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When designing control laws for systems with constraints on the tracking performance, 

control allocation methods can be utilized. Control allocation methods are used when there 

are more command inputs than controlled variables. Control allocators can be used to 

address surface saturation limits, structural load limits, drag reduction constraints, or 

actuator failures. Most transport aircraft have many actuated surfaces compared to the 

three control variables (such as angle of attack, roll rate, and angle of sideslip). To distribute 

the control effort among the redundant set of actuators, a fixed mixer approach or online 

control allocation techniques can be utilized. The benefit of an online allocator is that 

complex constraints can be considered in the design; however, an online control allocator 

has the disadvantage of not guaranteeing a surface schedule, which can then produce 

unacceptable loads on the aircraft. The load uncertainty and complexity has prevented some 

controller designs from using advanced online allocation techniques. This paper considers 

actuator redundancy management for a class of over-actuated systems with real-time 

structural load limits using linear quadratic tracking applied to the generic transport model 

(a twin-engine heavy civil transport aircraft). With the inclusion of static load constraints in 

the allocator, the concern of overstressing the structures should be minimized or even 

eliminated. The results include three test cases. The first test case shows what happens when 

load constraints are applied over six left- and right-wing locations, with comparison to the 

same roll input run without load constraints. Test case two shows what happens when a 

large commanded roll is executed with the same load constraints as those used in test case 

one; this run is intended to stress the loads allocator. Test case three shows the robustness of 

the linear quadratic augmented allocator system to uncertainties; a 35-percent change in the 

control effectiveness plant model will be shown, in which the controller is kept the same as in 

test cases one and two with six load constraints.  

I. Introduction and Problem Statement 

 goal of the National Aeronautics and Space Administration (NASA) Aeronautics Subsonic Fixed Wing 

Project is to reduce the environmental impact of civil aviation. The NASA, industry, universities, and other 

government organizations are researching advanced technologies and exploring novel civil transport 

configurations to achieve reductions in noise, emissions, and fuel burn for next-generation aircraft (NextGen).
1
 

Some aircraft configurations are expected to have redundant and multi-purpose control effectors that cannot be 

easily incorporated into a conventional mixing algorithm that is determined a priori.
2
 Additionally, environmental 

goals may be addressed by using lightweight, flexible composite materials and aircraft configurations. The goal of 

lightweight structures is to reduce fuel consumption, which reduces the amount of engine pollutants.  

An online control allocator does not necessarily guarantee a surface schedule; however, adding a particular 

control allocator does preserve the control schedule using linear quadratic design.  It has been shown by Härkegård
3
 

that for a particular class of nonlinear systems, using an    control allocation method and linear quadratic control 

design give exactly the same design freedom in distributing the control effort among the actuators. Linear quadratic 

(LQ) controllers give very predictable surface commands for a given input, and the online control allocation method 

gives very predictable surface commands, in the “healthy case.” The healthy case is when no constraints or failures 
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have occurred.  When a constraint is hit, the online allocator method will not give the same surface commands as the 

LQ controller, and the predictability goes down, but the control system tracking is preserved better with the online 

allocator
3
 compared to the LQ-only controller. This uncertainty, however, leads to unknown loads on the aircraft; for 

this reason advanced allocation methods have not been readily implemented on modern control systems.    

Aircraft structural loads depend not only on the weight of the airplane for trimmed flight but also on the surface 

deflections used for maneuvering. The control surface movement is used in determining the total loads that the wing 

or aircraft encounters, along with static loads. This “surface schedule” is very predictable with a fixed mixer but not 

for online allocators. Therefore, the loads that the surface can produce with online allocators could violate the 

structural load limits while maneuvering. The task of this paper is to come up with a way to eliminate the load 

concerns for online allocators and to limit the loads while maintaining good tracking performance. 

