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This report documents how OVERFLOW, a computational 
uid dynamics code, pre-

dicts plume impingement of underexpanded axisymmetric jets onto both perpendicular

and inclined 
at plates. The e�ects of the plume impinging on a range of plate inclina-

tions varying from 90�to 30�are investigated and compared to the experimental results in

Reference 1 and 2. The 
ow �elds are extremely complex due to the interaction between

the shock waves from the free jet and those de
ected by the plate. Additionally, complex

mixing e�ects create very intricate structures in the 
ow. The experimental data is very

limited, so these validation studies will focus only on cold plume impingement on 
at and

inclined plates1;2. This validation study will help quantify the error in the OVERFLOW

simulation when applied to stage separation senarios.

Nomenclature

DN nozzle exit diameter
RN nozzle exit radius
DNO nozzle exit outside diameter
DT throat diameter of nozzle
� plate angle, as measured from the nozzle centerline
ZNP plate distance measured from nozzle exit, measured in nozzle exit diameters
Mref reference Mach number, taken to be the design nozzle exit Mach number
P1 freestream pressure
Pe pressure at nozzle exit
T1 free-stream temperature

 speci�c heat ratio
Pr exit pressure ratio, de�ned as Pe=P1
Regu Reynold's number per grid unit length
r Arc-length measured from center of plate along radius
CFD computational 
uid dynamics
OVERFLOW Navier-Stokes computational 
uid dynamics solver

I. Introduction

O
n the Ares-I rocket, various rocket motors are used for separating the upper stage from the �rst stage.
Due to their size and proximity to the rocket, the plumes often impinge onto the surface of the rocket.

OVERFLOW, a Navier-Stokes computational 
uid dynamics (CFD) solver, can be used to simulate these
complex 
ows. While performing numerical solutions can be slow, it is still much cheaper than wind tun-
nel tests. Additionally, numerical simulations allow for quicker design iterations and con�gurations to be
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explored. However, the accuracy of the solutions needs to be quanti�ed. Here experimental data from Refer-
ence 1 and 2 are compared with the solutions generated by OVERFLOW, to validate the predicted results.
This problem was also explored using Loci-Chem, another CFD code, in reference 3 to validate that code's
ability to predict plume impingement.

In this study, the experiment carried out in References 1 and 2 are simulated. The cases where the 
ow is
shown to be considerably unsteady are simulated, to quantifying the uncertainty present in CFD simulation.

II. Overview

The goal of the present work is to run simulations of the plume impinging onto a plate at various
angles, and see how it compares with the experiment. The in
ow conditions in the chamber need to be
established �rst, and that is performed by exhausting the plume into free air. Once the chamber conditions
are determined, the impingement cases across the various plate inclination angles can be simulated. Since
the 
ows are unsteady, time-averaged solutions are used to compare with experimental data.1;2

III. OVERFLOW Simulation

OVERFLOW 2.2-theta(4;5) is used for the CFD simulations. The SST turbulence model, a two-equation
model, is used to model the turbulent characteristics in the 
ow.6 The various corrections available in the
SST model were left o�. Full multigrid and multigrid cycles are used to initialize the solution, develop the
plume, and help accelerate convergence. The Beam-Warming block tridiagonal scheme is used to drive the
solution, and the residual is computed using central di�erence with scalar dissipation. The simulations are
run using a combination of steady state stepping and dual time-stepping after the initial start up sequence,
due to the unsteadiness of the 
ow.

The in
ow conditions were calculated in a similar manner performed by Ref 2. Since the experiment setup
as described in Ref. 2 is vague, sea level conditions (
 = 1:4; T1 = 518:67�R;P1 = 1atm) are assumed. The
Reynold's number is based on these conditions, and the reference speed is taken to be the design lip mach
number of 2.2. Because the grid unit is given in millimeters, the Reynold's number per grid unit length is
Regu = 51251:8. The chamber temperature is held �xed at room temperature, while the chamber pressure
is iterated until the mach disk and shocks inside the plume matched the experiment.

Grid adaption is utilized throughout the simulation. The second undivided di�erence of the Q variables
along with pressure is used to determine whether a region should be re�ned or coarsened. Typically, the
simulation is run �rst with full multigrid cycles, to help initialize and develop the plume, and then run with
dual time-stepping to re�ne the the solution. The simulation switches over to steady state stepping when
grid adaption is turned on. Typically in one adaption cycle, the code will mark areas for re�nement/de-
re�nement, update the grid, and then run for a short time to resolve some of the features. Several adaption
cycles occur, before switching back to dual time-stepping. This process is repeated twice, before any solution
averaging takes place.

