence, identify the activities and tasks to perform.
- Use the task descriptions to identify requirements.
- Knowing the work to be performed and how equipment will be operated, identify the safety hazards and the mitigations.
- Develop procedures to perform the integration tasks and to operate equipment. Include safety mitigations.
- Identify personnel and skills mixes needed to perform tasks and operate equipment.

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project’s Concepts, Assumptions, & Constraints</td>
<td>Concept of Operations</td>
</tr>
<tr>
<td>Integration Activities and Tasks</td>
<td>Ground Operations Plan</td>
</tr>
<tr>
<td>Facility Requirements</td>
<td>Hardware Integration Flow</td>
</tr>
<tr>
<td>Ground Support Equipment Requirements</td>
<td>Facility Requirement Documents</td>
</tr>
<tr>
<td>Transportation Requirements</td>
<td>GSE Plan</td>
</tr>
<tr>
<td>Safety Hazards & Mitigations</td>
<td>GSE IRDs, ICDs, Specs</td>
</tr>
<tr>
<td>Procedures</td>
<td>Transportation Plans</td>
</tr>
<tr>
<td>Ground Operations Team Flight Operations Team</td>
<td>Roles and Responsibilities</td>
</tr>
<tr>
<td>Safety Hazards & Mitigations</td>
<td>Safety Requirements Documents</td>
</tr>
<tr>
<td>Procedures</td>
<td>Systems Safety Hazard Report</td>
</tr>
<tr>
<td>Ground Operations Team Flight Operations Team</td>
<td>Site Safety Plans</td>
</tr>
<tr>
<td>Safety Hazards & Mitigations</td>
<td>Emergency Preparedness Plans</td>
</tr>
<tr>
<td>Procedures</td>
<td>Master Procedures List</td>
</tr>
<tr>
<td>Ground Operations Team Flight Operations Team</td>
<td>Integration & Test Procedures</td>
</tr>
<tr>
<td>Safety Hazards & Mitigations</td>
<td>Staffing Plan</td>
</tr>
<tr>
<td>Procedures</td>
<td>Training Requirements (Plan)</td>
</tr>
<tr>
<td>Ground Operations Team Flight Operations Team</td>
<td>Training Records</td>
</tr>
</tbody>
</table>
Project’s overarching concepts, assumptions, & constraints drove the operational planning

Operations Group Responsibilities

- Plan for six flight tests:
 - Two (2) Pad Abort tests
 - Four (4) Ascent Abort tests
- Prepare the Test Vehicles
- Build the Launch Facilities
- Provide Mission Architecture to control test vehicle and to capture vehicle performance and aerodynamic data
- Perform the flight tests

Mandates

- Meet ambitious launch schedule
- Protect for late installation of long lead time and life-limited items
- Use aggressive test and verification approach

Considerations drove the Ground Operations planning

- Integrate the Test Vehicle in 2 phases to reduce time spent at launch site
- For PA-1:
 - Perform non-hazardous Crew Module integration at NASA Dryden Flight Research Center
 - Assemble Launch Abort System at Launch Site
 - Perform final hazardous processing at Launch Site

Considerations drove the Mission Operations Architecture

- Perform flight tests on an equipped test range
- Test range large enough to contain flight trajectories
- Use Mobile Launch Concept

Considerations drove the Launch Facilities

- Support both Pad Abort and Ascent Abort tests
- Provide integration areas for Launch Abort System, Crew Module, and Abort Test Booster.
- Launch Complex sited for hazardous ordnance processing and explosives operations
Contents
1. Organizational Roles and Responsibilities
2. Goals and Objectives
3. Abort Flight Test Scenarios
4. Test Vehicle Concepts
5. Ground Operations and Integration Flows
6. Flight Operations
7. Flight Operations for Ares Launch Opportunity
8. Training

Purpose
• Identifies organizational roles and responsibilities
• Describes the Test Vehicle, its components and the component functions, and the component providers.
• Described the top-level integrations flows and the integration locations.
• Describes the mission architecture and the roles for conducting the flight operations.
• Conveys top-level guidance from which to start developing requirements and specifications
Ground Operations Plan provided the detailed integration flows, activities, and task descriptions

