Pharmacokinetics of Scopolamine Intranasal gel Formulation (INSCOP) during Antiorthostatic Bedrest

L. Putcha1, J. L. Boyd2, B. Du3, V. Daniels4 and C. Crady4

1 NASA Johnson Space Center, Houston, TX
2 Simulations Plus, Lancaster, CA
3 Prairie View A and M University, Prairie View, TX
4 Wyle Laboratories, Houston, TX
Introduction

- Space Motion sickness (SMS) is an age old problem for space travelers - on short and long duration space flight
- Oral antiemetics are not very effective in space due to poor bioavailability
- Scopolamine (SCOP) is the most frequently used drug by recreational travelers - patch, tablets available on the market
- Common side effects of antiemetics, in general, include drowsiness, sedation, dry mouth and reduced psychomotor performance
- Severity and persistence of side effects are often dose related
- Side effects can be detrimental in high performance demanding settings, e.g. space flight, military
The Oral Scopolamine Story

A representative saliva concentration -time profile in a crewmember

Mean Plasma concentration -time curve in normal subjects
Intranasal Scopolamine

- Oral, injectable and transdermal formulations of SCOP are either invasive, unsuitable or ineffective for the treatment of SMS
- Intranasal dosage form of scopolamine offers great promise for the treatment of MS on Earth and in space
- Advantages of intranasal dosage forms in general are:
 - Noninvasive
 - Rapid absorption facilitating rescue and treatment options with the same formulation
 - Enhanced and reliable bioavailability allowing precise and reduced dosing options
Results from a Phase I IND study showed 83% bioavailability of INSCOP versus 3.7% bioavailability of oral SCOP.

Study Population: 12 healthy male subjects

Study Design: Randomized Crossover Design

Treatments: 0.4 mg of IV, PO, or IN Scopolamine

Blood Samples: Pre-dose, 0.42, 0.83, 0.17, 0.33, 0.50, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12hr post dose.

Requirements for Therapeutics in Space

- Medications used for treatment in space must be commercial products for efficacy and safety reasons.

- Investigational New drug (IND) protocols must strictly adhere to FDA guidelines for conducting Phase I - IV clinical trials to establish efficacy, safety and commercial potential.
Pharmacotherapeutics of Intranasal Scopolamine - A NSBRI sponsored Drug Development project of INSCOP

Four FDA sponsored clinical trials were designed to characterize pharmacokinetics (PK) and pharmacodynamics, and evaluate the safety and efficacy of INSCOP

<table>
<thead>
<tr>
<th>SPECIFIC AIMS</th>
<th>FDA PROTOCOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Aim # 1: Establish PK of INSCOP with three escalating dose levels of 0.1, 0.2 and 0.4 mg</td>
<td>INSCOP 002-A: Dose Ranging PK Study (MDS)</td>
</tr>
<tr>
<td>Specific Aim # 2: Perform a dose ranging Efficacy study of INSCOP</td>
<td>Dose/ Efficacy Studies:</td>
</tr>
<tr>
<td></td>
<td>INSCOP 002-B (Dartmouth)</td>
</tr>
<tr>
<td></td>
<td>INSCOP 002-D (NAMRL)</td>
</tr>
<tr>
<td>Specific Aim # 3: Determine if bioavailability and PD of IN SCOP are altered in a simulated microgravity environment</td>
<td>INSCOP 002-C: Bioavailability Study during ABR (MDS)</td>
</tr>
</tbody>
</table>
Specific Aim #1: Protocol 002-A

A Phase I, Randomized, Double-Blind, Placebo-Controlled, Dose Ranging Study of Pharmacokinetics and Pharmacodynamics of Intranasal Scopolamine

- Dose escalation of INSCOP at 0.1, 0.2 and 0.4 mg dose levels
- 12 normal healthy subjects (6 male/6 female) received INSCOP in a placebo-controlled randomized crossover design
- Assessment of primary PK parameters of INSCOP as a function of dose
Results

