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Abstract— Conventionally, tendon-driven manipulators im-
plement some force control scheme based on tension feedback.
This feedback allows the system to ensure that the tendons are
maintained taut with proper levels of tensioning at all times.
Occasionally, whether it is due to the lack of tension feedback or
the inability to implement sufficiently high stiffnesses, a position
control scheme is needed. This work compares three position
controllers for tendon-driven manipulators. A new controller
is introduced that achieves the best overall performance with
regards to speed, accuracy, and transient behavior. To compen-
sate for the lack of tension feedback, the controller nominally
maintains the internal tension on the tendons by implementing
a two-tier architecture with a range-space constraint. These
control laws are validated experimentally on the Robonaut-2
humanoid hand.

I. INTRODUCTION

Tendon transmission systems are often used in the actu-

ation of fingers for high degree-of-freedom (DOF) hands.

The remote actuation allows for significant reductions to the

size and weight of the fingers, features that are important for

dexterous manipulation. Since the tendons can only transmit

forces in tension, the number of actuators must exceed the

manipulator DOF’s to achieve fully determined control of the

finger. This redundancy entails a null-space that is needed to

maintain some minimum level of tensioning on the tendons.

Accordingly, an ideal control law for such a system would

be a force-based controller with tension feedback. Through

the feedback, the tendons can always be kept taut and appro-

priate levels of tensioning can be maintained. Occasionally,

however, a position-based control law is desired. In cases

where tension feedback is not available or the control band-

width does not allow for sufficiently high joint stiffnesses,

a pure position controller is needed. Many researchers have

presented tension-based controllers for tendon-driven fingers

[1]–[6], while none (to our knowledge) have presented a

position-based controller.

The challenge is to develop a controller that can achieve

the desired performance while maintaining suitable tensions

on the tendons. According to the needs of our implementa-

tion, three criteria arise. First, the controller needs to produce

a fast response time with low steady-state error. Second, it

needs to produce no transient overshoot. The overshoot can

cause spikes in the tension as either the tendons fight each
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Fig. 1. Schematic of a simple finger with tendons.

other or hard limits are struck. Eliminating the overshoot

thus becomes important in the absence of tension feedback,

and it applies to both the joint and actuator spaces. Finally,

the controller must be able to maintain the internal, or null-

space, tensions on the tendons. Given some initial state of

tensioning, the controller needs to maintain the internal ten-

sions to keep the tendons from either going slack or applying

excessive loads. Assuming no tension sensing is available,

this objective can be nominally achieved by eliminating the

null-space motion amongst the tendons.

This work compares several position controllers for

tendon-driven manipulators. A new controller is presented

that achieves superior transient performance than equivalent

proportional-integral (PI) based controllers. This controller

implements a two-tier architecture with a range-space con-

straint to eliminate the null-space motion. The controllers

are validated experimentally on the three DOF fingers of the

Robonaut-2 humanoid hand.

The paper starts with an introduction to the kinematics

of the finger. The control laws are then presented and their

transfer functions are analyzed. Finally, the experimental

results from Robonaut-2 are presented and discussed.

II. FINGER KINEMATICS

Before introducing the control laws, an understanding of

the finger kinematics is needed. For that purpose, consider

the schematic of a representative tendon-driven manipulator

shown in Fig. 1. q and τ represent the column matrices

of positions and actuated joint torques, respectively. x and

f represent the column matrices of tendon positions and

tensions, respectively. The relationship between the n joint

torques and the m tendon tensions follows, where m > n.

τ = Rf (1)

R ∈ R
n×m is known as the tendon map; it contains the joint

radii data mapping tendon tensions to joint torques. For the

system to be tendon controllable, R must be full row rank

and there must exist an all-positive column matrix, w, such

that Rw = 0 [7]. Inversely, the solution for f follows, where



R+ is the pseudoinverse of R, I is the identity matrix, and

λ is arbitrary.

f = R+τ + f int (2)

f int

.
= (I − R+R)λ

f int represents the internal tensions, lying in the null-space

of R and producing zero net torques. The matrix [I −R+R]
provides the projection operator into the null space of R.