Contents (Abbreviated Listing)
1. Roles and Responsibilities
3. Approach to Development
4. Ground Planning Documentation
5. Facilities
6. Ground Support Equipment
7. Initial Integration at Dryden Flight Research Center
8. Final Integration at WSMR
9. Pad Operations at WSMR
10. Recovery and Disposition Activities after Flight Test

Purpose
- Provides the detailed hardware integration flows.
- Assembly and integration tasks described in detail.
- Identifies personnel, facility, and equipment resources required to perform each task.
- Includes over 250 storyboards
- Task descriptions provide the starting point for developing procedures.
Over 250 Storyboards like this one used pictures to convey the integration sequences

8.6.1 CM Mass Properties Test—Weight Determination

1. Move CM to Test Location
 - Install CM vertical lifting fixture.
 - Remove CM work stand.
 - Configure CMTF for mobilizers.
 - Move CM to test location.

2. Set Up for Test
 - Set up access control area.
 - Configure test equipment.
 - Prepare for critical lift operations.
 - Roll in work stands.
 - Configure load cell and lifting slings for lifting.
 - Roll back work stands.

3. Conduct CM Weight Measurements
 - Take up the slack in the slings and ensure the hook is centered over the CM.
 - Start the data logger for the load cell.
 - Lift CM into hover position over CMTF.
 - Record CM weight.
 - Stop data logger.
 - Lower CM onto CMTF.
 (Repeat per test procedure.)
 (After last measurement!)
 - Unhook load cell and slings from crane.

4. Lifting Configuration for Load Cell and Lifting Fixture

5. Facility Resources can be identified:
 - Aircraft Integration Facility

6. Facility Equipment and placements:
 - Mobile Crane
 - Load Cell

7. Procedures
 - Convert Integration Stand to Transporter
 - Transport Crew Module
 - Critical Lift Pre-Task Planning
 - CM Weight Determination Procedure
 - “Critical Lift” involves hazardous ops

8. Personnel
 - Task Team Leader
 - Safety Lead
 - QA Lead
 - Lift Manager
 - Tug Operator
 - Mobilizer Operators
 - Crane Operator
 - Mechanics

Each operation linked to Integration Flow
Activity Sequence includes detailed task descriptions
Flight Hardware clearly shown
 - Crew Module (in this example)
Ground Support Equipment:
 - Crew Module Transporter
 - Crew Module Lift Fixture
Facility Resources can be identified:
 Aircraft Integration Facility
Facility Equipment and placements:
 - Mobile Crane
 - Load Cell
Procedures
 - Convert Integration Stand to Transporter
 - Transport Crew Module
 - Critical Lift Pre-Task Planning
 - CM Weight Determination Procedure
 - “Critical Lift” involves hazardous ops
Personnel
 - Task Team Leader
 - Safety Lead
 - QA Lead
 - Lift Manager
 - Tug Operator
 - Mobilizer Operators
 - Crane Operator
 - Mechanics
Storyboards were good predictors of actual operations

8. Retract and remove safety jacks.

9. Activate air bearing pallets; Start data loggers; Raise apex jack.

10. Record weights; Lower apex jack; stop data loggers.

11. After measurements sets are obtained, reset safety jacks under CM.

Repeat Steps 9 and 10 as needed to obtain first measurement set.

For second measurement set:
Repeat Steps 8 through 11 using the 120-degree jack as the apex jack.

For third measurement set:
Repeat Steps 8 through 11 using the 240-degree jack as the apex jack.
Storyboard for the Crew Module Iyy Inertia Test

8.7.4 CM Mass Properties Test – Iyy and Izz Inertia Determination

<table>
<thead>
<tr>
<th>Storyboard</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-to-Frame Attachments</td>
<td></td>
</tr>
<tr>
<td>Inertia Frame</td>
<td></td>
</tr>
<tr>
<td>Safety Jacks</td>
<td></td>
</tr>
<tr>
<td>Knife Edge</td>
<td></td>
</tr>
</tbody>
</table>

CM Lifting Fixture removed for test

Monofilament Strings, Tumbuckle, String Potentiometer

Safety Jacks lowered for test
Swim Lanes were another tool used to plan resources, verifications, and prerequisites.
FACILITIES PREPARATION
Facilities Description