Pilot command systems for modern or conventional controllers track a state  alpha,  , phi,  ,  beta,   ,  or a state 

rate  p, q, or r , called control variables, by moving the control surfaces, or effectors. A vehicle is over-actuated if it 

has more independent control effectors than control variables. Figure 1 shows a typical control system block 

diagram without control allocation. The control allocation of over-actuated vehicles has been formulated as a 

constrained optimization problem by many researchers.
4-10

 A real-time online solution to the control allocation 

problem is advantageous in order to enable the system to run on future aircraft, such as NextGen.
1 

The term 

“NextGen” applies to civil transports that are “on the drawing board,” prompting the search for numerical 

optimization methods that have good convergence properties and acceptable computational requirements. Several 

methods to solve the control allocation problem have been evaluated, including direct allocation, linear 

programming, quadratic programming, weighted pseudo-inverse, cascaded generalized inverse, and mixed 

optimization approaches. While optimal control allocation in flight control systems of fixed-wing aircraft is now 

feasible given the increased computational resources available on the aircraft, few studies have addressed the 

structural loads that are generated on the aircraft due to commanded control surface deflections. Figure 2a shows a 

control system block diagram with control allocation performed separately. As mentioned above, an online control 

allocator has the disadvantage of not guaranteeing a surface schedule, which can produce ill-defined loads on the 

aircraft. The load uncertainty and algorithm complexity has prevented some control designs from using advanced 

allocation techniques. For real-time optimal control allocation to be deployed on a civil aircraft there must be 

guarantees that the structural load limits of the aircraft will not be exceeded during flight. In Ref. 11, a new mixing 

law for a flexible transport aircraft was proposed to alleviate the wing bending moment during a sudden and strong 

roll maneuver with the additional goal of preserving nominal flight behavior. While the approach used an 

optimization algorithm to choose the control surface commands to be used for maneuver load alleviation, it was an 

off-line solution that was not used for real-time control allocation during normal flight. This paper presents an 

optimal allocator for a class of over-actuated systems with real-time onboard structural load feedback limits using 

linear quadratic tracking applied to the generic model of a transport-class aircraft.
12

 In this paper, a structural model 

is integrated with a simulation of a linear generic transport aircraft. The model is used to estimate the static 

structural loads on the aircraft during flight and to predict the loads generated by control surface deflections. The 

simulation is used to demonstrate and evaluate the proposed framework, which uses an optimal control allocator in 

the framework of a robust controller (linear quadratic regulator). The allocator ensures that the structural load limits 

of the aircraft are not exceeded. Figure 2b shows a block diagram of the control law, the control allocation, and the 

structural loads model. 

 

Figure 1. Block diagram of a typical control system. 
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Figure 2a. Block diagram of a control system when a control allocation is performed separately. 

 

Figure 2b. Block diagram of a control system with control allocation and structural load constraints. 

II. Servomechanism Problem for Multi-Input/Multi-Output Systems 

The objective of this work is to seek robust control system designs that are easily implementable in flight 

software, are reliable, and that maintain structural integrity while providing reasonable command-tracking 

performance. To this end, a robust servomechanism approach is investigated and evaluated. The controller is a 

generalization of the classical proportional-plus-integral (PI) design and is sometimes referred to as linear quadratic 

tracker (LQT). The servomechanism problem is concerned with control of a dynamic system to achieve asymptotic 

tracking of desired output and rejection of un-measurable disturbance. For single-input/single output (SISO) systems 

the problem has been well understood for over 50 years; however, it is only in the last two decades that this problem 

has been solved for multi-input/multi-output (MIMO) systems. In the following sections, a MIMO LQT controller is 

introduced and the controller design methodology is reviewed with a type one input. For more details and a more 

complete discussion see Ref. 9. 

A. Problem Formulation 

Consider a linear, time-invariant, MIMO system, Eq. (1): 

 

                       

  
 
                  

                                     
 
      (1) 
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For the LQT controller the reference, r, is equivalent to  
 
 and the controller will track the output (see Figs. 1 or 

2). The initial conditions for w are assumed to be arbitrary; therefore, w is considered unknown (un-measurable). In 

a more general formulation the dynamics of r and w do not have to be the same.
9
 They are assumed to be the same 

here for simplicity; such an assumption is adequate for the specific purpose of this paper. The objectives of the 

control design are to find a feedback controller such that 1) the closed-loop system is stable; 2) the error e   r - y
 

 

approaches zero in the presence of the un-measurable (possibly time-varying) disturbance, w; and 3) the closed-loop 

system is robust in the sense that asymptotic tracking of r and rejection of w are maintained in the presence of 

system parametric uncertainty or even variations in the order of the dynamics, as long as the closed-loop system 

remains stable. 

