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OBJECTIVE

- Assist the Science Mission Directorate in developing technologies
for space missions.

- Explore the capability of computational modeling to assist in the
development of the Advanced Stirling Convertor.

- Baseline computational simulation with available experimental
data of the ASC.

- Calculate peak external pressure vessel wall temperatures and
compare them with anticipated values.

- Calculated peak magnet temperature inside the ASC over a range
of operational scenarios.
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- Radioisotope power system are an effective source of power for missions
TITLE that are far from the sun.
OBJECTIVE - Radioisotope power systems provide on-board power for various deep
BACKGROUND space missions.
CLUSTER Pioneer —> Includes explorations of Jupiter and Saturn
\Voyager —> Includes explorations of Neptune
MODEL g i .
Cassini —> Includes explorations of Saturn’s rings
METHODOLOGY Galileo —> Includes explorations of Jupiter
BOUNDARY CONDITIONS
RESULTS
SUMMARY
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BACKGROUND

- Deep space probe configurations have been examined to explore
TITLE the Kuiper Belt

OBJECTIVE
BACKGROUND - Configuration includes 140W ASRG.

CLUSTER

- Gas managemen valva ASE Interconninc] Tubds
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Kuiper Belt Object Orbiter Advanced Stirling Radioisotope Generator
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BACKGROUND

- 140 W ASRG currently tested at NASA GRC.

- ASRG is equipped with two ASC convertors.

- Testing includes different hardware versions of ASC

ASRG Testing at the NASA GRC Stirling Lab

Advanced
Stirling
Convertor
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CLUSTER

- Node Count: 374 processors, 160 channel Clos
network

- Fiber optic 1.28 Gb/s Bi-Directional, 600 ns
latency

- Chip Design: AMD Opteron 250 & 850, 2- & 4- NASA \ Cluster with Myrinet
Way Fiber Optic Communications

- Peak Floating Point Performance: 1.795
TeraFlops

- Total Memory: 4 Terabytes, Total Disk: 31.5
TeraBytes — )
Utilizes 75 KVA Power and 20 Ton Cooling 128 port Myrinet Clos fiber

Optic network switch

8-port “leaf “ level of switching
in Clos network

Clos Network

www.nasa.gov
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MODEL
Alternator

Stirling Working Space Piston
\ .f Planar Displacer Spring
o Gas Bearing Cavity
Heater Head | T
777 "f A/// 771 | Flex Rod

\JL b

- - — r: = i !

Displacer e “ —H Gas Bearing Pads
7z / 2 7 W <
J ' | Bounce Space
Heat Exchangers "*'a, )

Y Y
Free-Piston

Stirling Linear

Alternator
- Stirling cycle occupies head of the device. Hot-end temperature (from heat input

—> red) and cold-end temperature (from heat removal = blue) results in displacer
and piston motion.

- Cyclic motion of piston moves a magnet adjacent to an alternator, creating an
electric field.

- 2D (750,000 grid points); 3D (8.2 million grid points)
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METHODOLOGY

1) Run simulation using steady Navier Stokes equations until solution

IS converged.
Boundary conditions
* Net heat input (or hot-end temperature) on the heater head.
» Heat removal (or cold-end temperature) at the cold side adapter flange.
 Heat generation due to linear alternator losses (operating convertor).
* Radiating external wall to a remote environment at a temperature 25 C
lower than the cold-end temperature.

2) Run unsteady Navier Stokes equations for 10 cycles until solution is
time periodic.

www.nasa.gov
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BOUNDARY CONDITIONS

COLD SIDE
ADAPTER FLANGE

PRESSURE VESSEL
TITLE

OBJECTIVE
BACKGROUND
HEATER HEAD
CLUSTER

MODEL

METHODOLOGY

BOUNDARY CONDITIONS Net Heat Input
QNET
RESULTS Pressure
Vessel
SUMMARY Cold Temperature Exterior
Teown Temperature

ACKNOWLEDGEMENTS

Heat input: Ranges from 180 to 208 Watts.
Heat rejection at CSAF: Removal rate up to 150 W.

Coil Heat generation: Aimed at simulating linear alternator losses
during the conversion of mechanical power to electrical power.
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BOUNDARY CONDITIONS

EDDY BREAKING LOSSES Bp— . .
DUE TO CONDUCTOR MOTTON CONDUCTIVE LOSSES  : APPLIED AS COIL HEAT GENERATION

—
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Linear Alternator Losses
Eddy Losses

Hysteresis Losses

Applied all losses in computational model as heat generation terms in LA coil
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RESULTS - comparison with lab data

Stirling Working Space

Heater Head

Piston ‘\ ﬁ
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Alternator

Planar Displacer Spring

Gas Bearing Cavity

Flex Rod

Gas Bearing Pads

Displacer g
‘A/ Bounce Space
Heat Exchangers
L 0
T T
Free_-P_lston Linear
Stirling Alternator
MODEL AVAILABLE
CONFIGURATION DATA ENVIRONMENT BOUNDARY MEASURED
CONDITIONS VALUE
SURROUNDING ENVIRONMENT THOT TCOLD PV
MODEL TYPE . s .
MEDIUM TEMPERATURE o o o
ASC-E Exp and Comp ARGON 20 624 63.2 67.8
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RESULTS - Varying coil heat generation

Stirling Working Space

Heater Head

Displacer

Heat Exchangers

Alternator

Planar Displacer Spring

Piston /7
)
\=

Flex Rod

Bounce Space

Gas Bearing Cavity

Gas Bearing Pads

Free_-P_lston Linear
Stirling Alternator
MODEL CONFIGURATION ENVIRONMENT APPLIED BOUNDARY COIL HEAT
CONDITIONS GENERATION
THOT TCOLD
MODEL TYPE BEHAVIOR TEMPERATURE
°c °c Watts