• Facility Requirements Document (FRD) used to document launch complex requirements and to initiate design effort
• Construction of LC-32E facilities commenced on October 1, 2007
 – Final Integration and Test Facility (FITF)
 – Launch Pad
 – Launch Services Pad
 – Operations Support Trailer (OST)
• Construction of FITF complete in April 2008
• Construction of Launch Pad complete in August 2008
PA-1 Vehicle on Launch Pad and FITF

Launch Pad and Gantry
Final Integration and Test Facility (FITF)
Integration Bays inside FITF
Launch Pad Services Area
Operations Support Trailer
Launch Pad and Gantry
Final Integration and Test Facility
Field Storage Area
Aerial View of Orion Launch Complex 32 East
Operations Support Trailer
LC-32 East
INTEGRATION AND TESTING
Test Vehicle assembly, integration, and testing occurred in two phases

Phase I:
Crew Module integrated initially at Dryden Flight Research Center

Phase II:
Final Integration occurred at the White Sands Missile Range
Crew Module was outfitted with sensors, avionics, and mechanisms at NASA Dryden

CM Arrival via C-17

Painted w/Test Pattern

Avionics Pallets and Harnesses Installed

Installing Sensors and Cameras

Crew Module being integrated in Shuttle Hangar at NASA Dryden Flight Research Center

CM Functional and RF Tests

Mass Properties Tests
Launch Abort System was assembled and checked at the launch site

Motor Roll Transfer onto integration trailer
Adapter Cone placement
Structural Mates
LAS Functional Tests

LAS being prepared in the Final Integration and Test Facility
LAS Ready for Roll-Out
Integrated electrical tests verified Crew Module and Launch Abort System interfaces

Crew Module Forward Bay Integration

Setting up cameras to monitor Phasing Test

Attitude Control Motor Functional Test

Crew Module / Launch Abort System Soft Mate Testing
Pad Operations included stacking the Test Vehicle and performing final tests and launch preparations.
FLIGHT OPERATIONS
PLANNING AND EXECUTION
Flight Ops Challenges

• Mobile Control Room Architecture
• Launch Team Training
• Range Assets
Mobile Operations - WSMR Mission Architecture
Launch Team Training

- In addition to Training on timeline in the 1.5 months prior to launch
 - 3 Table Top Reviews (TTR) with the entire team
 - 2 Emergency/Contingency Procedure simulation trainings
 - 2 PAO rehearsals
 - 3 Test Specific TTR's and Emergency procedure planning
 - Mishap Response Planning
 - Recovery Ops dry-run
- Incorporation of training around launch timeframe is difficult and required full commitment from the entire project
WSMR Tracking Assets Used for PA-1

Radar

Camera's

- CM
- LAS (CM)
- LAS
- FBC
A FEW KEY CHALLENGES
AND SUCCESSES
The Project overcame many challenges

- Flight Test Organization
- Ops and Vehicle Planning
- Begin Execution
- Unforeseen Events
- Re-plan and Coordinate
- Schedule Pressures
- Final Execution
Coordination and Resources

- Coordination and planning of resources was difficult due to a constantly changing schedule.
- Keeping all parties involved at all times during integration phases allowed for extra support during surges – A representative for people at the test location proved extremely useful.
- Running 2 shifts the final month prior to launch included engineering and technician support from all project locations.
- Daily Ops tag-up helped improved situational awareness in all time zones.
- Utilization of the entire teams knowledge and skills was essential in meeting the aggressive launch date that was planned 2 months prior.
Pathfinder and Risk Reduction Operations

• Conducted for all operations that involved pyrotechnics, including integration and lifts. (In plan)
• Fit checks (opportunity based)
• Conducted (as time allowed) for Day-of-Flight Operations and other key issues such as integration with WSMR (opportunity based)

Challenges:
• Required significant planning and dedication by the entire team.
• Scheduling around other required activities was difficult
• Timing of operations not ideal relative to other project activities such as acceptance testing
• Developing SOP’s

