
Multidimensional Generalized Functions 
in Aeroacoustics and Fluid Mechanics- 
Part 1: Basic Concepts and Operations 

F. Farassat
NASA Langley Research Center, Hampton, Virginia

 feri.farassat@nasa.gov

M. K. Myers
The George Washington University- Washington, D.C.

mkmyers@gwu.edu

Abstract
This paper is the first part of a three part tutorial on multidimensional generalized
functions (GFs) and their applications in aeroacoustics and fluid mechanics.  The
subject is highly fascinating and essential in many areas of science and, in particu-
lar, wave propagation problems. In this tutorial, we strive to present rigorously and
clearly the basic concepts and the tools that are needed to use GFs in applications
effectively and with ease. We give many examples to help the readers in understand-
ing the mathematical ideas presented here. The first part of the tutorial is on the
basic concepts of GFs.  Here we define GFs,  their  properties and some common
operations on them. We define the important concept of generalized differentiation
and then give some interesting elementary and advanced examples on Green's func-
tions and wave propagation problems. Here, the analytic power of GFs in applica-
tions is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse
applications of generalized derivatives (GDs). Part 3 is on generalized Fourier trans-
formations and some more advanced topics. One goal of writing this tutorial is to
convince  readers  that,  because  of  their  powerful  operational  properties,  GFs  are
absolutely essential and useful in engineering and physics, particularly in aeroacous-
tics and fluid mechanics. 



Nomenclature   
C¶ : The space of infinitely differentiable functions

C n : The space of continuously differentiable functions up to order n
D  :  The  space  of  infinitely  differentiable  functions  with  compact  (closed  and
bounded) support
D' : The space of continuous linear functionals on the space D,  i.e., the space of
Schwartz GFs
GD : Generalized derivative
GF : Generalized function
OF : Ordinary function that is locally Lebesgue integrable
 : The unbounded real line
2,  3 : The unbounded two and three dimensional spaces, respectively
e : Belongs to
[0, 1] \ [a, b] : Set subtraction, i.e., [0, a) ‹ (b, 1]

1- Introduction

This paper is the first part of a three part tutorial on multidimensional generalized
functions (GFs) and their applications in aeroacoustics and fluid mechanics. As the
name implies, GFs are the generalization of the ordinary functions (OFs) that are
defined as locally Lebesgue integrable functions. Here, mathematical objects that
are not OFs, such as the well known Dirac delta "function", are added to OFs and
the resulting space of objects is called GFs. In this tutorial, we will present rigor-
ously and clearly the basic concepts and the tools that are needed to use GFs in
applications effectively and with ease. We give many examples from aeroacoustics
and fluid mechanics to help readers in understanding the mathematical ideas pre-
sented here. 
The first part of the tutorial is on the basic concepts of GFs. Here we define GFs,
their properties and some common operations on them. We define the important
concept  of  generalized differentiation and then give some interesting elementary
and  advanced  examples  on  Green's  functions  and  wave  propagation  problems.
Here, the analytic power of GFs in applications is demonstrated with ease and ele-
gance. Part 2 of this tutorial is on the diverse applications of generalized derivatives
(GDs). Part 3 is on generalized Fourier transformations and some more advanced
topics. One of the goals of writing this tutorial is to convince  readers, that because
of their powerful operational properties, GFs are absolutely essential and useful in
engineering and physics, particularly in aeroacoustics and fluid mechanics.   
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The first part of the tutorial is on the basic concepts of GFs. Here we define GFs,
their properties and some common operations on them. We define the important
concept  of  generalized differentiation and then give some interesting elementary
and  advanced  examples  on  Green's  functions  and  wave  propagation  problems.
Here, the analytic power of GFs in applications is demonstrated with ease and ele-
gance. Part 2 of this tutorial is on the diverse applications of generalized derivatives
(GDs). Part 3 is on generalized Fourier transformations and some more advanced
topics. One of the goals of writing this tutorial is to convince  readers, that because
of their powerful operational properties, GFs are absolutely essential and useful in
engineering and physics, particularly in aeroacoustics and fluid mechanics.   
The  linear  wave  equation  and  its  counterpart  in  the  frequency  domain,  the
Helmholtz equation, are the most important partial differential equations of aeroa-
coustics.  For  example,  both  the  Lighthill1 jet  noise  equation  and  the  Ffowcs
Williams-Hawkings (FW-H) equation2 are linear wave equations. We will primarily
be concerned with  the  wave equation here.  Although this  equation in  one,  two,
three and higher space dimensions has been analyzed since the eighteenth century3,
there are still many issues and subtleties associated with finding its solution, particu-
larly in aeroacoustics, that are in need of further attention. It is true to say, and this
fact  is  well-known to mathematicians,  that  the appropriate mathematical tool for
solving PDEs is the theory of distributions or generalized functions (GFs)3-12. The
derivation and the solution of the FW-H equation depend heavily on the concept of
GFs,  which requires much mathematical  maturity from users.  Furthermore,  even
when we use the Lighthill equation, we may be dealing with flowfields that have
discontinuities within them, such as shocks, which can be sources of sound. The
natural tool to work with these discontinuities is GF theory.  The principal goal of
this tutorial is to give a working knowledge of  multidimensional GF theory to the
readers, particularly when applied to the linear wave equation.
There are many books and papers on the mathematics of the wave equation and the
related  problems  that  are  used  by  acousticians.  Unfortunately,  almost  all  of  the
commonly referenced books and papers were written before, or without the use of,
the  theory  of  distributions  (generalized  functions)  of  Laurent  Schwartz4.  These
books and papers use an intuitive approach to Dirac delta function and its algebra
that is not rigorous and is prone to giving erroneous results. Furthermore, much of
the true power of GF theory is not apparent from the intuitive approach. The avail-
able books on mathematics that discuss generalized functions (GFs) rigorously4- 6
are also beyond the reach of most researchers because of the level of abstraction
involved to comprehend the theory. We believe that most of the abstractions are not
necessary for application of the GFs. The situation is much like the use of the real
numbers by the man in the street in everyday business without ever knowing about
Cauchy convergent sequences because he only needs to know the useful properties
of  the  real  numbers.  For  mathematically  minded persons  the  abstractions  in  the
development of the theory can be learned most easily after a working knowledge of
GFs is attained. 
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related  problems  that  are  used  by  acousticians.  Unfortunately,  almost  all  of  the
commonly referenced books and papers were written before, or without the use of,
the  theory  of  distributions  (generalized  functions)  of  Laurent  Schwartz4.  These
books and papers use an intuitive approach to Dirac delta function and its algebra
that is not rigorous and is prone to giving erroneous results. Furthermore, much of
the true power of GF theory is not apparent from the intuitive approach. The avail-
able books on mathematics that discuss generalized functions (GFs) rigorously4- 6
are also beyond the reach of most researchers because of the level of abstraction
involved to comprehend the theory. We believe that most of the abstractions are not
necessary for application of the GFs. The situation is much like the use of the real
numbers by the man in the street in everyday business without ever knowing about
Cauchy convergent sequences because he only needs to know the useful properties
of  the  real  numbers.  For  mathematically  minded persons  the  abstractions  in  the
development of the theory can be learned most easily after a working knowledge of
GFs is attained. 
We will start by giving the definition of GFs as continuous linear functionals on a
given space of functions. We will do this in the simplest possible way. We will then
discuss how the definition of many useful operations on ordinary functions can be
extended to the GFs. Of particular interest to us here is the definition of generalized
derivative  and  its  many  useful  applications.  These  include  Green’s  functions  of
ODEs and PDEs, finite part of divergent integrals, the Kirchhoff formula for mov-
ing surfaces  and deriving the  jump conditions  from conservation  laws.  We will
discuss some questions associated with the derivation of  the FW-H equation.  In
particular, we answer the question of whether any function other than the null func-
tion can be assumed inside the moving surface in the derivation of the FW-H equa-
tion. We will see that in every aspect of working with the linear wave equation, the
natural mathematical tool is the GF theory.
With this tutorial article, we wish to convey to readers our enthusiasm for working
with GFs as the most essential, useful and powerful tool for application in acoustics,
fluid mechanics and other areas of physics and engineering sciences. 