Given quasi-static conditions, f = f int whenever zero

external forces act on the finger. Throughout this work, bold

symbols represent column matrices.

This same R expresses the relationship between the tendon

and joint velocities. Based on the principle of virtual work,

the contribution of the joint motion to the tendon velocity

equals RT q̇. Assuming a constant R, the net displacement

of the tendons is a sum of the joint contribution plus the

change in length, l, of the tendon. The symbol ∆ denotes

the difference in a respective variable from one configuration

to another.

∆x = RT ∆q + ∆l (3)

We will model the tendon as a linear spring and assume it

remains taut. We will also assume that the tendons all have

the same stiffness value, kt, since the difference in tendon

lengths is not sufficient to warrant a significant difference in

stiffness. The following analysis relates ∆l to the change in

tendon tensions and then joint torques.

∆f = kt∆l

∆τ = R∆f

= ktR∆l (4)

Solving for ∆l reveals both a range-space and null-space

component:

∆l = 1

kt

R+∆τ + ∆lint (5)

∆lint
.
= (I − R+R) δ,

where δ is arbitrary. ∆lint represents the change of length in

the null-space of R, i.e. the change in length that effects only

the internal tensions, not the joint torques. Hence, the first

term on the right side of (5) represents the change in length

due to external loads, while the second term represents the

change in length due to the internal tensions. This results in

the following final relation for the tendon displacement from

(3).

∆x = RT ∆q +
1

kt

R+∆τ + ∆lint (6)

In the absence of tension feedback, the only way to keep

the internal tension constant is to eliminate ∆lint. This

implies that the actuator motion, ∆x, must lie in the range-

space of RT . Assuming we have zero external forces and

an accurate kinematic model, staying in the range-space will

keep the static tensions on each tendon constant, preventing

the tendons from either going slack or being overloaded. Of

course, an external load may cause the actual tensions to drop

to zero or to reach excessive highs, however, the tensions will

return to their original state once the load is removed.
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Fig. 2. The control architecture. The lower, actuator position loop allows
the Finite-Difference controller to actively constrain the actuator motion to
the range-space.

III. CONTROL LAWS

Based on these kinematics, a set of control laws can

now be presented. The controller implements a two-tiered

architecture with an upper loop controlling joint positions

and a lower loop controlling actuator positions. Shown in

Fig. 2, the upper loop passes actuator position commands

down to the lower loop. We assume here that the lower

loop has been tuned to maximize performance with a first-

order response behavior (i.e. without overshoot). Not only

is it common for actuators to operate a well-tuned position

controller, but this hierarchy also exists to accommodate the

range-space constraint needed by the first of the three control

laws presented here.

A. Finite-Difference Law

The first control law implements a discrete version of

a velocity controller, where the current positions of the

actuators are continuously fed back and combined with a

delta vector based on the joint errors. We thus refer to it

as the Finite-Difference controller. Based on the kinematic

relation in (6), the commanded position is:

xd = x − kpR
T ∆q, (7)

where ∆q here represents the joint position error (q − qd),
and kp is a scalar, constant gain. This control law zeros the

null-space displacement term of (6), since none is desired,

as well as the external torque term. The external torque term

represents the stretch in the tendons due to an external torque.

The feedback controller will makeup for this disturbance.

This controller works well in producing a fast response

that closes the steady-state error and maintains an over-

damped behavior. The problem is that it does not actively

constrain the actuator positions to the range-space. Although

the delta vector commanded to the actuators lies in the range-

space, disturbances or actuator saturation effects can cause

the actual positions to deviate from the range-space. This

effect is exacerbated by the fact that the tendons cannot resist

compression. Consider thus any case in which the finger is

externally constrained: the tendons opposing the joint error

in tension remain restrained, while the tendons supposedly

in compression run away. This internal motion (∆lint) will

dissipate the internal tension, possibly even leaving the finger

uncontrollable due to the slack in the tendons.