B. Robust Servomechanism Design Methodology 

A dynamic controller is to be designed to meet the stated objective. The controller dynamics are set to be,  

Eq. (2): 

 

                         

 where       
  and        

  x   and         
  x   (2) 

 
The controller states are   . Now consider the open-loop system including the plant in Eq. (1) and the controller 

dynamics in Eq. (2) with r    , Eq. (3): 
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Suppose that the following condition, Eq. (4), is satisfied: 
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Then the augmented system, Eq. (3) is controllable.

9
 Equation (4) states that the rank of the closed-loop system must 

equal the sum of the initial number of states of    plus the number of tracking states, xc. Solving the continuous-

time algebraic Riccati equation for K   f K , Kc , there exists a virtual control law, Eq. (5): 

 

 
v                               (5) 

 
such that the closed-loop system is stable. Furthermore, when r    , asymptotic tracking and disturbance rejection 

are achieved by such a control law. That is,       -     for any initial condition     . The closed-loop system 

possesses robustness in the sense that for any (not necessarily small) perturbations in    ,  u,  ,  ,  c, K , Kc , 
asymptotic tracking and disturbance rejection still hold as long as the closed-loop system remains stable.

9
 The 

number of integrators for the MIMO system is equal to the number of outputs  
 
. 

 
 The control allocation problem comes down to determining a feasible control input, u, such that Eq. (6):  

 

          (6) 

 
The problem is to determine     such that    approximates   as well as possible (Ref. 13). An explicit solution to 

Eq. (6) without control allocation constraints is the pseudo-inverse, or the Moore-Penrose inverse of  :   
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The output of Eq. (5) is a virtual command to each axis, which becomes the desired acceleration for the control 

allocator. 

C. Linear Quadratic with Control Allocation 

The problems are whether the control allocator can give exactly the same control effort as the well understood 

linear quadratic (LQ) method without failures or constraints, and how to command all of the surfaces from a virtual 

command output. These very problems were addressed by Ola Härkegård
3, 14

 using an    optimal control allocator. 

For a discussion of the allocator presenting the same control effort issue, see Härkegård.
3
 For the underdetermined 

control allocation problem you must solve the system for the state in which the virtual commands are distributed 

among many surfaces (the state in which the number of control surfaces outnumbers the virtual commands). Thus, 

Eq. (6) is set to Eq. (7): 

 

              (7) 

 
Section III, “Optimization Formulations of  ontrol  llocation,” develops the design of the allocator. Section IV, 

“ ontrol  llocation with Structural Load  onstraints and Load Feedback,” includes the structural loads in the 

allocator. The output of Eq. (5) is the virtual command to each axis, which becomes the desired acceleration for the 

control allocator.  

 
 Remarks: 

 
(1) Because the augmented system, Eq. (3), is controllable, the control law, Eq. (5), can be conveniently found 

by applying the linear quadratic regulator  approach to Eq. (3). 

(2) From the controller dynamics, Eq. (2), it can be seen that           -              . Thus, the control law,  

Eq. (5), is simply a PI control law, which is well known in classical SISO control theory. The current 

formulation is much more general in that it applies to MIMO systems and allows tracking of time-varying 

commands and rejection of time-varying disturbances.
9
 

(3) The output for the control is a virtual system in the sense of there being three axes to control. Thus, the 

dimension of the virtual signal (see Fig. 2b) is equal to the number of controlled states. 

 

 The baseline controller discussed in this paper will be the robust servomechanism without any structural load 

limitations. The virtual control input     has three axes to track (pitch, roll, and yaw) and distribute (allocate) the 

commands among the 12 surfaces. The upcoming section will treat the problem of solving the virtual input and 

output of the allocator, where the output of the allocator is the true control input (see Fig. 2a or 2b) to the actuators. 

The control allocator solves an underdetermined system of equations where       q and        and where      . 

III. Optimization Formulations of Control Allocation 

The following section covers the details needed to go from the virtual command to the actual surface commands.  

The surface commands will have the added burden of staying within the structural load limits. 

A. Control Allocation Design 

We introduce control allocation in the context of linear quadratic tracking command. This linear quadratic 

control outputs a virtual command for each axis that is to be controlled; thus, the dimension of the LQT controller is 

         . Obtaining   from    requires solving a system of linear equations having more unknowns than equations. 

Solving such a system is not difficult in itself; the difficulty in control allocation is that the vector,  , is constrained. 