2- Generalized Functions (GFs)

In this section we will start by giving the definition of GFs. We then present the
most common operations on GFs. We will pay a special attention to generalized
differentiation, which is the fundamental concept for obtaining the Green’s func-
tion, finding the finite part of divergent integrals and working with jump conditions
from conservation laws. We will then give many applications of GFs relevant to
acoustics. We will say little about generalized Fourier transformation because that
subject will be covered in Part 3 of this tutorial.
In learning GF theory, you should know that there are several different approaches
to the definition of GFs. The method we present here is the functional approach of
Schwartz4-11. The sequential approach is used by Temple13 and Lighthill14, Jones12

and Mikusinski15.  The completeness theorem of GFs relates the two approaches7.
The approach by Bremermann defines GFs as the boundary value of analytic func-
tions16.This subject is valuable in studying generalized Fourier analysis and, in its
full generality, requires the knowledge of the highly specialized topic of functions
of several complex variables. Most of Bremermann’s book16 does not require this
topic and for learning about one dimensional GFs, it is easily accessible to readers
with a good knowledge of analytic functions of a single complex variable. Eventu-
ally, when you work on advanced Fourier transform theory, you will have to learn
Bremermann’s approach because it  sheds light on the derivation of many of the
results obtained by physicists and applied mathematicians using ad hoc and mostly
intuitive reasoning. The subject can be shown to be also closely related to the func-
tional approach we use here but we will not say any more about this connection7.
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In learning GF theory, you should know that there are several different approaches
to the definition of GFs. The method we present here is the functional approach of
Schwartz4-11. The sequential approach is used by Temple13 and Lighthill14, Jones12

