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ABSTRACT 
 

Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data.  This paper 

will discuss an alternative method of analysis that has been developed where a predetermined set of eigenvectors is 

used to process the thermal data from both reinforced carbon-carbon (RCC) and graphite-epoxy honeycomb 

materials.  These eigenvectors can be generated either from an analytic model of the thermal response of the 

material system under examination, or from a large set of experimental data. This paper provides the details of the 

analytic model, an overview of the PCA process, as well as a quantitative signal-to-noise comparison of the results 

of performing both conventional PCA and fixed eigenvector analysis on thermographic data from two specimens, 

one Reinforced Carbon-Carbon with flat bottom holes and the second a sandwich construction with graphite-epoxy 

face sheets and aluminum honeycomb core. 
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1. INTRODUCTION 

Principal component analysis (PCA) has been used extensively as a data reduction technique.  Originated by Peason
1
 

in 1901 and later developed more fully by Hotelling
2
 it has been used extensively to reduce the dimensionality of a 

data set consisting of a large number of interrelated variables, while retaining, as much as possible, the variation 

present in the data set.  For example PCA is used routinely in constructing socio-economic status indices
3
, for 

analysis of spectral imaging data in astrophysics
4
 and for facial recognition

5
.  Additionally, application of PCA to 

thermal NDE has also been extensively studied.  Typical application of PCA to the reduction of transient 

thermographic data consists of calculating the principal components of the temporal data through singular value 

decomposition (SVD) of the experimental data itself.  For example, Rajic
6,7

 and Valluzzi
8
 both use PCA as a 

contrast enhancement technique for defect detection. Genest
9
 and Vavilov

10
 provide comparisons between PCA and 

various other data reduction techniques for defect sizing.  Zalameda
11

 discusses PCA’s use for temporal 

compression of the thermal data.  PCA was used to analyze thermal “flying-spot” data by Hermosilla-Lara
12

 for 

detection of open cracks in metallic specimens.  Finally, Marinetti
13

 suggests the use of a experimentally derived 

training set to calculate the principal components.  This paper reports on the use of a semi-analytical, one-

dimensional model to develop the principal components.  The application of this approach to the inspection of two 

material types will be examined as test cases: (1) Reinforced carbon-carbon (RCC) material, which can realistically 

be model as a one-dimensional response and (2) honeycomb sandwich materials with graphite-epoxy face sheets and 

aluminum core which typically requires a two-dimensional model to accurately represent the thermal response.  The 
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latter test case will examine whether a simplified one-dimensional model can be used to generate an acceptable set 

of fixed principal components. 

2. EXPERIMENTAL EQUIPMENT 

The flash thermography system performing these measurements was a commercially available system.  The system 

features an infrared (IR) imager with a 320 x 256 sensor array of Indium-Antimonide elements and two 4800-Joule 

xenon photographic flash tubes mounted in a hood to contain and focus the flash.  The hood has dimensions of 36.8 

cm wide by 26.7 cm deep by 40.6 cm tall and is configured such that the IR camera views the inspection surface 

directly.  The flash produces a flash energy density of 7.15 joules per square centimeter at the mouth of the hood
14

.  

The inspection hood is connected to a computer base station that also houses power sources for various components.  

Thermographic inspection was accomplished by placing the hood on the section of material to be inspected.  The 

bottom of the hood completely surrounds or sits on top of the specimen, depending on the dimension of the 

specimen as compared to the size of the hood.  The flash lamps are triggered either by operator controls on the hood 

or by the computer.  Thermographic images of the specimen are captured by the infrared camera for a predetermined 

amount of time and stored in the computer for further analysis.  The camera’s noise equivalent temperature 

difference (NEΔT), cited by the manufacturer, is 0.025°C in the 3 to 5 micrometer wavelength range.  External 

optics, consisting of a wide-angle lens, using germanium optical elements, was used to increase the system field-of-

view by a factor of approximately two.  The expanded field-of-view of this lens is 41º horizontally and 31º 

vertically. 

3. DATA ANALYSIS 

The algorithm used to perform the PCA is based on the decomposition of the thermal data into its principal 

components or eigenvectors using SVD. PCA is performed by first reformatting the three-dimensional thermal data 

into a two-dimensional array where the columns contain the spatial information and the rows contain the temporal 

information such that T(x,y,t) becomes A(n,m) where n = Nx * Ny and m = Nt.  The matrix A is then adjusted by 

subtracting the mean along the time dimension, and decomposed to yield the eigenvalues and eigenvectors:  

TVUA                                             (1) 

where U and V are orthogonal matrices who’s columns form the eigenvectors of AA
T
 and A

T
A respectively and Г 

contains the singular values (the nonnegative square roots of the eigenvalues) of A
T
A.  Since the columns of U 

corresponding to nonzero singular values form an orthogonal basis for the range space of A, the entire thermal data 

set can be described by this basis.   Because thermal NDE signals are well behaved and slowly varying in time, the 

predominant temporal variations of the entire data set are usually contained in the first and second eigenvector.  The 

PCA images are formed by calculating the dot product of the measured temperature response, pixel by pixel, with 

the eigenvectors of interest (usually the two associated with the largest eigenvalues).  Defects in the material under 

investigation change the local temporal variation of the data and thus appear as either light or dark regions in the 

PCA images. 