The limits generally have the form shown in Eq. (8): 

 

  min            max      for        , ,   (8) 

 
where   is the number of surfaces. In vector form, Eq. (8) is written as  min,          max, . There may be additional 

constraints due to the maximum rate of deflection of the actuators. We refer to the problem of finding a vector,  , 

that is the “best” possible solution of Eq. (6) within the constraints of Eq. 8 as the control allocation problem. 

Rewriting the terms  from Eq. (6) and Eq. (8) together, the standard constrained linear control allocation problem is: 
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Given the constraints, the control allocation problem may be such that many exact solutions exist, only one exact 

solution exists, or no exact solution exists. 

One is naturally drawn to finding either exact solutions or approximate solutions that minimize the error    -   . 

Indeed, providing all the control authority available may determine whether a maneuver is achievable, and whether 

an unusual condition can be recovered from or not. The question also arises, however, as to which solution is the 

most desirable when many solutions exist; therefore, optimal control allocation typically consists both of error 

minimization and control optimization. As we will discuss in this paper, the objective of load minimization, or at 

least load limiting, may also become part of the control allocation problem. 

B. Formulations of Optimal Control Allocation 

The norm used in the allocation criteria is a design choice that has more consequences than might be expected. 

The    norm of a vector,  , is the sum of the absolute values of the elements of the vector, Eq. (9): 

 

 
          

 

   

 (9) 

 
while the    norm is the usual Euclidean norm, Eq. (10): 

 

 
           

 

 

   

 (10) 

 
and the    norm is the sup norm, Eq. (11): 

 

        sup     (11) 

 
Algorithms have been proposed for all three norms; and results of the optimization problems are sometimes quite 

different.
15, 16

 

A possible implementation of optimization for control allocation consists in the sequential minimization of the 

error vector and of the control vector. Specifically, the error is minimized first, and then the control vector is 

minimized among all equivalent solutions. In Ref. 8, the control minimization problem was solved only when the 

solution of the primary error minimization problem was      . It should be noted, however, that unless the matrix,  , 

satisfies specific conditions (any     submatrix of   must be nonsingular), the solution is not necessarily unique, 

even if the desired vector    is not feasible. Given this fact, mixed optimization is a good choice, and has several 

advantages over sequential optimization.  

 

Mixed optimization: Given a matrix,  , and a vector,   , find a vector,  , such that Eq. (12): 

 

 J        -           -     (12) 

  

is minimized, subject to   min        max. 
The mixed optimization problem combines the error and control minimization problems into a single problem 

through the use of a small parameter,  . If the parameter   is small, priority is given to error minimization over 

control minimization, as is normally desired. Often, the combined problem may be solved faster, and with better 

numerical properties, than when the error and control minimization problems are solved sequentially.
5
 

D. Implementation of Optimal Control Allocation Algorithms  

Computational resources available on modern aircraft make the use of optimal control allocation algorithms 

feasible in real time. An efficient algorithm to solve the mixed optimization problem given in Eq. (12) with the    
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norm on the criterion was formulated by Bodson using linear programming approaches, providing guaranteed 

convergence to a solution in an acceptable period of time.
5
 Timing data showed that solutions of the problem could 

comfortably be performed in real time, even for large numbers of actuators.  

Härkegård proposed an elegant solution of the optimal control allocation problem using the    norm and the 

theory of active sets.
14

 The algorithm was very similar to the simplex algorithm used for    optimization, and had the 

same advantage of completing in finite time and with a small number of iterations. The    norm is noted for 

distributing the control effort among the control surfaces more evenly than the    norm, which uses the most 

effective surfaces.
16

 To more evenly distribute the control effort among the control surfaces when using a linear 

programming approach, in Ref. 17, the    norm was introduced for control minimization with the    norm still being 

used for the error minimization. 

IV. Control Allocation with Structural Load Constraints and Load Feedback 

Most optimal control allocation algorithms find an optimal solution to the control allocation problem within the 

constraints of the control surface position and possibly rate limits. These constraints, however, are not sufficient to 

ensure that the structural load limits of the aircraft will not be exceeded by the commanded control surface 

deflections. The bending and torsion moments at the wing root are examples of loads on the aircraft that need to be 

monitored. Structural load constraints will need to be accounted for in order to deploy optimal control allocation on 

NextGen
1
 aircraft. The load constraints at discrete critical points on the aircraft are formulated as shown in Eq. (13): 

 

              ma  (13) 

 
where   is a vector of the current measured or estimated loads at the critical points,   is a matrix that converts the 

effect of incremental surface deflections into incremental structural loads, and  max is a vector of maximum 

allowable structural loads at the critical points. The loads that need to be limited are a function of the aircraft being 

considered, often with an emphasis on torsion and bending moments. Generally, the load limits are determined 

through detailed studies, including ground- and flight-testing. This paper does not address the selection of the 

location or the number of load points to be considered for a given problem. For the purpose of developing a 

representative example, load points along the aircraft wing are used. 