IV. Geometry

The geometry and experimental setup described in Ref. 2 is vague, so some assumptions had to be
made. The nozzle is a converging-diverging type. It's shape consists of a circular arc with a a radius of 21.4
mm, equal to the throat diameter connected to a conical exit section of 15�semi-angle, resulting in the exit
diameter, DN , of 30 mm. The outside diameter, DNO is 40 mm. The converging section is modeled as a
circular arc with a radius of 2.56 times the throat diameter. The plate in this simulation has a width and
length of 300 mm (10 times the nozzle exit diameter) to match the experiment. The nozzle plate separation
distance in this simulation is held �xed at a distance of 2 nozzle diameters ZNP = 2DN , which is measured
along the axis of the nozzle exit plane to the center of the plate. The inclination angle � is measured from
the centerline of the nozzle to the plate. The circular plate used in the experiment was changed to a square
plate to allow for easier domain construction. Figure 1 shows the nozzle and plate geometry.
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Figure 1: Geometry of Problem

A series of overset grids are used to model this problem. The grids consist of a set of near and o�-body
grids generated using Chimera Grid Tools version 2.2.7 Two separate grid systems are generated, one for
the plume free air cases and the other for the plume impingement cases. Grid adaption is utilized in all of
the cases to help resolve features in the 
ow �eld. All of the grids are three-dimensional, to ensure that any
three dimensional e�ects of the plume are captured. Half and axisymmetric grids, after a brief study, do not
capture all of the physics present in the 
ow.

The plume free air cases utilized a simple nozzle grid system, coupled with a series of o�-body grids to
capture and resolve the plume. The nozzle grid system consists of one annular grid modeling the nozzle
inside and outside, and a curvilinear Cartesian core grid to remove the polar singularity. The nozzle grid
and core grid make up 5.2 million grid points. The o�-body grid system surrounds most of the nozzle, except
for the nozzle back side, in which it is constrained to the same plane as the nozzle in
ow plane. The initial
o� body grid system is 0.5 million grid points. After the adaption cycles, the resulting grid grew to 23.2
million grid points. Figure 2 shows the resulting grid after re�nement.
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Figure 2: Plume Free Air Grid with Grid Adaption

For the plume impingement cases, the near body grids consist of four grids, which include three modeling
the nozzle geometry and one modeling the plate. The nozzle grids consist of one annular grid modeling the
nozzle inside and outside, and two Cartesian grids which cover the inside of the nozzle and the top of the
nozzle on the outside. The core grid removes the polar singularity present in annular grids. Collectively the
nozzle grids make up 5.8 million grid points. This nozzle grid is very similar to the nozzle used in the plume
free air case. The di�erence between the two is the outside of the nozzle is extended and closed o�, to form
a sealed body. The plate grid is a Cartesian box grid. The points are clustered in the center of the grid,
and stretch away at a distance of 3 nozzle radii measured from the center of the plate. The plate grid is
14.3 million grid points. The nozzle is rotated to the desired impingement angle, and the plate is translated
to maintain the the desired separation distance. The o�-body grid generation is done automatically using
Chimera Grid Tools and OVERFLOW's xrays. The o�-body grids completely enclose the nozzle grid, and
cover most of the plate grid excluding the back side of the plate. The initial o�-body grid system depending
on the angle, adds anywhere from 10 to 16 million grid points. The grid adaption is limited to the area
inside of 5 nozzle radii of the nozzle exit, extending down to the plate surface. The resulting grid size after
adaption ranges from 94 million to 200 million grid points. Figure 3 shows the resulting grid after re�nement
for the � = 90� case.
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Figure 3: Example of a grid system after grid adaption (� = 90�)

V. In
ow Determination

The in
ow is determined by iterating for the chamber pressure that compared best with experimental
data. The experiment determined their in
ow conditions by comparing shadowgraphs of the free jet with
a program that predicted the jet shock and �rst mach disk location. The program was based o� of a non-
homentropic method of characteristics, and also inserted exact Rankine-Hugoniot relations as the inward
characteristics intersected. The chamber conditions in the experiment were then varied until the jet shock
and �rst mach disk were in agreement with the program's solution for the speci�ed pressure ratio.1;2