Plasma Concentration - Time profiles of Scopolamine

- Dose=0.1mg
- Dose=0.2mg
- Dose=0.4mg
Specific Aim #2: Protocol 002-B

A Phase II, Randomized, Double-Blind, Placebo-Controlled, Efficacy Study of Intranasal Scopolamine

- Clinical efficacy study with 0.2 and 0.4 mg and INSCOP given as pre-treatment for motion sickness induced by off-axis Vertical Rotation Chair (VRC)
- 18 male/female, motion sickness susceptible subjects
- Establish concentrations of INSCOP for efficacy as well as assess PK (10 subjects ONLY) of the two doses of INSCOP
Results

Mean Plasma conc. - time profiles of INSCOP

Scopolamine conc. (pg/ml)

Time (hr)

- dose=0.2mg
- dose=0.4mg
Specific Aim #3: Protocol 002-C

A Phase II, Randomized, Double-Blind, Bioavailability Study of Intranasal Scopolamine in a Simulated Microgravity Environment

- Estimate the bioavailability of a 0.2 mg dose and 0.4 mg dose of INSCOP during ambulation (AMB) and simulated microgravity, Antiorthostatic Bed Rest (ABR)

- 12 normal healthy subjects (6 male/ 6 female) received INSCOP in a four-way crossover design

- Evaluate PK/PD, safety and side effect profile of the two doses during AMB vs. ABR
Results

Concentration - time profiles of scopolamine in plasma
Primary PK Parameters

<table>
<thead>
<tr>
<th>Parameters (Mean±SE)</th>
<th>Units</th>
<th>Dose(mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMB</td>
</tr>
<tr>
<td>Cmax/D</td>
<td>pg/ml*mg</td>
<td>2.24±0.30</td>
</tr>
<tr>
<td>Tmax</td>
<td>h</td>
<td>1.27±0.23</td>
</tr>
<tr>
<td>AUC(_{inf}/D)</td>
<td>hpg/mLmg</td>
<td>9.02±1.72</td>
</tr>
<tr>
<td>(V_s)</td>
<td>L</td>
<td>578.03±93.55</td>
</tr>
<tr>
<td>(Cl_s)</td>
<td>L/h</td>
<td>141.70±16.45</td>
</tr>
<tr>
<td>(t_{1/2})</td>
<td>h</td>
<td>3.23±0.56</td>
</tr>
</tbody>
</table>

*P<0.05
**P<0.005
Comparative Profiles

A

B

C

Scopolamine conc. (ng/ml) vs Time (hr)

Dose=0.2mg of A

Dose=0.2mg of B

Dose=0.2mg of C

Time (hr)
PK Results (002 A)

- Dose-related nonlinearity between 0.2 and 0.4 with clinically significant primary PK parameters, Cmax and AUC

- Dose and dosing intervals may be adjusted to account for nonlinearity at higher doses
PK Results (002 C)

- No difference between AMB and ABR in PK parameters after 0.2 mg dose

- Cls decreased with a concomitant increase in Cmax and AUC during ABR after 0.4 mg dose

- This difference in AUC and Cls at the higher but not the lower dose during ABR is in agreement with the nonlinear kinetics with dose observed at these doses (002 A)

- Dosing adjustment may be required for treatment with INSCOP in space
Overall Results

- Inter-site differences in profiles - may be a result of dosing discrepancies between study sites

- The dosage form for A and B are from a different vendor than for C

- Data for all protocols (0.2 and 0.4 ambulatory) will be pooled for obtaining statistical rigor for modeling
Data Analysis in Progress

Extremely Rich data facilitating complex analysis options - Some trend analysis and interpretation currently in progress with respect to:

PK

• Gender differences

• Dose - related metabolism differences

• PK modeling combining all ambulatory subjects data

• Plasma/saliva simultaneous fitting and correlation

• Metabolite kinetics
Data Analysis in Progress

PD Dose - Effect analysis with

- BP, HR data
- ARES Performance Parameters
 - Reaction time
 - Accuracy
 - Short and running memory recall

PK/PD Modeling with applicable response parameters

Stay tuned for next update!