and Mikusinski15.  The completeness theorem of GFs relates the two approaches7.
The approach by Bremermann defines GFs as the boundary value of analytic func-
tions16.This subject is valuable in studying generalized Fourier analysis and, in its
full generality, requires the knowledge of the highly specialized topic of functions
of several complex variables. Most of Bremermann’s book16 does not require this
topic and for learning about one dimensional GFs, it is easily accessible to readers
with a good knowledge of analytic functions of a single complex variable. Eventu-
ally, when you work on advanced Fourier transform theory, you will have to learn
Bremermann’s approach because it  sheds light on the derivation of many of the
results obtained by physicists and applied mathematicians using ad hoc and mostly
intuitive reasoning. The subject can be shown to be also closely related to the func-
tional approach we use here but we will not say any more about this connection7.
The Polish mathematician Jan Mikusinski introduced one more method of defining
GFs  known  as  the  operational  approach  which  is  based  on  the  concepts  from
abstract algebra17, 18. Mikusinski’s publications are beautifully written and are easy
to read and comprehend.  Apart  from explaining rigorously the Heaviside opera-
tional calculus, this approach can also be used to solve an entirely different set of
problems than the first three approaches, such as finding the exact solutions to finite
difference equations and recursion relations. The relationship between Mikusinski’s
operational approach and the functional approach cannot be established easily and
we are not aware of any publications on the subject. We encourage readers to study
this approach because of its usefulness and power in solving some important prob-
lems of physics and engineering17- 20. We will say no more on this approach here.
And finally, readers should be aware of the fact that in recent years GF theory has
been extended to the so-called nonlinear GF (NLGF) theory where some of the
limitations of Schwartz distribution (GF) theory are removed21- 23. For example, it
can  be  shown  that  one  cannot  extend  the  operation  of  multiplication  to  all  of
Schwartz GFs. This shortcoming of the Schwartz theory does cause some difficul-
ties in applications that Colombeau21, Rosinger22 and Oberguggenberger23 as well
as other mathematicians have tried to resolve. Currently, the NLGF theory is very
abstract  and difficult  to master.  The subject  is  under intense development but is
badly in need of simplification. However, it appears that the subject of nonstandard
analysis HNSAL24 will eventually be able to clarify and simplify NLGF theory consid-
erably and bring the theory within the reach of physicists and engineers25.  We will
not cover this subject here. Readers should know that to understand NLGF theory
and NSA, requires one to have a knowledge of several esoteric areas of mathemat-
ics including topology, abstract algebra and mathematical logic. Fortunately, there
are many expository books and articles on these subjects on the internet, particu-
larly on NSA. We will not cover this theory here.
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been extended to the so-called nonlinear GF (NLGF) theory where some of the
limitations of Schwartz distribution (GF) theory are removed21- 23. For example, it
can  be  shown  that  one  cannot  extend  the  operation  of  multiplication  to  all  of
Schwartz GFs. This shortcoming of the Schwartz theory does cause some difficul-
ties in applications that Colombeau21, Rosinger22 and Oberguggenberger23 as well
as other mathematicians have tried to resolve. Currently, the NLGF theory is very
abstract  and difficult  to master.  The subject  is  under intense development but is
badly in need of simplification. However, it appears that the subject of nonstandard
analysis HNSAL24 will eventually be able to clarify and simplify NLGF theory consid-
erably and bring the theory within the reach of physicists and engineers25.  We will
not cover this subject here. Readers should know that to understand NLGF theory
and NSA, requires one to have a knowledge of several esoteric areas of mathemat-
ics including topology, abstract algebra and mathematical logic. Fortunately, there
are many expository books and articles on these subjects on the internet, particu-
larly on NSA. We will not cover this theory here.
For  those  interested  in  the  history  of  GF  theory,  we  recommend  the  books  by
Lützen26  and  Dieudonné27as well as the article by Synowiec28.  In  the  opinion  of
Lützen,  the  Russian  mathematician  Sobolev  invented  the  concept  of  GFs  (more
exactly, generalized derivatives) and Schwartz developed the theory of GFs without
being aware of Sobolev’s earlier contributions4. As expected, many other mathemati-
cians contributed to the field. Without a doubt, the members of the Moscow School
of Mathematics under I. M. Gelfand have contributed substantially to the develop-
ment and applications of GF theory making the subject accessible to physicists and
engineers. The well-known book on GFs by Gelfand and Shilov7 is the first of a six
volume opus by this School published in the West in the sixties of the last century.
This monumental work, which is still  read today, has popularized the GF theory
enormously among physicists and mathematicians by its breadth and depth as well
as by the clarity of the exposition.  For learning about more recent advances we
suggest  the  books  by  Hörmander5  and  Taylor6  which  are  both  written  for
mathematicians.
Most of this section is based on the first author’s expository NASA publication29. In
addition  to  this  publication,  we  recommend  that  you  consult  the  books  by
Strichartz10, Stakgold8, Gelfand and Shilov7, and Kanwal11. For beginners, we partic-
ularly  recommend  the  excellent  book  by  Strichartz  for  deeper  understanding  of
many of the concepts discussed here. This book emphasizes GFs in one dimension
which is essential in some applications, e.g., time series analysis. However, there
are  many  problems  of  physics  and  engineering  for  which  multidimensional  GF
theory is very important7- 9, 11, 12, 29. This is the subject that we concentrate in the
present paper. The emphasis will be on using the theory to solve problems rather
than stating theorems and giving proofs.
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Most of this section is based on the first author’s expository NASA publication29. In
addition  to  this  publication,  we  recommend  that  you  consult  the  books  by
Strichartz10, Stakgold8, Gelfand and Shilov7, and Kanwal11. For beginners, we partic-
ularly  recommend  the  excellent  book  by  Strichartz  for  deeper  understanding  of
many of the concepts discussed here. This book emphasizes GFs in one dimension
which is essential in some applications, e.g., time series analysis. However, there
are  many  problems  of  physics  and  engineering  for  which  multidimensional  GF
theory is very important7- 9, 11, 12, 29. This is the subject that we concentrate in the
present paper. The emphasis will be on using the theory to solve problems rather
than stating theorems and giving proofs.

ü 2.1- Definition of Generalized Functions (GFs)
What we call a function, say f HxL, in calculus can be thought of as a table of ordered
pairs Hx, f HxLL. We can visualize this table as a graph of x versus y = f HxL. If we
want to generalize the concept of a function, we must change the definition of a
function in such a way that our old functions are still considered functions and we
have many new useful mathematical objects that are functions by the new defini-
tion. Once we introduce a new definition of a function, we must make sure that we
can extend all the useful operational properties of the old functions, e.g., addition of
two functions, to all the new mathematical objects which we now collectively (the
old functions and the new objects) call generalized functions (GFs). For now, we
refer to all  the functions that we learned about in calculus as ordinary functions
(OFs). We will elaborate further on this below.
Let us start  by considering an ordinary function gHxL  which is  periodic over the
interval @0, 2 pD. We know that the complex Fourier components of this function are
given by the relation