While this process is quite effective in reducing thermal data, the SVD can be computationally intense especially 

with large three-dimensional arrays of thermal data typically produced during an inspection.  In order to reduce the 

computation time and enhance the performance, the PCA reduction was performed using a fixed set of previously 

generated eigenvectors.  Two different approaches to generating the fixed eigenvectors were investigated.  First, an 

array of thermal responses of the material was calculated from a one dimensional multilayer analytic model.  A set 

of eigenvectors were then numerically generated from this array of responses.  A second set of eigenvectors were 

numerically generated from the thermal responses measured on an assortment of specimens with thicknesses 

approximately equal to the structure of interest. 



 

4. ONE DIMENSIONAL MODEL 

To simulate the front surface temperature response of the RCC material to a flash heat input, a one dimensional, 

multi-layer model was developed to solve the heat equation.  A classic Laplace transform approach was taken to 

solve the heat equation.  The heat equation for a one dimensional slab of finite thickness is: 
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where T is temperature, t is time, x is the dimension normal to the surface of the slab with x=0 being the slab face of 

interest and α is the thermal diffusivity.  The heat flux, Φ, is assumed for this model to be a Dirac heat pulse of total 

energy Q and is applied at x=0 with an insulating back surface (x = d) where d is the thickness of the layer.  In the 

time domain this leads to the following boundary conditions: 

)(0 tQ   at  x = 0 and,                        (3) 

0d   at x = d.                                (4) 

Applying a Laplace transform to the heat equation and assuming the initial temperature is zero yields: 
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where P is the Laplace parameter and θ is given by: 
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The boundary conditions can also be transformed into the Laplace domain as: 

Q0   at x = 0 and                              (7) 

0d   at x = d.                                 (8) 

It is typical to write the four quantities of interest θ0, 0, θd, and d, the front face Laplace temperature and flux and 

the Laplace temperature and flux at x = d respectively, in matrix form as: 
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where, 
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where 


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and K is the thermal conductivity of the layer.  

A material with a thickness of d consisting of n layers of thickness li with thermal conductivities and diffusivities of 

Ki and i can be expressed as a product of matrices, in the Laplace domain, as follows: 
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and Rn is a contact resistance between adjacent layer to simulate a defect (for example the thermal conductivity and 

thickness of an air gap could be used to calculate R) that would reduce the rate of heat flow.  Once the matrix has 

been established, then numeric methods are used to perform the inverse Laplace transform back into the time 

domain using the de Hoog algorithm
15

 and Matlab® code by Hollenbeck
16

. 

5. CASE STUDIES 

5.1. Reinforced Carbon Carbon 

The RCC material of interest is a layered structure consisting of Silicon Carbide (SiC) on the front and back surfaces 

and reinforced carbon-carbon in the middle.  Additionally, most specimens have other coatings of various types 

applied to the outer (front) surface.  Because of the nonuniformity of the SiC layer as well as the complex nature of 

this material, a four layer model was chosen to approximate the thermal response.  Layer one was SiC, layer two 

was an amalgam of the material properties of SiC and carbon-carbon providing a transition region, layer three was 

carbon-carbon and layer four was SiC.   

For all cases a unitary Dirac input heat flux (Q) was assumed to be a good approximation for the input flux, since the 

pulse duration is short relative to the thermal response time of the specimen. 



Figure 1a shows the front surface temperature as predicted by the analytic model.  The output of the model and the 

experimental results were both normalized for comparison.  Figure 1b shows the difference between the model and 

the experimental data as a function of time, indicating that agreement of better than 99% is achieved.  To provide a 

statistically rich data set for the calculation of the eigenvectors, a family of 10,000 characteristic curves was 

produced using the one-dimensional model.  The curves represent a series of thickness variations of ±10% for each 

of the first three layers of the model, but maintained the overall thickness of the specimen. 

