High energy cosmic electrons: messengers from nearby cosmic ray sources or dark matter?

Alexander Moiseev

NASA Goddard Space Flight Center and CRESST / University of Maryland
Fermi Gamma-ray Space Telescope was launched on June 11, 2008

“There are two possible outcomes: If the result confirms the hypothesis, then you've made a measurement. If the result is contrary to the hypothesis, then you've made a discovery.” Enrico Fermi

April 5, 2011

Alexander Moiseev
The Fermi Gamma-Ray Space Telescope

- Large Area Telescope (LAT) (20 MeV - >300 GeV)
- Gamma-ray Burst Monitor (GBM) (8 keV - 40 MeV)

LAT collaboration

France
- IN2P3/LLR Ecole Polytechnique
- IN2P3/CENBG Bordeaux
- IN2P3/LPTA Montpellier
- CEA/Saclay
- CESR Toulouse

Germany
- MPI fuer extraterrestr. Physik, Garching

Italy
- INFN Bari, Padova, Perugia, Pisa, Rome, Trieste, Udine
- ASI
- INAF-IASF

Japan
- Hiroshima University
- ISAS/JAXA
- Tokyo Institute of Technology

Spain
- IEEC-CISC, Barcelona

Sweden
- Royal Institute of Technology (KTH)
- Stockholm University

United States
- Stanford University (HEPL/Physics, SLAC, KIPAC)
- UC Santa Cruz
- Goddard Space Flight Center
- Naval Research Laboratory
- Sonoma State University
- Ohio State University
- University of Washington
- University of Denver
- Purdue University - Calumet

Spacecraft with LAT and GBM before shipping to KSC

April 5, 2011

Alexander Moiseev
Fermi LAT science objectives cover practically all aspects in astrophysics

- Active galactic nuclei
- Gamma ray bursts
- Supernova remnants
- Pulsars
- Solar system objects
- Galaxies, clusters of galaxies, X-ray binaries
- Unidentified sources/new populations
- Diffuse gamma-ray emission
- Cosmic-ray acceleration & propagation
- Extra-galactic background light (EBL)
- Search for Particle Dark matter
- Tests of new physics
Fermi results recognized as one of the top 10 science breakthroughs of 2009 (Science, December 2009)

Many discoveries in different topics. Fermi LAT Collaboration just has published its 117-th paper (~2,500 citations to date). 6 more are in press and 20 have been submitted.

Each of these paper is a complete high-level analysis covering one of the topics listed above.

It is impossible to address all of them in one talk!

I will briefly go through the main results. Please do not hesitate to ask me for the details offline.
Why electrons?

• Due to their low mass high energy cosmic ray electrons (CRE) lose their energy rapidly (as $-\frac{dE}{dt} \sim E^2$) by synchrotron radiation on Galactic magnetic fields ($\approx 3-6 \mu G$) and by inverse Compton scattering on the interstellar radiation field (starlight and 2.7 K CMB, $\approx 1 \text{ eV/cm}^3$).

• The life-time of CRE due to these energy losses is

$$t = \frac{E}{-\frac{dE}{dt}} \approx 3 \times 10^8 \left(\frac{E}{1 \text{ GeV}}\right)^{-1} \text{yr} \quad \Rightarrow \quad \text{age of CRE observed at 1 TeV is } \sim 10^5 \text{ yr}$$

• The typical distance over which a 1 TeV CRE loses half of its energy is $\sim 300-400$ pc.

• Observation of such HE CRE would imply existence of a nearby source of TeV electrons.

• This makes CRE a unique tool for probing nearby Galactic space (Galactic halo is ~ 40 kpc diameter, ~ 4 kpc thick).
What can be learned from HE electrons
\((E > 10 \text{ GeV})\) ?

As we realized it in 2006

Precise measurement of electron spectrum above 10 GeV
- CR diffusion model;
- IC gamma ray flux model calibration, GALPROP

HE electrons origin: Search for the signature of nearby HE electrons sources (believed to be SNR) in the electron spectrum above \(\sim 10 \text{ TeV} \)

Search for anisotropy in HE electron flux: nearby sources, streaming of local magnetic fields?

Alexander Moiseev

April 5, 2011
LAT as a detector of high energy cosmic ray electrons

• The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD)

• Although the LAT was designed to detect photons, it was recognized early in its design that the LAT is a capable detector of high energy electrons too

• The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

• The hadron rejection power must be $10^3 - 10^4$ increasing with energy

• Another challenge – assessment of systematic errors: statistical errors will be very small
Fermi LAT electron+positron spectrum 7 GeV – 1 TeV

Ackerman et al., Fermi LAT Collaboration, Phys. Rev. D82, 092004, November 2010 (arXiv 1008.3999)

Our first results were published in PRL 102, 181101, 2009. It is the most cited Fermi LAT paper so far (over 400 times)

Data collected for the first 12 months of operation
- Total statistics 7.95 M electron candidate events
- More than 1000 events in highest energy bin (772 – 1000 GeV)

Noticeable deviation from single power law spectrum

April 5, 2011

Alexander Moiseev
Search for CR electrons anisotropy can provide information on:
• Local CR sources and their distribution in space
• propagation environment
• heliospheric effects
• presence of dark matter clumps producing e⁺ e⁻