(1)Gn =
1

2 p
‡
0

2 p
gHxL e- Â n x „x Hn = -¶ to ¶L

We know that gHxL = ⁄n=-¶
¶ Gn ‰i n x, that is, the periodic function gHxL can be con-

structed  from the  knowledge  of  the  table  with  infinite  entry  8Gn, n = -¶ to ¶<.
From another point of view, the set of complex numbers 8Gn< can be considered as
the mapping of the space of functions 9‰-Â n x, n = -¶ to ¶= into complex numbers
by the rule given in eq. (1). Such a mapping from a given space of functions into
scalars (real or complex numbers) is called a functional.  Remember that a func-
tional is always a rule that describes the mapping from a given space of functions
into scalars.  The numbers 8Gn<  are the functional values of this functional. Note
that the function gHxL enters the definition of the functional. As a matter of fact, we
should use the functional notation G Ae- Â n xE  ª Gn  to remind us that the numbers
Gn, n = -¶ to ¶ depend on the function gHxL. So far we have shown that the peri-
odic function gHxL  can be described (identified, defined) by the table of its func-
tional values:
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(2)
:Gn ª GAe- Â n xE =

1
2 p

‡
0

2 p
gHxL e- Â n x „x, n = -¶ to ¶>

on the space 9‰-Â n x, n = -¶ to ¶=

We have assumed here that the function gHxL has a Fourier series (e.g., satisfies the
Dirichlet conditions, etc.). Now we have the germ of an idea to extend the defini-
tion of a function. 
Let us take a space of functions of one variable D  with a large number of well-
defined functions in the space. We will say more about the properties of the func-
tions in this space soon. Let us select an ordinary function f HxL and for any function
f HxL in the space D, define the functional (i.e., the rule):

(3)F@fD = ‡
-¶

¶

f HxL f HxL „x H f is fixed in this rule and f varies all over DL

Note  carefully  how the  function f HxL  enters  the  definition of  the  functional.  To
describe f , this function is kept fixed in the rule given by eq. (3) and different func-
tions f are taken (conceptually, of course, not literally) from the space D to form
the table 8F@fD, f e D<. Therefore, we must have so many functions in space D that
any two different ordinary functions generate different tables of functional values at
least for some entries. The space D is known as the test function space. The ques-
tion is how to select the space D in such a way that the set of the functional values
8F@fD, f ε D< represents (i.e., describes or has as much information content as) any
ordinary function f HxL. Before we do this, we must now elaborate on what we mean
by ordinary functions. 
By ordinary functions (OFs), we mean the locally Lebesgue integrable functions.
This  means  that  they are  functions  that  are  Lebesgue integrable7- 11, 19 over  any
finite  interval  (see  Note  1  for  some comments  on  Lebesgue  integration).  These
functions include any conceivable functions, no matter how wild, that are needed in
applications. If you do not know Lebesgue integration, you can think of Riemann
integration that you learned in calculus courses. Lebesgue integration is a generaliza-
tion of the Riemann integration that can be used for the integration of most func-
tions that do not have a Riemann integral. 
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By ordinary functions (OFs), we mean the locally Lebesgue integrable functions.
This  means  that  they are  functions  that  are  Lebesgue integrable7- 11, 19 over  any
finite  interval  (see  Note  1  for  some comments  on  Lebesgue  integration).  These
functions include any conceivable functions, no matter how wild, that are needed in
applications. If you do not know Lebesgue integration, you can think of Riemann
integration that you learned in calculus courses. Lebesgue integration is a generaliza-
tion of the Riemann integration that can be used for the integration of most func-
tions that do not have a Riemann integral. 
One can show that there is an uncountable number of OFs. Therefore, the space of
test  functions must contain an uncountable  number of functions so that any two
different OFs can be distinguished from each other when viewed as tables of func-
tional values. This means that our tables of functional values used to represent OFs
are also uncountable. Furthermore, since OFs are as wild as they can be, we require
that the functions in space D to be as well-behaved as they can be so that the inte-
gral in eq. (3) is always defined. This leads us to require that the functions in D to
be infinitely differentiable (denoted C¶ functions). Also to ensure the integral in eq.
(3) does not become infinite, we assume that all functions in space D are identically
zero outside of a finite interval. This interval can be different for different test func-
tions. A function that is identically zero outside some finite interval is said to have
bounded support.  Thus, we have come to the following conclusion regarding the
space of test functions D that we need to use to identify OFs by their tables of func-
tional values:

The test function space D that one needs to use in
defining OFs by their tables of functional values is the space of
all C¶ functions with compact Hclosed and boundedL support.

Let us say something about this space next. The best known, and in many ways the
fundamental, example of a function in D is the following bell-shaped function with
the peak value at the origin. It is defined for any real number a > 0:

(4)f Hx; aL = :
‰x

2ëIx2-a2M † x § < a
0 † x § r a
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Figure 1- The Graph of the function f Hx; aL
It is easy to see that the support of this function is @- a, aD and it is infinitely differ-
entiable on the open interval H- a, aL. Figure 1 shows the graph of this function.
The proof of infinite differentiability at points x = - a and x = a is much harder
and is  an  exercise  in  calculus  albeit  requiring much technical  skill.  You should
know that at these two points all the derivatives of this function are zero. Are there
any other types of functions in space D besides f Hx; aL? The answer is affirmative
and we will turn to this point next.
One proves rigorously in real analysis that there is an uncountably infinite number
of continuous functions. For any continuous function gHxL defined on the bounded
interval I = @b, cD, the convolution of  gHxL and f Hx; aL on I  gives a C¶  function
with the bounded support @b - a, c + aD19.  Therefore, there is an uncountable num-
ber of functions in the test function space D as we are required to have. Another
fact to remember about this space is that the functions in space D are not analytic
even though they are C¶ functions!
At this stage, we have a new way of looking at OFs but our original intention was
to extend the definition of a function so that we have new objects that are not OFs
but are considered functions. To do this we study two important properties of the
functionals described by eq. (3). The first one is very easy to see:

1 - The functional F@fD is linear.