Assume that the   matrix, which is computed from the states of the aircraft at the current time, gives a linear 

approximation of the incremental structural loads arising from commanded surface deflections. The incremental 

loads matrix is formed from an on-board loads model by perturbing each control surface input to the model from its 

current position at the current aircraft state. The perturbation yields the change in aerodynamic lift and rolling 

moments due to a one-degree change in surface deflection. It is assumed that the entire aircraft lift is distributed 

elliptically across the wing; also assumed is that the control effectiveness of each surface is proportional to the lift 

generated by that control surface. The resulting lift and moment components are used in conjunction with a 

structural model of the aircraft to determine moments at critical points on the aircraft. Superposition of the control 

surface effects in terms of lift, moments, and structural loads is assumed in order to obtain a reasonable, but tractable 

solution in real time. 

V. Proof-of-Concept Simulation Architecture 

Here we describe the proof-of-concept simulation implemented to demonstrate the proposed framework 

assuming static loads, an elliptical lift distribution, and a limited number of critical load points, using bending 

moments only. The structural load model used in this paper is identical to the model used in Ref. 18. 

A. Aircraft Configuration and Aerodynamic Model 

A linear simulation of a generic-class-type transport aircraft is used for the proof-of-concept study of the 

proposed framework. The Generic Transport Model is used to investigate dynamics modeling and control of large 

transport vehicles in upset conditions.
12

  

The simulation created for this study represents a conventional modern midsize commercial passenger 

configuration. The aircraft has right and left inboard and outboard elevons, three ailerons on each wing, and upper 

and lower rudders for use by the control allocator to achieve the desired roll, pitch, and yaw moments commanded 

by the flight control system. A stabilizer is used for trimming the aircraft.  

For the proof-of-concept study, six critical points on the aircraft were monitored for bending moments. These 

critical points were located on each wing near the six ailerons (three on the left wing and three on the right wing). 
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Figure 3 shows the right wing with three ailerons and three load limit locations. The left wing is similar. The loads 

locations that will be limited in this paper will be the six nodes (1 to 6) or (Ail_LOB, Ail_LMB, Ail_LIB,  Ail_RIB, 

Ail_RMB and Ail_ROB ). Comparisons are made between the allocator having no load limits and having load limits 

using the LQT controller. Further analysis and reporting will be performed to define more realistic load limits which 

will include torsion load components, in addition to the static bending moments shown in this paper. 

 

Figure 3. Right-wing layout with three ailerons and three constrained load points (Ail_RIB, Ail_RMB and 

Ail_ROB). The left wing is similar, with load points Ail_LOB, Ail_LMB and Ail_LIB, for a total of six load 

points. 

B. Static Structural Model and Wing Layout 

A finite element analysis (FEA) model is developed and integrated into the simulation to estimate static 

structural loads on the aircraft due to lift and roll moments and to compute the incremental loads created by surface 

deflections.
18

 For the proof-of-concept study, only bending moments at the wing root and aileron locations are 

monitored and included in this paper. It is important to note that torsion moments will contribute loads to the 

aircraft; torsion will be included in future studies. The finite element method is employed for its ability to calculate 

wingspan internal loads for potentially complex wingspan load distributions and wing geometries. The basic FEA 

model requires a small number of matrix multiplications for static loads analysis. The structural modeling and 

analysis used for this study assumes static conditions and considers external loads on the wing due to aerodynamic 

lift forces and roll moments. The lift distribution on each wing is assumed to be elliptical, with each wing carrying 

half of the total aircraft lift.  