In the simulation, a sweep of pressure ratios are used to help determine the corresponding pressure
ratio. The freestream pressure was set equal to sea level conditions, and the exit mach number was held
equal to the design lip mach number. With those values, the area ratio between the exit and throat, the
chamber pressure was backed out using one dimensional analysis. The chamber temperature was held to
sea level temperature of 518:67�R.Grid adaption was utilized, so that the features in the plume would be
captured better. The pressure ratios were iterated until the mach disk and jet shock compared well with
the experiment's results. The pressure ratio that compares best with the experiment is PR = 1:65, which is
37:5% higher than the one-dimensional value. Figure 4 is a plot of the simulation's density gradient, with
the experiment's shadowgraph sketch overlaid on top.
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Figure 4: Plume Free Air Density Gradient Magnitude, Compared with Experiment

VI. Plume Impingement

With the correct chamber conditions determined, the various plate angles are simulated. Due to the un-
steadiness present in the 
ow, the solution is time-averaged using the running average option implemented in
OVERFLOW. The averaging is initiated only after the initial transients in the solution have been dampened.
Figure 5 show plots of pressure on the plane of symmetry at various plate inclination angles. The surface
pressure is non-dimensionalized by the chamber pressure, and the arc length is non-dimensionalized by the
nozzle radius. Figures 9 through 13 in the appendix show density gradient magnitude for the various plate
angles.
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(a) � = 30� (b) � = 45�

(c) � = 60� (d) � = 80�

(e) � = 90�

Figure 5: Surface Pressures on the Plane of Symmetry for ZNP = 2DN ; PR = 1:2

The simulation results do agree fairly well with the experiment. The � = 30� does not quite capture the
peak exactly, but that might be due to insu�cient grid resolution on the plate itself. The � = 45� matches
the experiment almost exactly, while � = 60� seems to undershoot the peak. The more unsteady cases of
� = 80� and � = 90� tend to over predict some of the secondary peaks, but the overall pro�le is close. The
cases closer to a normal impingement angle are highly unsteady because the plate distance is very close to

7 of 13

American Institute of Aeronautics and Astronautics



the plate, which allows for the waves re
ecting from the plate to interfer with the nozzle 
ow. The y+ on
these solutions range from 1-10, with the higher values coinciding with where the pressure peaks.

To provide insight into the uncertainty present in the plume impingement CFD simulations, the forces
and moments are calculated by integrating the surface pressures along the symmetry plane. The pressures
are integrated using discrete trapezoidal integration from -4 to 4 r=Rn. Tables 1 and 2 show the simulation's
integrated forces and moments per unit length on the plate compared with the experimental values. Figure
6 show line plots of the force and moments per unit length for the simulation and experiment.1;2

Table 1: Forces per Unit Length on Plate

Angle (�) Experiment OVERFLOW

30� 1.02502 1.03520

45� 1.19249 1.17606

60� 1.32244 1.28736

80� 1.32573 1.35839

90� 1.31530 1.36393

Table 2: Moments per Unit Length about Centerline on Plate

Angle (�) Experiment OVERFLOW

30� 0.61571 0.60349

45� 0.47777 0.48456

60� 0.34923 0.36881

80� 0.04906 0.06914

90� -0.03077 -0.01455
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Figure 6: Comparison of Force and Moments of CFD and Experiment

The forces and moments per unit length in the CFD simulation compare very well with the experimental
results. The force error is on the order of 1% to 4%. The moment error is a little harder to quantify, because
of the location of the moment reference point. The error is on the order of 1% to 4% for most of the runs,
except for the near perpendicular impingement cases. The error there seems large because the values are
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closer to zero. When the moments are taken about a di�erent point, the error is much smaller. Table 3
shows the moments taken about r=RN = �4 for comparison.

Table 3: Moments per Unit Length about r=RN = �4 on Plate

Angle (�) Experiment OVERFLOW

30� 4.7158 4.7443

45� 5.2477 5.1888

60� 5.6541 5.5182

80� 5.3520 5.5027

90� 5.2242 5.4412

VII. Time Accuracy Convergence

The time accuracy of the solutions is also analyzed to check its sensitivity to di�erent time-accuracy
parameters. The previously computed solution is restarted and marched forward the same amount of time,
with varying time-steps and sub-iterations. The instantaneous solutions are then compared against the
original parameters. The surface pressures on the symmetry plane are plotted below in �gure 7 and the
corresponding forces and moments for each of the cases are in table 4.