This simply means that for a and b scalars and f and y functions in D, we have 
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This simply means that for a and b scalars and f and y functions in D, we have 
(5)F@a f + b yD = a F@fD + b F@yD

To show this, replace f HxL on the right of eq. (3) with a f + b y and use the linear-
ity property of integrals followed by functional interpretation of the result to get the
right side of eq. (4). We remind the readers that the OF f HxL used in the definition
of the functional of eq. (3) is fixed here and the functional F@fD is, in point of fact,
representing f HxL.
The second property is much harder to explain and comprehend. It is:

2 - The functional F@fD is continuous.

The first thing you must know is that this property, whatever it means, gives GFs a
lot of useful properties that we need in applications. Second, to beginners the defini-
tion  of  continuity  of  a  functional  appears  too  complicated  and  perhaps  a  futile
attempt in abstraction. We admit that the definition of the continuity of a functional
is complicated but its definition cannot be stated in simpler form than we give here.
The  original  definition  by  Schwartz  was  much  more  complicated  and  based  on
locally convex topological spaces4. Just remember that you will appreciate the full
usefulness of this property when you learn some more about GFs and their applica-
tions. See, for instance, Example 3 below.
We first distinguish some sequences of functions 8f n<in D, which we say they go to

zero in D, and write it as f nö
D

0. For any such sequence, we require that it satis-
fies two conditions:
i- There is a bounded interval J such that the support of f n Õ J for all n, and
ii- fn and all its derivatives go to zero uniformly in J.

We make two useful comments here concerning these conditions. First, in general,
different sequences going to zero in D have different bounded interval J  associated
with them. In other words, we require only that for a given sequence going to zero
in D such a bounded interval to exist. Second, condition ii simply means that if m is
the  order  of  the  derivative,  m = 0, 1, 2, ....,  and  given  ε > 0, we can find NHmL

such that for any x in the interval J, we have †fnHmLHxL§ < ε for all n > NHmL. Note
that the word “uniformly” means that the number NHmL is independent of x but it
can depend on the order of differentiation m. Here we have used the notation f n

HmLHxL
for the mth derivative of f nHxL.     
Example 1- We can show easily that the following sequence goes to zero in D:
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(6)f nHxL =
1
n
f Hx; aL HSee eq. H4L for the definition of f Hx; aLL

Example 2- The following sequence of functions does not go to zero in D:

(7)f nHxL =
1
n
f K

x
n

; aO HSee eq. H4L for the definition of f Hx; aLL

The reason is that for a given function f n,  the support is the interval @-n a, n aD
and, therefore, the support cannot remain bounded for all n. Condition ii is, thus,
violated.
Now we can give the definition of continuity of a functional:

 A functional F@fD is continuous if for any f nö
D

0, we have F@f nDö0 .  

Note that 8 F@f nD < is simply a sequence of real or complex numbers. By using the
properties of (Lebesgue) integrals, we can show the following very important result:

Any OF f HxL generates a continuous linear
functionlthrough the relation : F@fD = Ÿ-¶

¶ f HxL f HxL d x
Hf is in the test function space DL

Figure 2- The functional rule used to define an OF f HxL by a table of its func-
tional values over the space D

Figure 2 shows schematically how the table of functional values is constructed for
an OF. So we can use the above functional (or rule) to construct the sequence or the
table of numbers 8F@fD, f e D<  to identify  (or describe,  distinguish)  the OF f HxL.
Are there any more continuous linear functionals  described by other rules?  The
answer is affirmative and, in fact, there are many of them. Let us consider the follow-
ing example:
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Figure 2 shows schematically how the table of functional values is constructed for
an OF. So we can use the above functional (or rule) to construct the sequence or the
table of numbers 8F@fD, f e D<  to identify  (or describe,  distinguish)  the OF f HxL.
Are there any more continuous linear functionals  described by other rules?  The
answer is affirmative and, in fact, there are many of them. Let us consider the follow-
ing example:
Example 3- Define the functional d @fD = f H0L, f e D. We can easily show that this
functional is linear. We now show that it is also continuous. Take any sequence that
goes to zero in D, say 8f n<. Since f nö

D
0, then in particular fnö0 uniformly. The

uniformity implies that it does not matter where x is. Therefore, fnH0L = d @fnDö0.
Can you see how we use condition ii of the definition of continuity of a functional
here? Because of the importance of this functional in GF theory, we will give it the
name of the Dirac functional. This is obviously related to the Dirac delta function.
We will establish the connection below (see eq. (9)).
Using elementary Lebesgue integration theory, we can show that there is no  OF
dHxL that can generate the continuous linear functional d @fD by using the rule given
in eq. (3). Therefore not all the continuous linear functionals are generated by OFs
based on eq. (3)! 
Now if we decide to define (or describe, identify) any OF conceptually by the table
of its functional values using the rule of eq. (3), we may just as well say that the
table  generated by any  continuous linear functional  also defines a  function.  We
now have new objects (tables) that cannot be identified with OFs, e.g., the func-
tional in Example 3. We call the entire collection of objects (tables of functional
values) generalized functions (GFs). We have achieved our goal of generalizing the
definition of OFs. We, thus, state the following:

Generalized functions are defined by the tables
of functional values of continuous linear functionals.

Since we are now going to think of functions in the new way by their functional
values, we will use a slight abuse of language and say:

Generalized functions are continuous linear functionals.