Due to its large statistics and high angular resolution, the Fermi LAT is very capable for such study

Approach:
• statistical comparison of “no anisotropy” sky map of electron counts with the flight data. Energy from 60 GeV to ~600 GeV
• “no anisotropy” sky map is made of the flight data by either randomizing the reconstructed directions of the detected events
• analysis is performed in several energy intervals by either direct bin-to-bin comparison or by spherical harmonic analysis

April 5, 2011
Alexander Moiseev
Result:

- More than 1.6 million electron events with energy above 60 GeV have been analyzed on anisotropy.
- Upper limit for the dipole anisotropy has been set to 0.5 – 5% (depending on the energy).
- Upper limit on fractional anisotropic excess ranges from a fraction to about one percent (depending on the minimum energy and the anisotropy’s angular scale).
- Our upper limits lie roughly on or above the predicted anisotropies.

Distribution of significance, fitted by a Gaussian.
Interpretation

Task: find a model which agrees with all relevant experimental results

Inputs:
- Results
 - Fermi $e^+ + e^-$ spectrum
 - HESS $e^+ + e^-$ spectrum
 - Pamela e^- spectrum
 - Pamela $e^+/(e^+ + e^-)$ ratio
 - Pamela p^+ spectrum
- Models
 - diffusion propagation (plain, Kolmogorov, Kraichman)
 - solar modulation
 - single vs. additional (several) components in the electron flux

Conventional model: $e^+ + e^-$ spectrum consists of dominating “primary” (produced in quasi-uniformly distributed distant astrophysical sources, thought to be SNR) e^-, plus contribution from “secondary” e^+ and e^-, produced in interactions of cosmic rays with interstellar matter

Additional component: it is assumed that there is a source of HE $e^+ + e^-$ with hard spectrum
Interpretation (cont.)

Fermi - LAT:
• We were rather successful to fit our first spectrum published in PRL paper (20 GeV – 1 TeV) with a single component (single power law fit).
• With our new spectrum extended down to 7 GeV we tested many combinations of injection spectra, diffusion models and solar modulation. It appears that the spectral flattening at 20-100 GeV and the softening at ~ 500 GeV cannot be satisfactory fitted by the single component model.
• Most important, the Fermi LAT spectral slope between 7 and 100 GeV cannot be reproduced

Pamela:
• Positron fraction cannot be reproduced as well

Conclusion: new Fermi LAT electron spectrum cannot be explained within conventional single-component model

April 5, 2011
Alexander Moiseev

For details see D. Grasso, talk in Galileo Galilei Institute
Now we introduce an additional component of the CRE flux. It is assumed that the additional source (can be astrophysical or "exotic", such as dark matter clump) provides equal amount of e^+ and e^-, in order to satisfy Pamela positron ratio.

Important to notice that though the new extended Fermi LAT spectrum needs an additional hard spectrum source, it does not have to be e^+ and e^-; only e^- suffice.

Fit of Fermi LAT and Pamela data with 2-component model. Standard component: injection spectral index 2.0/2.65 above/below 4 GeV and $E_{\text{cut}} = 3$ TeV. Additional component with spectral index 1.5 and $E_{\text{cut}} = 1.4$ TeV. Solar modulation parameter $\Phi = 550$ MV.

April 5, 2011
Alexander Moiseev
Why are the e^+e^- sources not seen at lower energy, where the positron fraction agrees with their pure secondary origin (CR interactions with ISM)? What could be the origin of the e^+e^- hard spectrum?

There are several models, including acceleration of “secondary” e^+ and e^- in the CR acceleration regions (Blasi 2009), consideration of Klein-Nishina suppression of energy losses near the points of origin (Aharonian & Atoyan 1991, Stawarz et al. 2009), enhanced e^+e^- acceleration in pulsar polar cap (Biermann et al. 2009).

Multiple cascading in pulsar magnetosphere can also provide needed acceleration of e^+e^-

Promising sources of high energy pairs could be MSP (with many discovered by Fermi) due to their high rotation frequency and low surface magnetic field (low energy losses).

Dark matter origin of these sources is not excluded.

April 5, 2011 Alexander Moiseev
Summary

• Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling.

• Now we can discuss not only the origin of CR electrons, but also constraints of their source(s) models based on new results.

• No good fit with a pre-Fermi conventional model to satisfy both Fermi and Pamela

• Introduction of an additional hard component provides a good fit of the Fermi LAT spectrum. It is viable that we are dealing with at least two distinct mechanisms of “primary” electron (both signs) production.

April 5, 2011

Alexander Moiseev
To satisfy the Fermi LAT spectrum, this component can comprise e^- only, but Pamela result requires e^+e^- pairs.

Nature of such a component is still a question. Can be astrophysical (e.g. pulsar systems), exotic (DM), or other effects.

Our upper limits on anisotropy can be used to constrain the models of the sources and propagation.

Critical new results on the positron fraction are expected from the AMS.

With the new data more puzzles than before; need “multi-messenger” campaign: electrons, positrons, gammas, X-ray, radio, neutrino...
THANK YOU!

April 5, 2011

Alexander Moiseev