To resolve this problem, the output of the control law

needs to be projected into the range-space of the finger.

This will allow the lower actuator loop to actively servo



to the range-space. That projection is achieved by the op-

erator R+R, as shown in Appendix A. Noting that R+R is

symmetric, the new commanded position follows.

xd = R+R
(

x − kpR
T ∆q

)

= R+Rx − kpR
T ∆q (8)

This results in our final Finite-Difference control law.

This controller produces the same transient and steady-state

performance as (7); however, it resists the internal motion

even when disturbed. Note that the initial relation in (7) could

have been implemented with a single-loop controller, setting

the motor command proportional to RT ∆q. The range-space

constraint of (8), however, requires the two-tiered hierarchy

of Fig. 2.

B. Feed-Forward Law

The second control law is the first of two laws based

on PI compensators. This law implements a feed-forward

term for the final position of the actuators with a PI term to

eliminate steady-state error. If the system is initialized such

that the initial positions, x and q, are defined as zero, then

the actuator positions that matches the desired joint positions

without changing the length of the tendons are given by

RT qd. Since the kinematic model may not be perfect, the

PI compensator is needed to eliminate the errors. Referred

to as the Feed-Forward controller, the commanded position

follows.

xd = RT qd − RT

(

kp∆q +

∫

ki∆qdt

)

(9)

The feed-forward term results in a fast rise-time, while

the PI term results in zero steady-state error. Unfortunately,

any non-zero PI gain unavoidably causes overshoot in the

transient response. Such overshoot is quite undesirable, as

previously described. Accordingly, only low gains can be

used, resulting in a step response with a fast rise time but

slow settling time.

C. Pure PI Law

To avoid the overshoot problem of the previous controller,

the third control law implements only a PI compensator.

Referred to as the Pure PI controller, that relation follows.

xd = −RT

(

kp∆q +

∫

ki∆qdt

)

(10)

Compared to the previous law in (9), this law can be

tuned to prevent overshoot and can thus achieve a faster

settling time. As shown in the next section, a purely first-

order response can be achieved by setting ki = akp, where

a−1 is the time-constant for the actuator position loop.

In theory, this control law can thus be tuned to provide

the same performance as the finite-difference controller. In

practice, however, the two are not equal. Comparing (8) and

(10), the two are identical except that the position feedback

of the first replaces the integral error term of the second.

Effectively, a continuous time integral is thus used instead

of the discrete and delayed time integral. This allows the

Finite-Difference controller to implement higher gains, and

thus a faster response, without instability or overshoot.

IV. TRANSFER FUNCTION ANALYSIS

To understand the performance of these controllers, con-

sider the transfer function for each. This analysis provides the

theoretical validation for the claims of the previous section.

The experimental validation follows in the next section.

To start the analysis, consider the equation of motion for

the finger.

M q̈ + η = τ + τ e (11)

M is the joint-space inertia matrix. η represents the sum of

the Coriolus, centripetal, gravitational, and frictional forces.

And τ e represents the torques produced by external forces.

For our purposes here, zero external forces are assumed.

If the system is initialized so that the initial positions and

lengths are defined as zero, x0 = q0 = l0 = 0, then (3)

gives us the following relationship for the actuator position.

x = RT q + l (12)

Since f = ktl, the joint torques thus become:

τ = Rf

= ktR
(

x − RT q
)

. (13)

Substituting back into the equation of motion,

1

kt

(M q̈ + η) + RRT q = Rx. (14)

Since the passive dynamics are scaled by the inverse of

the tendon stiffness, which is a relatively large value, their

contribution is not significant. This is further supported by

the assumption that the manipulator inertia and first-order

dynamics are insubstantial, as is commonly the case for

dexterous fingers. We will thus neglect the effect of these

dynamics. In addition, we will model the actuator with

a first-order transfer function and a time-constant of a−1.

Accordingly, the relation can be expressed in the Laplace

domain as follows. Let Q(s) and X(s) represent the Laplace

transforms of q(t) and x(t), respectively.