The particular space of GFs that we have constructed using the test function space
D is known as the (Schwartz) GF space D£. We know that by construction, all OFs
are also GFs. We refer to OFs as regular generalized functions. The new objects
(functions) that cannot be identified as OFs are called singular generalized func-
tions (Think of the GF in Example 3 now.). Figure 3 shows how one should think
of the space of GFs. In applications, several other test function spaces are used but
the idea behind the construction of the associated GF spaces is exactly the same as
we have presented above. At this stage, it is important to know that there are many
singular GFs that are absolutely essential in applications7. As a matter of fact, the
introduction of the singular GFs into mathematics and the development of a rigor-
ous operational algebra to work with them have provided a very powerful analytical
tool to physicists and engineers. 
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The particular space of GFs that we have constructed using the test function space
D is known as the (Schwartz) GF space D£. We know that by construction, all OFs
are also GFs. We refer to OFs as regular generalized functions. The new objects
(functions) that cannot be identified as OFs are called singular generalized func-
tions (Think of the GF in Example 3 now.). Figure 3 shows how one should think
of the space of GFs. In applications, several other test function spaces are used but
the idea behind the construction of the associated GF spaces is exactly the same as
we have presented above. At this stage, it is important to know that there are many
singular GFs that are absolutely essential in applications7. As a matter of fact, the
introduction of the singular GFs into mathematics and the development of a rigor-
ous operational algebra to work with them have provided a very powerful analytical
tool to physicists and engineers. 

Figure 3- The space D£  of GFs consisting of regular GFs (OFs) and singular
GF that are new

Readers should be aware that the definition of GFs given above, like the construc-
tion of real numbers by Cauchy convergent sequences in analysis, is of enormous
conceptual value. We will have to use this definition to obtain the properties of GFs
and to extend the useful operations on OFs to all GFs. But once we have achieved
these goals, we want to get away from dealing with functionals as functions and
work with GFs with the same notations and ease as OFs. Like the man in the street
who never needs to know about convergent sequences to work with numbers, we
want to use GFs without being burdened by the conceptual framework of the con-
struction of GFs. We can actually do this but first let us look at an example of a GF.
Example 4- Here is a continuous linear functional defining a GF: 
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(8)G@fD = ‡
-¶

¶

‰2 x sin 3 x f HxL „x - 5 f H0L f e D

You should have little problem proving this fact. Note that, in practice, we always
give the rule (the definition of the functional) only and we do not attempt to con-
struct the table of the functional values because it is technically impossible. But we
can use the rule to make part of the table if we want to!
We will  now dispose of  the functional  notation by the introduction of  symbolic
functions. This is a brilliant idea. It will allow us to work with singular generalized
functions just like the OFs. We start with the Dirac functional of Example 3 which
is a singular GF. We introduce a symbolic function dHxL which is supposed to hold
the information (or  the memory)  about  the Dirac functional  when we are  doing
algebraic manipulations until it appears as an integrand of an integral in a product
with a test function.We then use the following relation agreed upon by convention: 

(9)‡
-¶

¶

f HxL dHxL „x ª d@fD = f H0L f e D

It is very important to recognize that ‘the integral’ on the left of this equation is not
a Riemann or a Lebesgue integral because dHxL is not an OF. You should think of
the whole integral symbol like a Chinese character standing for d@fD = f H0L which
is now completely meaningful. The symbolic function dHxL, known universally as
the Dirac delta function, can be used in algebraic manipulations like an OF until it
appears under an integral sign like that on the left of eq. (9). You should, however,
learn some more about the properties of singular GFs before you can comfortably
or boldly manipulate them algebraically. We will give you what you need to know
later but first let us look again at Example 4 using symbolic function notation. 
Example  5-  The  GF  in  Example  4  can  be  written  symbolically  as
gHxL = ‰2 x sin 3 x - 5 dHxL. This GF is the sum of a regular and a singular GF.

ü 2.2 - Multidimensional GFs
The above definition of GFs can easily extended to multidimensions. The test 
function space D is now n-dimensional and consists of all infinitely 
differentiable functions with bounded support. An example of such a function 
can be constructed from the function in eq. (4). Let x = Hx1, x2, ...., xnL, and 
† x§ = Ix12 + x22 + ... + xn2M

1ê2. Then the we can show that for a > 0, the 
following function is in space D: 
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(10)f Hx; aL = :
‰† x§

2ëI † x§2-a2M † x § < a
0 † x § r a

From this function and any continuous function, we can generate another test func-
tion by convolution over a finite region of space. Therefore, the space of test func-
tions D has an uncountably many functions in it. We then define the multidimen-
sional (Schwartz) GF space D¢ as the space of continuous linear functionals on
D. This definition is appropriate for discovering the operational properties of GFs
that give us a powerful tool for applications. In practice, however, we will work
with symbolic functions when we deal with singular generalized functions. There-
fore, we will be always working with generalized functions as if we are working
with OFs. Intuitively, this is of great help to people interested in applications. The
situation is similar to the use of identical notations for real and complex numbers as
much as possible when we are solving a problem in the complex plane.   
From our point of view, the multidimensional generalized functions are much more
important than GFs of one variable in studying partial differential equations, particu-
larly in wave propagation problems. It is important to recognize that to study the
multidimensional GFs, one needs to have a working knowledge of differential geom-
etry of curves and surfaces30. 
As in the case of one variable, the most important singular GFs in multidimensions
are the Dirac delta function and its derivatives. Of interest to us is the delta function
with the support on a surface which can be in motion. This function has no one
dimensional analogue. We start with a simple example and then discus the Dirac
delta function with the support on a surface. 
Example 6- The Dirac delta function dHxL with support at the origin has the follow-
ing property  

(11)‡
V
fHxL dHxL „x= f H0L f e D

where V  is an arbitrary volume which includes the origin.
Example 7- Referring to Figure 4, let S : f HxL = 0 be a smooth surface defined in
such a way that the unit outward normal n = ı f . This can always be done because
if  n ≠ ı f ,  then define this  surface by the new implicit  function f HxL ê †ı f § = 0
which has the desired property.  
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Figure 4- The description of the surface S defined implicitly by f HxL = 0 with
unit outward normal n= ı f .