Figure 7: Pressure on Plate, Time Accuracy Comparison ZNP = 2DN ; � = 45�

Table 4: Time Accuracy Comparison ZNP = 2DN ; � = 45�

Time Parameters Original 2x Time-step 4x Time-step 2x Sub-iteration 4x Sub-iteration

Convergence 1.5 1.25 1.0 2.0 3.0

Force 1.1684 1.1680 1.1675 1.1685 1.1685

Force % Error 0.036% 0.079% 0.008% 0.008%

Moment 0.5085 0.5092 0.5096 0.5084 0.5084

Moment% Error 0.136% 0.217% 0.024% 0.029%

9 of 13

American Institute of Aeronautics and Astronautics



The original sub-iteration residual convergence is around 1.5 orders of magnitude, while the 2x and 4x
was around 1.25 to 1 order drop. Increasing the number of sub-iterations by 2x resulted in a residual sub-
iteration convergence of 2 orders, while a 4x increase in sub-iterations increased the residual drop to about
3 orders of magnitude. The di�erence in the solution was minimal for all the cases, as seen by the plot and
percent errors. This leads to the conclusion that the solution sub-iterations are reasonably converged, and
the time-step is small enough to resolve most of the 
ow physics occurring.

VIII. Grid Convergence

The grid resolution of the problem, especially in between the nozzle and plate region, a�ects the solution
greatly. If the cells in between the two grids are too coarse, the solution becomes too di�used, and the
intensity of the pressure peaks drops o�. Three grid levels are analyzed all at the same plate angle of
� = 45�. The nozzle and plate grids (which total around 20-21 million grid points), are held constant for
these simulations, while the o�-body grid spacing is coarsened. Grid adaption is still utilized, but the level
of re�nement is restricted to be 2x and 4x coarser than the original �ne grid computed in the previously
mentioned runs. The e�ect of the spacing on the plate both in 
ow tangent's direction and the wall normal
spacing is not analyzed, to limit the number of variables present in the simulation. The plate grid wall-
normal spacings were held constant, to determine the e�ect of the o�-body grids, or the plume grids on the
plate. Table 5 shows the breakdown of the grid information, along with the resulting force and moment
per unit length computations. Figure 8 shows the pressure distribution of the various grid levels. Figure 14
in the appendix shows the density gradient magnitude for the medium and coarse grids, which should be
compared to the �ne grid result in �gure 10.

Figure 8: Pressure on Plate, Grid Comparison ZNP = 2DN ; � = 45�

Table 5: Grid Comparison ZNP = 2DN ; � = 45�

Grid Comparison Fine Adapted Grid Medium Adapted Grid Coarse Adapted Grid

# Grid Points (Millions) 180 43 27

# Zones 3877 877 71

Force/Length 1.17606 1.1887 1.1336

Force % Error 1.38% 0.32% 4.94%

Moment/Length 0.4846 0.5036 0.4453

Moment % Error 1.42% 5.41% 6.80%
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While �gure 8 shows that the medium and �ne grid solutions are really close, the moment calculation
shows the �ne grid is closer to the experiment (Note: The accuracy in the experimental data is still being
determined). Grid independence seems to fall somewhere in between the medium and �ne grid. The coarse
grid fails to capture the extent of the pressure peak, but the solution does resemble the experiment's pressure
pro�le. As evident in �gure 14 the shear layers in the plume are sensitive to the e�ective grid resolution, and
coarser grids tend to smear out the shear layersn. Grid resolution also a�ects the intensity of the pressure
peaks, and in turn increasing the moment error.

IX. Conclusion

OVERFLOW, along with the SST model, is able to capture the impingement pressure and therefore force
and moments with reasonable accuracy. Full three-dimensional grids should be used to capture the three-
dimensional unsteady e�ects caused by the plume. Additionally, perpendicular impingements are harder to
resolve accurately, in comparison to inclined plates. The accuracy of the pressure, force and moment values
are dependent on the grid resolution. The �ner the grid resolution between the nozzle exit and the surface
impingement, the more accurate the solution will be. However, reasonable accuracy around 5-7 percent can
be obtained with a coarser grid, but the details of the plume most likely not be resolved. To obtain more
accurate answers, higher grid resolution is needed.
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Appendix

Figure 9: Density Gradient Magnitude for
ZNP = 2DN ; PR = 1:2; � = 30�

Figure 10: Density Gradient Magnitude for
ZNP = 2DN ; PR = 1:2; � = 45�

Figure 11: Density Gradient Magnitude for
ZNP = 2DN ; PR = 1:2� = 60�

Figure 12: Density Gradient Magnitude for
ZNP = 2DN ; PR = 1:2� = 80�
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Figure 13: Density Gradient Magnitude for ZNP = 2DN ; PR = 1:2� = 90�

(a) Medium Grid (b) Coarse Grid

Figure 14: Density Gradient Magnitude for Grid Comparison ZNP = 2DN ; PR = 1:2
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