RRT Q = RX

=
a

s + a
RXd. (15)

Consider now the transfer function for the Finite-

Difference controller (8). Assuming the motion is limited

to the range-space as expected, we can substitute x = RT q.

xd = R+R
(

RT q
)

− kpR
T ∆q (16)

Substituting the transform of this result into (15) produces

the following transfer function for the control law, revealing

a desirable first-order response.

Q =
akp

s + akp

Qd (17)



Fig. 3. A model of the Robonaut-2 robotic hand.

Next, consider the transfer function for the Pure PI

controller. Substituting from (10), the following second-

order function arises.

Q =
akps + aki

s2 + a(1 + kp)s + aki

Qd (18)

The system can be reduced to a first-order system by setting

ki = akp.

Q =
akp

s + akp

Qd (19)

This indicates that the Pure PI controller, in principle, can

be tuned to produce the same exact result as the Finite-

Difference controller. In practice, however, the implementa-

tion issues of communication delays and discrete processing

rates favor the Finite-Difference controller.

Finally, consider the transfer function for the Feed-

Forward controller.

Q =
a(1 + kp)s + aki

s2 + a(1 + kp)s + aki

Qd (20)

As shown in Appendix B, this transfer function will nec-

essarily overshoot given any non-zero gains. Of course, the

overshoot can be slight and acceptable given relatively low

ki gains. With such low gains, however, the settling time will

be considerably long. Not only will the system theoretically

always overshoot, but in practice, the overshoot is heightened

by the communication delays and actuator saturation effects

of any implementation.

V. EXPERIMENTAL RESULTS

A. Mechanical System

The control laws were tested on the primary fingers of the

Robonaut-2 humanoid hand. A model of the hand is shown

in Fig. 3. The finger has four tendons and three independent

DOF’s: a yaw, a proximal pitch, and a medial pitch. The yaw

joint is perpendicular to both pitch joints, and the tendon

mapping matrix follows.

R =





0.15 0.15 −0.15 −0.15
0.265 −0.195 0.265 −0.195

0 0 0.195 −0.195



 (21)

0 1 2 3 4 5 6 7 8 9 10 11

−10

0

10

20

30

40

50

60

70

time (s)

jo
in

t 
a

n
g

le
 (

d
e

g
s
)

Finite−Difference Step Response

 

 

0 1 2 3 4 5 6 7 8 9 10 11

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

a
c
tu

a
to

r 
p

o
s
it
io

n
 (

in
)

yaw

proximal

medial

Fig. 4. A filtered step input (dotted line) is commanded to the joints. The
controller produced a fast response with satisfactory steady-state error. No
overshoot was exhibited in either the joint or actuator spaces, which was an
important controller specification.

The system is actuated by brushless DC motors with

planetary reduction gearheads. Ball-screws provide the linear

conversion for the motor power, which is then transmitted

to the finger through a tendon-conduit arrangement. This

arrangement consists of a polymer cable threaded through

a steel extension spring. Joint angles are sensed through

Hall-effect sensors, and actuator positions are sensed by

incremental encoders on the motors. The processor operates

at a rate of 350 Hz.

B. Finite-Difference Step Response

Two experiments were conducted with the Finite-

Difference controller. The first experiment demonstrated the

step response for a change in position. Starting at an initial

joint position of [0, 0, 2] degs, a step command of [0, 60, 60]
degs was commanded through a trajectory generator. The

trajectory generator was tuned to provide the fastest stable

response. The response is shown in Fig. 4. The joint moved

quickly to the commanded position with the over-damped

response desired, closing the steady-state error to about

3 degrees error. The yaw joint exhibited some coupled

disturbance in the transience. This joint contains smaller radii

making it more poorly conditioned than the others. In the

actuator space, the controller demonstrated the desired over-

damped response as well.