Successes
• Personnel safety maximized for all operations
• Procedures released on time and conducted with minimal red-lines.
• Risk Reduction – changes and issues were identified early
• Confidence in operations allowed them to easily be performed on night shift
• Finished operations ahead of schedule!!!
Pathfinder Ops - Pyrotechnics Integration Timeline

2008
- Jan 7/11-FBC Arrives at DFRC from LaRC
- Oct 10/3-Mass Properties Testing
- Dec 12/3-Avionics Post Ship Functional Testing
- Mar 2/3-Avionics Post Install Functional Testing
- Jun 6/4-Avionics Sync D
- Sep 7/11-RF Open Loop / CST
- Nov 8/16-FB Thrusters and Sep Bolts
- Dec 9/15-Avionics Harness Install

2009
- Jan 1/21-AV1,2,3 Pallet Installs
- Apr 6/4-Avionics Sync D
- Jul 7/11-RF Open Loop / CST
- Oct 9/24-CST
- Mar 2/3-Avionics Post Install Functional Testing
- Jul 6/29-AIL Test
- Sep 7/22-Pyro Summit
- Nov 11/30-CM Pyro Integration
- Dec 12/1-Install Reworked Avionics Harnesses

2010
- Jan 1/7-CM Pyro Installs Complete
- Apr 4/14-Final Pyro Connections
- Jun 4/28-Final BWIR
- Jul 3/22-CM Stack
- Aug 4/4-LAS Stack
- Sep 5/6-Launch!
Recovery

1. Receive Post-Landing Assessment from MOF (Scorecard)
2. Deploy to LZ staging Point
3. UXB sweep for UXO
4. Assess hazards preventing safe approach
5. Approach and Safe
6. Repeat 4&5 according to Hazard Analysis
7. Transport to LC32 or other destination

NOTE: Photo document entire process
Questions?
BACK-UP
Off Nominal Procedures Overview

Countdown Milestones

Power On Prelaunch
- Parameter - Load
- SIGIs - On
- Avionics - POST
- DFI - On
- LAS RDAUs - On
- OFI RF - On
- DFI RF - On
- SIGIs – Start Alignment
- Transfer to Internal then back to External Power
- ACM - On

Abort Enable
- LAS S/As - Arm/Safe
 - Checkout
 - Reset Counter
 - Reset Time
 - FDRs – Start Recording
 - Transfer to Internal Power
- PEC Power - On
- LAS S/As - Arm

Abort Execute
- PECs charged
- LAS Rdy Mode (ACM 140 vdc – ON)
- SIGIs – NAV Mode

Emergency Call

"Pause / Hold"
- Hold and evaluate
- Monitor system health and status
- Consider –
 - RF – Off

"Kill"
- Hold and evaluate
- Monitor system health and status
- Consider –
 - OFI / DFI RF – Off
 - FDRs – Stop Recording
 - Transfer To External Power

LAS BIT

- ACM 140vdc on for pintle checks
- 7 min to fully discharge power hybrid

Emergency Call

- Kill

T-2 mins

- MSS
 - Hold Fire Control – select Hold
 - S/A Safe Cmd – select Rotate to Safe Position
 - Hold and assess situation
 - Vehicle still powered but in Launch Safe Mode
 - Team decision
 - Recycle SIGI, reset T-0, try again
 - Abort Scrub, cancel for the day

ACM Vulnerable

- 6 min window
PA-1 Communications Plan
Version 4-10-10

WSMR Assets
- Telemetry
- Comm
- Radar
- Video
- Range Safety
- Recovery

WSMR Cox RCC
- Range Controller
- UXB
- Orion AFT Mission Engineering Rooms
- Orion AFT Mission Management Team
- Orion AFT EDL-Houston

MOF
- Test Director
- WSMR_Cmd
- Nasa Meteorology
- Recovery
- EOD-2
- Cell Phones UHF Trunk Radios
- Belt Packs
- Ground Ops Lead / NASA Safety

Mission Support
- TC
- FTA
- Sr Ops Rep
- TIE

B1830
- Support Net (Telecon)
- MMT to TD Phone
- Dashed segments signify Receive-Only

OCDF Access Code: __________
VIP Rm Access Code: __________
Support Net: 866-916-4201
5709324#

Vehicle Integration Van (VIV)