Active Oxidation of SiC

Nathan S. Jacobson, Dwight L. Myers, and Bryan J. Harder
NASA Glenn Research Center, Cleveland, OH Department of Chemistry, East Central University, Ada, OK

Microscopy of Oxidation 8, Liverpool, UK April 10-13, 2011

Contact: nathan.s.jacobson@nasa.gov

Abstract

The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a stable oxide scale and leads to enhanced attack of the SiC.

SiC + 3/2 O2(g) + 2 CO(g)

The transition points and rates of passive oxidation are variable.

Previous studies have reviewed the leading theories of passive/passive transitions. Comparison is made to the active/passive transition in SiC, which are relatively well understood. Critical parameters include the difference between the passive mode and passive mode to active mode transition.

Garrett and Wagoner [2] points out that for the active-to-passive transition, the active mode is considered. The passive mode is considered for the active-to-passive transition. The focus of this study is on the active-to-passive transition. The active-to-passive transition is considered for the active mode. The transition point is considered for the active mode. The transition point is considered for the active mode.

Summary and Conclusions

• Active oxidation of SiC:
 - SiC(s) + 1/2 O2(g) = SiO(g) + CO(g)
 - Unexplored area is the difference between the passive-to-active and passive-to-active transition.

• Pre-Oxidation and the Breakdown of the Passive Scale:
 - Experiment: Form 0.1, 1, 2 micron SiC scales on CVD SiC [17]
 - Expose to known active oxidation environment (100 ppm O2, Ar/1450°C)
 - Determine how the passive scale breakdown
 - Gives insights into the passive-to-active transition

• Summary and Conclusions
 - Active oxidation of SiC:
 - SiC(s) + 1/2 O2(g) = SiO(g) + CO(g)
 - Unexplored area is the difference between the passive-to-active and passive-to-active transition.
 - Pre-Oxidation and the Breakdown of the Passive Scale:
 - Experiment: Form 0.1, 1, 2 micron SiC scales on CVD SiC [17]
 - Expose to known active oxidation environment (100 ppm O2, Ar/1450°C)
 - Determine how the passive scale breakdown
 - Gives insights into the passive-to-active transition

Wagner: Active-to-Passive Transitions for Silicon [2]

Oxygen strikes a bare Si surface, gradually increases PO(g).

SiC(s) + O2(g) = SiO(g) + CO(g)

• Generates sufficient SiO(g) from reaction (a) for stable SiO2 equilibration reaction (b)

SiC(s) + O2(g) = SiO2(s) + CO(g)

References