C. Finite-Difference Disturbance Response

The second experiment tested the response of the Finite-

Difference controller to external forces or disturbances. The

version of the controller without the range-space projection

(7) failed under such conditions. The force created a joint

error which the sliders attempted to compensate for as dic-

tated by the kinematics. While the antagonist sliders pulling
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Fig. 5. A steady external force pushed the finger from time 2-6 s in one
direction, and then from time 11-15 s in the opposite direction. Responding
to the joint error, the protagonist tendon in each case slid forward until it is
was limited by the range-space constraint. Releasing the force, the tendons
snapped back to position.

against the disturbance were restrained, the protagonist slid-

ers pushing against it slid forward uninhibited. Since the joint

errors were unaffected by this motion, the protagonist sliders

continued to slide until they reached a hard stop or the force

was removed. This motion released the internal tension on

the tendons, either reducing the passive stiffness of the joints

or even introducing backlash due to the slack in the tendons.

The present controller solved that problem by using the

range-space projection, as the following experiment demon-

strated. A steady external force was applied to the finger

tip causing a displacement in the medial joint. Shown in

Fig. 5, a negative force was applied for a set time and

then released, followed by a positive force that was applied

for a set time before being released. Given the subsequent

joint displacement, the protagonist tendon slid forward a

limited distance, as dictated by the range-space constraint.

Upon release of the force, the actuators snapped back to

kinematically consistent positions. The controller is thus able

to nominally preserve the internal tensions initially placed on

the tendons.

D. Feed-Forward & PI Step Responses

The same step response experiment was conducted with

the other two controllers. First, the Feed-Forward controller

was applied without any feedback (kp = ki = 0). Using

this controller, the system would respond at the maximum
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Fig. 6. The Feed-Forward controller with zero PI gains was applied here.
The observed steady-state error of over 10 degs is due to errors in the
kinematic model.

speed of the actuator; however, significant steady-state errors

ensued. A sample response is shown in Fig. 6, where an error

of over 10 degs resulted. Throughout our experiments, the

PI gains could be increased only slightly without producing

significant overshoot. Applying such low gains would result

in a system with the same fast rise time but a very slow

settling time. A satisfactory balance between overshoot and

settling time could not be achieved.

Consider now the Pure PI controller for the same step

experiment. The system was tuned to its fastest response

resulting in gains of ki = 3 and kp = 1. Since the actuator

time-constant was observed to be 0.2 seconds, kp should

theoretically equal 0.6 for the first-order response of (19). In

practice, however, we were able to increase kp and achieve

a faster response. The results of the experiment are shown

in Fig. 7. This controller did the best job of eliminating the

steady-state error without overshoot; however, its response is

much slower than the Finite-Difference controller. Note, the

higher-order oscillations that are already starting to appear

can be eliminated by reducing kp.

VI. DISCUSSION

Selecting a position controller for a tendon-driven manip-

ulator involves balancing tradeoffs between several factors.

First, the performance needs to achieve both satisfactory

speed and accuracy. Second, it needs to eliminate overshoot

in both the joint and actuator spaces. Finally, it needs to

constrain the actuator motion to the range-space of RT . In the

absence of tension feedback, this is the only way to maintain

the initial internal tension applied to the tendons.

According to these requirements, the Finite-Difference

controller provided the most suitable solution and is currently

implemented on Robonaut-2. Although it does not fully
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Fig. 7. The Pure PI controller eliminates the steady-state error. Its tran-
sient response, however, is significantly slower than the Finite-Difference
controller.

eliminate the steady-state error as the other controllers do,

it is significantly faster with accuracy that is sufficient for

many purposes. Its accuracy can be further increased in one

of two ways. First, increasing kp will reduce the error. If

this produces overshoot, the trajectory generator can then

be slowed down. Alternatively, a small integral term with a

limited range can be added to close off the final error.

Applications that are concerned more with the steady-state

rather than the transient behavior may better suit one of the

other two controllers. The Pure PI controller will provide

zero steady-state error without overshoot, but it will require

the longest rise time. With a faster rise-time, the Feed-

Forward controller can also eliminate the steady-state error;

however, it will provide overshoot.

In addition, the Feed-Forward controller can be modified

to implement a lag compensator instead of the PI term. This

lag compensator represents a compromise with respect to

the PI: it can reduce the overshoot, however it does so at the

expense of the steady-state error. Furthermore, it will still

not achieve the speeds of the Finite-Difference controller.