C. Stability and Control Augmentation System with Optimal Control Allocation 

The stability and augmentation system for the simulation uses an LQT controller. The simulation has multiple 

surfaces that control multiple axes. The control allocator is able to use these surfaces to achieve the desired roll, 

pitch, and yaw moments commanded by the flight control system. The allocator has inputs for measured load,  , the 

incremental load matrix,  , for predicting the control surface contribution to the load at the critical points, a 

preferred position up, surface position limits, and load limits. The load limits are incorporated as a constraint on the 

cost function. Since this paper is examining the feasibility of the framework, we are only considering the load 

constraint on the bending moment at the six critical points along the wings. The control allocation problem solved in 

this simulation is to find the vector,  , such that Eq. (14): 

 

 J       -            -     
 (14) 

 
is minimized, subject to  min        max and               max. The above criterion and constraints are converted to 

a linear program and solved using the revised simplex algorithm described in Section III.C, “Implementation of 
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Optimal  ontrol  llocation  lgorithms,” which was modified to include the load constraints. The control allocator 

does not have actuator rate limits as a constraint, but the actuators modeled in the simulation rate limit their 

commands. The control allocator weighted the control minimization criterion by setting       - . Scaling of some of 

the inputs to the control allocator was necessary to achieve good numerical properties for the algorithm. The 

parameters   and    were scaled by a factor of   -  and the structural load parameters  ,  , and  max were scaled by 

a factor of   - . 

VI. Simulation Results 

The results include three test cases. The first test case shows what happens when load constraints are applied 

over six left- and right-wing locations, compared to the same input run without load constraints for roll input. Test 

case two shows what happens when a larger commanded roll is executed with the same load constraints as test case 

one. This run is intended to stress the loads allocator. In test case three, to show the robustness of the linear 

quadratic augmented allocator system to uncertainties, a 35-percent change in the control effectiveness plant model 

will be shown, keeping the controller the same as in test cases one and two with load constraints. We chose a roll 

doublet for the proof-of-concept criterion because the aileron deflections will load or unload the wing forces and 

moments. The simulations were run after the aircraft was trimmed at Mach 0.70 and an altitude of 30,000 ft at a 

weight of 200,100 lb. 

 

 Test case one: Small roll maneuver with the load constraints applied over six left- and right-wing locations 

(nodes near the  Ail_LOB, Ail_LMB, Ail_LIB, Ail_RIB, Ail_RMB and Ail_ROB). 

 

Figures 4, 5, and 6 show the time history plots for test case one. The first run (blue lines) was without load limits 

and the second run (red lines) was with six aileron load limits. The six load nodes are Ail_LOB, Ail_LMB, Ail_LIB, 

Ail_RIB, Ail_RMB and Ail_ROB and were arbitrarily set at 7250, 10000, 12950, 12950, 10000, and 7250 ft-lb, 

respectively). The control allocator needs to keep the loads below the specified levels. Figure 4 shows the aircraft 

response for both runs plotted together. The roll performance is the same but the alpha trace is slightly different. The 

loads on the left- and right-wing critical points are shown in Fig. 5; these load points are very close to the ailerons. 

No load limits were broken during the maneuver with active load limiting. The aileron deflections for the 

commanded maneuver are shown in Fig. 6. A feature of optimal control allocation algorithms with    norms on the 

control error is that the solutions will be such that the most effective surfaces are used to achieve the command; to 

achieve the roll command effectively, the ailerons that are most effective are utilized, those being the outboard 

ailerons Ail_LOB, Ail_ROB (see blue lines). The left aileron was practically stopped by the allocator because the 

load limit was touched (Ail_LOB load limit 7250 ft-lb). See the red lines in Figs. 5 and 6. The results show the 

performance is not exactly the same between the two runs, but is very close to being the same.   
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Figure 4. Time history of commanded roll rate and state responses with (red lines) and without load limits 

(blue lines) for test case one. 

 

 

 
Figure 5. Bending moments (ft-lb) at six left- and right-wing critical points with and without load limit of 

(7250, 10000, and 12950 ft-lb) for test case one. Red lines are with load limits, blue lines are without; black 

lines represent the limit at each point. 
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Figure 6. Aileron deflections (deg) on left and right wings with (red dash-dot line) and without (blue dashed 

line) load limits for test case one in which there were six load constraints. 

 
 Test case two: Large roll maneuver with the load constraints applied over six left- and right-wing locations near 

(nodes Ail_LOB, Ail_LMB, Ail_LIB, Ail_RIB, Ail_RMB and Ail_ROB). 