ASC-E2 AXI Stationary 110 850 120 7

AXI Stationary 110 850 120 8

AXI Stationary 110 850 120 10

AXI Stationary 110 850 120 11
ASC-E2 3D Stationary 110 850 120 10
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RESULTS - Varying cold-end temperature

Alternator

Stirling Working Space Piston
f Planar Displacer Spring
S ¥ Gas Bearing Cavity
Heater Head /‘! - .
TITLE R e Fes o
&_Z
OBJECTIVE 3 2 Gas Bearing Pads
Displacer B
BACKGROUND Bounce Space
Heat Exchangers
CLUSTER
L , 0 , )
MODEL -Pi .
FrSee_ F|>_|ston Linear
tirlin
METHODOLOGY g Alternator
MODEL CONEIGURATION ENVIRONMENT APPLIED BOUNDARY COIL HEAT
BOUNDARY CONDITIONS CONDITIONS GENERATION
MODEL TYPE BEHAVIOR TEMPERATURE TTOT TC?LD Watt
RESULTS ¢ ¢ atts
SUMMARY
ASC-E2 AXI Stationary 110 850 120 10
ACKNOWLEDGEMENTS :
3D Stationary 110 850 120 10
AXI Stationary 110 850 130 10
AXI Stationary 110 850 140 10
ASC-E2 AXI Stationary 110 850 120 11
AXI Stationary 110 850 130 11
AXI Stationary 110 850 140 11
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RESULTS - Various operating conditions

PV Wall
BOM-1 ; T 4= 62.5°C
Q, =208 W, =
Teqq = 52°C /

Heater Head greved out
since temperatiire is
outside legend range

PV Wall
1 =45.7°C

cold —

Heater Head greved out
since temg

isicle lewend ranee
outsice legend range

afure is

TEMPERATURE
3.370e+02 =64°C

3.353e+02

3.337e+02

3.320e+02

3.303e+02

| 3.287e+02

3.270e+02

3.253e+02

3.237e+02

PV Wall

BOM-2 I =97.9°C

Q=208 W,
Toa = 90°C

Hearer
since femyg

outside legend range

3.220e+02 =49°C

TEMPERATURE

3.190e+02 = 46°C
H 3173102
315702

3140e+02

3.123e+02

3.107e+02

3.090e+02

3.073e+02

3.057e+02

3.040e+02

PV Wall
Tgg = 96.2°C

31°C

TEMPERATURI
3.730e+02 = 100°C

371302
3.697¢+02

3.680e+02

3.663e+02
3.647e+02
3.630e+02
3.613e+02
3.597¢+02
3.580e102 =85°C

TEMPERATURE
3.730e+02 = 100°C

3.713e+02
3.697¢+02
| 3.680e+02
3.6636+02
3.64Te+02
3.630e+02
3.613e+02
3.597e402

3.580eH02 =85°C

MISSION CONDITION FAR-FIELD DESIGN INTENT VALUES MODEL VALUES
PHASE TEMPERATURE THOT TCOLD PV PV-AXI PV-3D
°C °C °C °C °C
BOM 1 27 850 52 61 65.8 62.5
BOM 2 65 850 90 98 97.5 97.9
EOM 1 11 850 36 44 55 45.7
EOM 2 65 850 90 98 95.9 96.2
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RESULTS - Various operating conditions

PV Wall PV Wall
BOM-1 T =625C TEMPERATURE BOM-2 Ty = 97.9°C TEMPERATURI
Qu =208 W = 33706402 = 64°C oty = 37306102 = 100°C
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OBJECTIVE
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3.303e+02
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3.270e+02
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3.647e+02
a 363002
Heater Head greved out 2 sl preved e AR
3.597e+02
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3.253e+02 Heater
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CLUSTER outside legend range 3237e+02 outside lege
MODEL PVWall ) PV Wall
EAM-1 T, =45.7°C TEMPERATURE EOM-2 Ty - 96.2°C TEMPERATURE

cold =
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|
i 3.713e+02
|

W / 3.1906+02 = 46°C Q, = 182 W,
METHODOLOGY Toua = 36°C H - s = 90°C
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BACKGROUND

315702

BOUNDARY CONDITIONS

3 a2
3140402 | 3.680e+02
3.123c+02
3.123e+02 3.663¢+02

RESULTS 3.107e+02

3.64Te+02
3090e+02 6306402
SUMMARY Heater Head greved out
since femg

isicle lewend ranee
oufsicle (egernd ratge

3.073e+02

3.613e+02
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3.057e+02 3.507a+02
ACKNOWLEDGEMENTS 30800402 =« $1°C '
3.580e+02 =35C

MISSION CONDITION FAR-FIELD DESIGN INTENT VALUES MODEL VALUES
PHASE TEMPERATURE THOT TCOLD PV COIL MAGNET PV
°C °C °C °C °C °C
BOM 1 27 850 52 61 64.4 63.0 62.5
BOM 2 65 850 90 98 99.9 98.7 97.9
EOM 1 11 850 36 44 47.3 46.0 45.7
EOM 2 65 850 90 98 98.0 97.0 96.2
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SUMMARY

- When conditions from the operating ASC-E were applied to the
computational model, the calculated peak pressure vessel exterior
wall temperature was within 1.5 C of the test article.

- A 1 Watt increase in coil heat generation rate resulted ina 1.4 C
increase in peak temperature on the pressure vessel external surface.

- As the cold end temperature is increased, the AT between the peak
PV wall and the cold-end decreases when coil heat generation is
kept constant.

- While further enhancements are planned, the computational model
should have enough fidelity to investigate the complex internal flow
physics and heat transfer in the ASC-E2.

www.nasa.gov
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