The primary specimen used for validation was a 15 cm square RCC specimen with 18 flat-bottom holes at five 

varying diameters and depths.  Figure 2 illustrates the size, depth, and location of the holes as observed from the 

back side of the sample.  The depths of the defects ranged from material loss only in the silicon carbide layer (row E 

in Figure 2) to holes 92% through the full thickness of the sample (row A).  Flash thermography was performed on 

this specimen using the system previously described.  Data was collected at a frame rate of 60 frames per second for 

14 seconds after the flash heating.  Processed images were then calculated using the three approaches, over two 

different time windows (0.16 to 3.5 seconds and 1 to 11.5 seconds after heating)
14, 17-18

.  Figure 3 shows the typical 

results obtained with processing of the thermal data using three different methods, eigenvectors calculated on the 

acquired data (PCA), model-based fixed eigenvectors and experimental-based fixed eigenvectors respectively. 

 

(a) 

 

(b) 

Figure 1.  (a) Results of the four layer 1-D analytic model results with the experimental response of RCC material, and (b) 

the difference between experimental results and analytic model of RCC material showing better than 99% agreement.  

To quantitatively compare the results of the three approaches the signal-to-noise ratio (SNR) of the difference 

between the defect signal and background signal was calculated for each of the 18 defects in both the early and late 

time windows.  A defect signal was determined by averaging the signal from a 3x3 pixel area in the center of each 

flat-bottom hole.  A background signal was determined by averaging the signal from a circle of 2.54cm in diameter 

around the same defect.  The pattern used for the SNR calculation is shown graphically in Figure 4.  The SNR was 

then determined from the following equation: 

background

backgrounddefect SS
SNR




                                                                   (15) 

where S represents the average of the pixel values and  represents the standard deviation of the pixel values. 



In general it can be seen from Table 1, which compares the three techniques, that greater signal-to-noise ratios are 

obtainable using the fixed eigenvector PCA approach.  Both the model-based and experimental-based fixed 

eigenvector approaches produce comparable increases in the SNR over the conventional technique.  The average 

increases in the SNR for the model-based approach was 248% and for the experimentally based approach 360%.  

This is especially true for the deeper defects such as E2, E3, D3, E4 and D5, where the fixed eigenvector approach 

increased the SNR to above 1.0.  The SNRs shown in Table I are the largest values obtained by either technique, for 

either time window at each defect location. 
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A 0.318cm 
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D   0.635cm 

24% 

0.476cm 

24% 

0.953cm 

24% 

E  1.27cm 

12% 

0.635cm 

12% 

0.476cm 

12% 
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(a) (b) 

Figure 2.  (a) Drawing of RCC flat-bottom hole specimen and (b) table of flaw diameters and flaw depths as a fraction of 

the total specimen thickness. 

 

 

(a) 

 

(b) 

 

(c)

Figure 3.  Typical processed results of the flat-bottom-hole specimen.  (a) Eigenvectors calculated from acquired data, (b) 

model-based fixed eigenvectors and (c) experimental-based fixed eigenvectors.  These results were achieved using the 0.16 

to 3.5 second time window. 
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Figure 4.  Graphical representation of the regions used for the SNR calculation for the defects in the flat-bottom-hole 

specimen. 

 

Table 1.  Maximum signal-to-noise ratios for the 18 defects of the RCC calibration specimen calculated from the model-based 

and experimental-based fixed eigenvector methods as well as conventional PCA. 

 

Defect Number 
Model-Based PCA 

Max SNR 

Exp-Based PCA 

Max SNR 

Conventional PCA 

Max SNR 

B1 6.3867 7.7112 2.4165 

A1 2.5937 1.4812 10.3391 

E2 1.9813 2.76722 0.2155 

C2 6.7688 1.94191 4.7612 

A2 11.134 52.4278 13.8615 

E3 1.0056 1.24770 0.8833 

D3 2.4172 4.3308 0.5044 

C3 7.9868 2.13199 2.5116 

B3 11.0751 71.1625 20.032 

A3 11.9819 24.6237 23.7523 

E4 1.1182 0.825309 0.3772 

D4 4.767 3.25975 1.2643 

C4 7.9 6.41337 3.0336 

B4 7.5803 10.2903 5.5433 

E5 1.5343 1.07745 1.0771 

D5 3.3425 3.10497 0.4911 

C5 8.2382 12.9393 8.5228 

B5 6.1298 256.733 9.2124 
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Background:  2.54cm 

Diameter circle around 

defect 



5.2. Honeycomb Sandwich 

The sandwich material consists of a 0.1cm thick graphite-epoxy (GrEp) skin over a 2.54cm thick aluminum 

honeycomb core.  A four layer model (two layers of GrEp, one layer each of air and aluminum) was used to simulate 

the thermal response of the sandwich material, with a variable thickness air layer between the skin and the core used 

to model skin-to-core disbonding.  Additionally, the contact resistance (Rn in equation 12) and the thickness of the 

two layers of GrEp skin were varied to model disbonding within the skin.  Since the sandwich material geometry is 

more complex than can be captured in a one dimensional model, the model was initially used to bound the thermal 

response.  Figure 5 shows the both the average experimental thermal response over a large area of sandwich material 

and the computational results for single layer GrEp skin and for GrEp over solid aluminum.  As anticipated the 

experimental results lie between the two modeled conditions.  In order to form a statistically rich set of data for the 

fixed eigenvectors in this case, the four layer model was run 10,000 times to produce a family of characteristic 

curves that model disbonding in the GrEp skin and at the skin-aluminum interface.  