We want to interpret the important GF dH f L  often appearing in applications.  We
define a Gaussian curvilinear coordinates Iu1, u2M over the surface S and define the
third coordinate u3 = f  along the local normal to S to all points in the space in the
vicinity of S. Note that we have  

(12)d x= gH2LHuL d u u = Iu1, u2, u3M

where  gH2LHuL  is  the  determinant  of  the  first  fundamental  form  of  the  surface
u3 = f HxL = constant29- 31. We thus have the following very useful result

(13)
‡ dH f L f HxL „x= ‡ dIu3M f HxHuLL gH2LHuL „u1 d u2 d u3 =

‡ f IxIu1, u2, 0MM gH2LIu1, u2, 0M „u1 d u2 = ‡
f = 0

f HxL „S

You can see the importance of differential geometry here. Note that we have used
the definition of the Dirac delta function in one variable when we integrate with
respect to variable u3  after the second equality sign. For a more geometric deriva-
tion of this result see the papers by Farassat29, 31.
It is important to remember that one cannot define a GF at a single point but only
over a finite interval. This does not cause any difficulties in applications. We can
talk about equality of two GFs over an interval. We say that two GFs F@fD and G@fD
are equal over an interval I  if for all f e D with support fully within I, we have
F@fD = G@fD. Remember, a functional is a rule that gives us a number for any func-
tion in D. Therefore, we are talking about equality of two numbers obtained from
two rules. From this definition we can say that d HxL = 0 (the zero function and not
the real number zero) over the interval H-¶, -εD ‹ @ε, ¶L for any ε > 0. 
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It is important to remember that one cannot define a GF at a single point but only
over a finite interval. This does not cause any difficulties in applications. We can
talk about equality of two GFs over an interval. We say that two GFs F@fD and G@fD
are equal over an interval I  if for all f e D with support fully within I, we have
F@fD = G@fD. Remember, a functional is a rule that gives us a number for any func-
tion in D. Therefore, we are talking about equality of two numbers obtained from
two rules. From this definition we can say that d HxL = 0 (the zero function and not
the real number zero) over the interval H-¶, -εD ‹ @ε, ¶L for any ε > 0. 
To  learn  more  about  the  multidimensional  GFs  we  recommend  the  books  by
Gelfand and Shilov7, Stakgold8, Vladimirov9, Kanwal11, Jones12, Fenyo and Frey19,
and the two NASA papers by Farassat29, 31. For more advanced treatment as well
some very important recent advances, see the books by Hörmander5 and Taylor6.

ü 2.3- Operations on GFs
Now that we have extended the definition of OFs to GFs, we must extend the defini-
tions of operations on OFs to GFs. The general approach is as follows. Write the
definition of the operation in the language of linear functionals and then use it for
all GFs if it makes any sense (see the definition of generalized Fourier Transform
below where we have to change the test function space). In some cases the exten-
sion of the definition of an operation gives us the opportunity to solve new prob-
lems or solve old problems in much simpler ways. We single out generalized differ-
entiation here as an example of an operation of considerable importance in applied
mathematics. 
In the following we assume that all test functions are in space D. 

ü 2.3.1- Simple Operations
1- Addition of two GFs- If f HxL  and gHxL  are two OFs described by functionals
F@fD and G@fD, f e D then using the linear property of integrals, we can write

(14)‡ H f + gL f „x = ‡ f f „x + ‡ g f „x = F@fD + G@fD

Basically, we know the left side of the first equality is the functional representation
of the sum of the OFs f HxL and gHxL and is given by the right side of the last equality
sign. The above result now makes sense for all GFs, i.e., we define

(15)HF + GL@fD = F@fD + G@fD

Note that HF + GL is a single functional which stands for the sum of the two GFs. 
Written in symbolic function notation, there is no difference between the notation
for OFs and GFs for the sum of two functions. For example, for the sum of an OF
f HxL and the Dirac delta function we can simply write f HxL + dHxL. 
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Written in symbolic function notation, there is no difference between the notation
for OFs and GFs for the sum of two functions. For example, for the sum of an OF
f HxL and the Dirac delta function we can simply write f HxL + dHxL. 
2-  Multiplication  of  two  GFs-  This  operation  cannot  be  extended  to  all  of
Schwartz GFs. In fact it is the aim of the new nonlinear GF theory to be able to
define  multiplication  for  all  GFs22, 23.  Any  two OFs  can  be  multiplied.  We can
define multiplication of any GF with any C¶  function. Again let f HxL be any OF
and let aHxL e C¶, then 

(16)‡ aHxL f HxL f HxL „x = ‡ f HxL HaHxL fHxLL „x = F@a fD

We know that the left side of the first equality sign is the functional representation
of the OF aHxL f HxL. Since the function a f e D, the expression on the right of the
third equality sign is a functional on the test function space D. The rule of multiplica-
tion of a generalized function F@fD and a C¶ function aHxL is given by the rule