Analysis of this control law is available in Appendix C.

APPENDIX

PROOF OF OVERSHOOT CLAIM

In section IV, the transfer function for the Feed-Forward

controller (20) is presented. The section claims that this

transfer function will always overshoot. That claim is val-

idated here.

The transfer function can be expressed in the following

general form, where c1 and c2 are positive constants.

Q =
c1s + c2

s2 + c1s + c2

Qd (22)

This system will necessarily overshoot, regardless of whether

the denominator is under-, critically-, or over-damped. If

the system overshoots when the denominator is overdamped,

then it will necessarily overshoot in the other damping cases.

Hence, it will suffice us to show that the system will always

overshoot given overdamped poles.

Given the assumption of an overdamped plant, the system

has two distinct real poles denoted as a and b.

a = −
1

2
c1 +

1

2

√

c2
1 − 4c2

b = −
1

2
c1 −

1

2

√

c2
1
− 4c2 (23)

Hence, c2
1 > 4c2 and b < a < 0. Since motion of the multiple

joints has been decoupled, we can consider a single joint

independently. Given a step input of 1, the system can now

be expressed as follows.

Q =
c1s + c2

s(s − a)(s − b)

=
ab − (a + b)s

s(s − a)(s − b)
, (24)

where −c1 = a + b, and c2 = ab. This expression can now

be expanded using the partial fraction technique.

Q =
1

s
+

(

a

b − a

)

1

s − a
+

(

b

a − b

)

1

s − b
(25)

The step response in the time domain can be found from the

inverse Laplace transform of this expression.

q(t) = 1 +

(

a

b − a

)

eat
−

(

b

b − a

)

ebt (26)

This step response overshoots if its maximum is greater

than 1. To find the critical point,

0 =
dq

dt

= a2eatmax
− b2ebtmax . (27)

The peak value for the step response can now be found,

where tmax is the time at which it occurs. Solving from

(27), the peak value can be expressed as follows.

q(tmax) = 1 +

(

a

b − a

)

eatmax
−

(

b

b − a

)

ebtmax

= 1 +
a

b
eatmax (28)

This value is always greater than one, indicating that this

overdamped system must always overshoot the input. Since

the system will always overshoot even when the poles are

overdamped, it will exhibit overshoot much more so under

the other possible scenarios.

REFERENCES

[1] J. Salisbury and J. Craig, “Articulated hands: Force control and kine-
matic issues,” International Journal of Robotics Research, vol. 1, no. 1,
pp. 4–17, 1982.

[2] S. Jacobsen, J. Wood, D. Knutti, and K. Biggers, “The Utah/MIT hand:
Work in progress,” Intl. Journal of Robotic Research, vol. 3, no. 4, pp.
21–50, 1984.



[3] G. P. Starr, “Experiments in assembly using a dexterous hand,” IEEE

Transactions on Robotics and Automation, vol. 6, no. 3, pp. 342–347,
June 1990.

[4] S. Ma, S. Hirose, and H. Yoshinada, “Design and experiments for a
coupled tendon-driven manipulator,” IEEE Control Systems Magazine,
vol. 13, no. 1, pp. 30–36, 1993.

[5] Y. Lee, H. Choi, W. Chung, and Y. Youm, “Stiffness control of a coupled
tendon-driven hand,” IEEE Control Systems Magazine, vol. 14, no. 5,
pp. 10–19, 1994.

[6] M. E. Abdallah, R. Platt, C. W. Wampler, and B. Hargrave, “Applied
joint-space torque and stiffness control of tendon-driven fingers,” in
IEEE Intl. Conf. on Humanoid Robots, Nashville, TN, December 2010.

[7] H. Kobayashi, K. Hyodo, and D. Ogane, “On tendon-driven robotic
mechanisms with redundant tendons,” International Journal of Robotics

Research, vol. 17, no. 5, pp. 561–571, May 1998.