 

Figure 5.  Comparison of experimental results from a honeycomb sandwich composite specimen with two one-dimensional 

model results (GrEp skin only and GrEp skin over solid aluminum). 

The honeycomb specimen type examined with this technique is shown in Figure 6 and an exploded view is shown in 

Figure 7.  The specimen is 7.6-cm wide and 61.2-cm long.  Two separate sandwich sections are joined together by 

12.7-cm long tapered composite splices located on opposite sides of the specimen in the center.  Two solid 

graphite/epoxy laminate blocks are bonded between the facesheets at the ends for gripping by hydraulic grips.  Tabs 

are used at the ends to reduce the stress concentration caused by the grips during load application.  Each face sheet 

was manufactured with four layers of IM7/977-2 4-harness satin fabric in a [(0/90)/±45/±45/(0/90)] layup.  The 

splice contained both IM7/977-2 tape and fabric.  A potting compound (not shown) is used at the splice between the 

two sandwich sections.  The specimen was impacted at the splice location with a 2.54cm diameter indenter using 

7.6J of energy which displaced the surface 0.48mm vertically. Flash thermography was performed on this specimen 

using the system described previously.  Data was collected at a frame rate of 60 frames per second for 8 seconds 

after the flash heating.  Conventional and model based fixed eigenvector PCA was performed on the data using a 

time window of from 0.08 to 1.5 seconds after heating.  It should be noted that experimental-based fixed eigenvector 

PCA analysis was not performed because of insufficient experimental data sets for this specimen configuration.  

Figure 8 show the results of both data processing techniques as well as a pulse-echo ultrasonic attenuation image of 

the impact damage region.  For reference the circles drawn on all three images are the same diameter (17.8mm) 
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although the scaling of the thermal images is different from the ultrasonic image.  The fixed eigenvector approach 

provided size information that more closely matched the ultrasonic results. 

 

 

Figure 6.  Drawing of the honeycomb sandwich specimen examined in this study. 

 

Figure 7. Exploded view of honeycomb sandwich specimen. 



 

(a) 

 
(b)

 
(c)

Figure 8. Two thermal and one ultrasonic image of the impact damage in a GrEp honeycomb specimen. (a) Model-based 

fixed eigenvector PCA image, (b) conventional PCA image and (c) pulse-echo ultrasonic attenuation image.  The circles 

drawn for reference on all three images measure 17.8mm in diameter. 

6. CONCLUSIONS 

A new approach to processing of thermal NDE data employing a fixed set of eigenvectors generated from a one 

dimensional analytic model of the thermal response of the material under investigation is presented.  Application of 

this approach to data acquired from a flat-bottom hole specimen showed that the signal-to-noise ratio of the resulting 

images increased on average by 248% when processing with the model based fixed eigenvectors and 360% when 

processing with the experiment based eigenvectors as compared to conventional PCA.  This improvement in signal-

to-noise may be attributed to the creation of the fixed eigenvector set from predominately defect free RCC.  In the 

case of the model-based approach for RCC no defects were included.  In the case of the experimental-based 

approach because a large cross-section of data was used to generate the eigenvectors, only a small percentage of that 

data contains the thermal response of defects.  On the other hand, for the specimen considered here, conventional 

PCA included both undamaged and damaged regions of the material. The performance of the model based fixed 

eigenvector approach may be improved if the family of characteristic curves used to calculate the eigenvectors was 

increased to contain a small set of the thermal response of modeled defects.  The model-based approach is useful in 

cases where only a limited number of specimens or experimental results are available. 

Further, this technique was found to be useful for analysis of specimens whose geometry is sufficiently complex so 

as to require a model of higher dimensionality to accurately represent the thermal response.  It has been shown that 

in cases where it is not practical, or possible, to create the higher dimensional model, fixed eigenvector analysis can 

still be performed using the results of a one dimensional model.  For the GrEp honeycomb specimen examined in 

this study, the defect size measured after the model-based fixed eigenvector approach agreed more closely with the 

pulse-echo ultrasonic data, whereas the conventional PCA approach underestimated the defect size.  It can also be 

noted that the increase signal-to-noise ratio observed in the RCC specimen case could be due to the more accurate 

sizing of the defects from the model-based fixed eigenvector approach. 
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