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Objective 

• Investigate the feasibility of using CFD in general, DES in 
particular, for prediction of roughness-induced boundary layer 
transition to turbulence and the resulting increase in heat transfer 

STS-114 (July 2005) 

  Threat of overheating the delicate RCC wing leading edges was real. 
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Hardware 

• NASA Advanced Supercomputing Facility enables fine-grid 
unsteady turbulent flow simulations. 

Pleiades 
SGI ICE 
56,832 Intel Xeon Cores 
673 TFlops, 75 TB Memory 

ICCFD6_yoon  4 

Software 

•  US3D code – Unstructured, parallel, finite-volume Navier-Stokes 
solver for thermo-chemical non-equilibrium hypersonic flows 

•  Detached Eddy Simulations (or WMLES) – Hybrid RANS/ LES 
approach 

•  Optional low-dissipation numerics 

Wind tunnel model (1 mm high) compared 
with the Shuttle trip (6.35 mm high)                                                

Unstructured hexahedral grid 
near the trip 
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Navier-Stokes equations for a 
mixture of species in 
conservation law form 

Steger-Warming Flux Vector Splitting 

At a cell face 

Modified Steger-Warming Flux Vector Splitting 
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Lower 
dissipation! 
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Modified Steger-Warming Flux 

Roe flux form 

Original Steger-Warming Flux 

Roe Flux 

For shock waves 

For smooth flows 

Using a pressure dependent weight 

Baseline 
flux scheme 

High-order fluxes are obtained using the MUSCL approach 
with a weighted least-squares method to compute gradients. 

convection dissipation 
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Low Dissipation Flux 

•  Existing low-dissipation schemes to predict small turbulent eddies: 

-  Skew-symmetric form to reduce the amplitude of the aliasing errors 
-  Entropy function for secondary conservation law 

•  Present approach: Kinetic energy 
-  Kinetic energy transport eq. derived from density and momentum eqs. 

-  Combined with internal energy:  

Kinetic energy consistent flux 

Dissipative term from the modified Steger-Warming flux 
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Implicit Time Integration 

Point Relaxation 

For laminar sublayers only 

(Modified Steger-Warming flux) 
Line Relaxation 

Data-Parallel Relaxation 

Baseline Scheme 

€ 

Bi, j+1/ 2
− δUi, j+1+ (I + Ai+1/ 2, j

+ − Ai−1/ 2, j
− + Bi, j+1/ 2

+ − Bi, j−1/ 2
− )δUi, j − Bi, j−1/ 2

+ δUi, j−1 = Hi, j

€ 

−Ai+1/ 2, j
− δUi+1, j + Ai−1/ 2, j

+ δUi−1, j

€ 

(An
~

− Cn
~

) δUk = H n− Cn
~

δUk−1

€ 

δUn+1 = δUk max

•  Original Gauss-Seidel not parallelizable 

•  Replace the G-S sweeps with a series of 
point Jacobi-like iterations or a series of line 
relaxations. 

•  Second order dual time stepping (KEC flux) 
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Detached Eddy Simulation 

Spalart-Allmaras 1-eq. model with compressibility correction 

diffusive transport production 
destruction 

•  RANS approach over-predicts the turbulent dissipation levels in separated 
flow regions. 
•  DES introduces a new length scale 

-  Model behaves like a subgrid scale model for LES away from the wall. 

-  Wall-Modeled LES 
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˜ d = min(d ,CDESΔ)
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Test Case 

NASA LaRC Mach 10 wind tunnel experiment by Danehy et al. 

Flow conditions: Minf = 9.93, Rek ~ 6,000, Tinf = 51.3K, Tw = 308K 

Laminar 
Flow 

BLT Trip Streak 
Instabilities 

Transition Turbulent 
Flow 
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Grid Refinement Study 

Coarse grid (15 M cells) 
solution using the modified 
S-W flux 

Medium grid (40 M cells) 
solution using the modified 
S-W flux 

Fine grid (44 M cells) 
solution using the modified 
S-W flux (temperature 
contours) 

Grid points redistributed 
(grid density 2x) 

Grid requirements for DNS: 

1B cells to resolve Kolmogorov dissipative scales  
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Thank You. 

Laminar Flow 

BLT Trip 

Formation of Vortices 

Transition 

Vortex Breakdown/ 
Turbulence 
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Fine grid solution using the KEC flux  
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KEC Flux Solutions 

Fine grid solution using KEC flux with 
DES turbulence model 

Fine grid solution using KEC flux without a 
turbulence model (ILES?) 

  The accuracy of the turbulent flow solutions is driven primarily 
by the grid resolution. 
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Side Views 

Temperature 

Turbulent Viscosity 



8 

ICCFD6_yoon  15 

Top Views 

1.0 mm above 
the wall 

0.75 mm above 
the wall 

0.5 mm above 
the wall 
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Top Views (continued) 

0.05 mm above 
the wall 

0.25 mm above 
the wall 

0.1 mm above 
the wall 
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Comparison 

0.5 mm above the wall 

Experiment 

Computation 
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Formation of Upstream Vortices 

At the center of 
the trip 

3 mm from the 
center of the trip 

4 mm from the 
center of the trip 

(near the leading 
edge) 
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Conclusions 

•  DES/ WMLES/ Hybrid RANS-LES can be a useful tool for 
predictions of hypersonic boundary layer transition to 
turbulence triggered by an isolated roughness element. 

•  It is necessary to use the low-dissipation kinetic energy 
consistent scheme on a sufficiently fine grid for an accurate 
simulation of transition. 

•  Accuracy of the turbulent flow solutions is driven primarily by 
the grid resolution. 

•  Interaction of vortices leads to vortex breakdown and hence 
turbulent flow. 

•  Computational results agree well qualitatively with the 
experimental observations. 
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