 

The same flight conditions and type of maneuvers were performed for test case two as for test case one, 

however, the roll maneuver was larger in order to test the allocator with a harder stress case. Figure 7 shows the 

aircraft response for both runs plotted together. The loads on the ailerons are shown in Fig. 8. The aileron 

deflections for the commanded maneuver are shown in Fig. 9. The roll performance with load limiting is worse than 

without load limiting; however, the allocator maintained the loads below the critical levels at the cost of good roll 

tracking performance. No load limits were broken during the maneuver. 
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Figure 7. Time history of commanded roll rate and state responses with six load limits (red lines) and without 

load limits (blue lines) for test case two, which has a large roll command. 

 

 
Figure 8. Bending moments (ft-lb) at six left- and right-wing critical points with and without load limit of 

(7250, 10000, and 12950 ft-lb) for test case two, which has a large roll command. Red lines are with load 

limits, blue lines are without; black lines represent the limit at each point. 
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Figure 9. Aileron deflections (deg) on left and right wings with and without load limits for test case two in 

which there were six load constraints. Blue line is without load limits; red lines are with six limits. The aileron 

surface limits were +/- 20 deg. 

 
 Test case three: Simple roll maneuver with a 35-percent change to the plant model with six load limits. 

 

The final test case compared the robustness of the LQT controller and allocator to large plant uncertainties with 

the same six load limit constraints that were used in test cases one and two. The plant model control effectiveness, 

   was changed by 35 percent for the second run (red lines) with the load limits active. The first run had no 

uncertainties or load limits. Figure 10 shows the aircraft response for both runs plotted together. The results show 

the performance is slightly slower with the uncertainty and load limit run (red lines) compared to the nominal run 

(blue lines). The loads on the left- and right-wing critical points are shown in Fig. 11. No load limits were broken 

during the maneuver. The aileron deflections for the commanded maneuver are shown in Fig. 12. The outboard 

ailerons were prevented from moving due to the load constraints imposed by the allocator (see Figs. 11 and 12), but 

the mid-board ailerons engaged to achieve good roll tracking performance.  
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Figure 10. Time history of commanded roll rate and state responses with 35-percent uncertainty (red lines) 

and without (blue lines) for test case three, which has a 35-percent control effectiveness reduction change. 

 

 
Figure 11. Bending moments (ft-lb) at six left- and right-wing critical points with and without load limit of 

(7250, 10000, and 12950 ft-lb) for test case three, which has a 35-percent control effectiveness reduction 

change. Red lines are with load limits, blue lines are without; black lines represents the limit at each point. 
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Figure 12. Aileron deflections (deg) on left and right wings with and without load limits for test case three in 

which there were six load constraints and which has a 35-percent control effectiveness reduction change. Blue 

line is without load limits; red line is with six limits. The aileron surface limits were +/- 20 deg. 

VII. Conclusions and Future Work 

The goal of this paper was to show that the aircraft structural loads using feedback could keep the loads below a 

specified limit, which would enable  the designers to build lighter wings and the resultant aircraft to burn less fuel in 

flight. The means to accomplish this task was to use linear quadratic tracking combined with online allocation 

techniques to maintain the loads below a limit. To this end, a framework was proposed and demonstrated in 

simulation using load constraints and real-time load feedback in conjunction with optimal control allocation. The 

first test case was a simple roll maneuver with and without load constraints applied over six left- and right-wing 

locations. Test case two showed the results of a larger roll command being used to stress the system using the same 

load constraints. Test case three demonstrated the robustness of the linear-quadratic-augmented allocator system to 

uncertainties; a 35-percent change in the plant model was shown, keeping the controller the same as in test cases one 

and two. The results showed that for this simple system no load limits were broken for the three test cases. 

Optimal control allocation was demonstrated to command surface deflections to achieve desired moments while 

remaining within the defined structural load limits of the aircraft. The runtime of the simulation was reasonable, but 

has not been studied for scaling of the problem in actual hardware. This study revealed many interesting problems 

for future investigation. The inclusion of load constraints in algorithms using the    or    norm would be interesting 

to compare with the    norm algorithm used in this paper. The use of weights on the surfaces and critical load points 

in the control allocation cost function should also be investigated. As well, robustness of the load model and the 

incremental loads matrix need to be examined in much more detail with the inclusion of the bending and torsion 

moments. 
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