(17)aF@fD = F@a fD

Note that in this equation, the symbol aF does not mean the product of a and F but
stands for a single  functional, i.e.,  a rule described by the right side of eq. (17).
Again in symbolic notation we simply write aHxL f HxL but now we have a rule to
interpret such products when f HxL is a singular GF. We give an example here.
Example 8- What is aHxL dHxL where a e C¶? Let f e D, then  

(18)a d@fD = ‡ aHxL fHxL dHxL „x = d @a fD = aH0L f H0L = ‡ aH0L fHxL dHxL „x

We can write this result in symbolic function notation as 
(19)aHxL dHxL = aH0L dHxL

This useful result has been known for many years to physicists. 
3- Translation of a GF- Let f HxL be an OF, and let us define Eh f HxL = f Hx - hL,
i.e., translating the function to the right for h > 0. In functional notation, we have

(20)‡ Eh f HxL fHxL „x = ‡ f Hx - hL fHxL „x = ‡ f HyL f Hy + hL „y = F@E-h fD

Again the left side of the first equality sign is the functional generated by Eh f HxL
for which we use the symbol Eh F@fD. Since for f e D, we have E-h f e D. Therefore,
we use the following result for the definition of the translation of any GF:

(21)Eh F@fD = F@E-h fD

Once again we have obtained a nontrivial result. In symbolic function notation we
use the same notation for GFs as for OFs but occasionally we have to resort to eq.
(21) to interpret the exact meaning of the translated GF such as in the following
example. 

FF & MKM- GFs Pt 1 (11-09) V5.nb  19



Once again we have obtained a nontrivial result. In symbolic function notation we
use the same notation for GFs as for OFs but occasionally we have to resort to eq.
(21) to interpret the exact meaning of the translated GF such as in the following
example. 
Example 9- What is dHx - aL where a is a real constant? The functional representa-
tion of this GF is obviously Ea d@fD. Using the above rule, we have 

(22)‡ dHx - aL fHxL „x = Ea d@fD = d@E- a fD = d@fHx + aLD = fHaL

Again this result has been known by physicists for a long time. 
We can extend the definition of other simple operations on OFs to GFs such as the
expansion and contraction of the scale of the independent variable. For example,
one can rigorously show that for a ≠ 0 we have the following useful result 

(23)dHa xL =
1
† a §

dHxL

ü 2.3.2- More Advanced Operations
We will  extend the definition of two operations on OFs to GFs here.  These are
Fourier transformation and differentiation operations.
1- Fourier Transform of GFs- We work in one dimension here. Let f HxL be a func-
tion defined on  which has Fourier transform defined by the relation  

(24)f
`
HyL = ‡

-¶

¶

f HxL ‰2 p Â x y „x

If  the functional F@fD  is  identified with f HxL,  then its Fourier transform must be
identified with f

`
HyL as follows 

(25)F
`
@fD = ‡

-¶

¶

f
`
HyL f HyL „y = ‡

-¶

¶

f HyL f
`
HyL „y = F@f

`
D

where f
`
 is the Fourier transform of f. We have used Parseval’s theorem after the

second equality sign. Now the functional F@f
`
D  is only defined if f

`
e D  whenever

f e D. We can show that, in general, this is not so and f
`
 can lie outside the space D.

We need to define a test function space S on  consisting of C¶functions which go
to zero at infinity faster than † x - n § for any n. This can be done and in fact we can
show that D Õ S. The space of tempered GFs S£is the space of all continuous lin-
ear functionals on S. An important relation to remember is D Õ S Õ S£ Õ D£. All the
GFs  in  the  space  S£  have  generalized  Fourier  transform  given  by  the  relation
F
`
@fD = F@f

`
D where now f e S. We will say no more on this interesting subject here.

See the references at the end of this paper. We strongly recommend the book by
Strichartz10 for this subject.
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where f
`
 is the Fourier transform of f. We have used Parseval’s theorem after the

second equality sign. Now the functional F@f
`
D  is only defined if f

`
e D  whenever

f e D. We can show that, in general, this is not so and f
`
 can lie outside the space D.

We need to define a test function space S on  consisting of C¶functions which go
to zero at infinity faster than † x - n § for any n. This can be done and in fact we can
show that D Õ S. The space of tempered GFs S£is the space of all continuous lin-
ear functionals on S. An important relation to remember is D Õ S Õ S£ Õ D£. All the
GFs  in  the  space  S£  have  generalized  Fourier  transform  given  by  the  relation
F
`
@fD = F@f

`
D where now f e S. We will say no more on this interesting subject here.

See the references at the end of this paper. We strongly recommend the book by
Strichartz10 for this subject.
2- Differentiation of GFs- This is the most important operation on GFs because of
its many applications in mathematics. Many of the problems of wave propagation
need the use of this concept. Let us start with a C1 function f HxL which we identify
with the functional F@fD. The functional representation of f £HxL can be manipulated
as follows

(26)F£@fD = ‡ f £HxL f HxL „x = -‡ f HxL f£HxL „x = -F@f£D

Note that we have integrated by parts after the second equality sign and we have
used the fact that the support of f is compact to drop the terms involving the limits
of the integral. Since we know that the function f£ is in D, F@f£D is a proper func-
tional on D and we can use the following relation for the definition of the general-
ized derivative (GD) of a GF 

(27)F£@fD = -F@f£D

From this we can define the nth generalized derivative of a GF

(28)FHnL@fD = H-1L n FAf HnLE

This significant result states that GFs have GDs of all orders. When we work with
symbolic functions we often utilize a bar over a derivative operator to designate
generalized differentiation if the operation can be confused with ordinary differen-
tiation. See eqs. (30) and (34) below. For more on this notation see Note 2 at the
end of this paper. It is understood that the differentiation of singular GFs can only
be GD and in that case we will not use this notation.
Example  10-  GD  of  the  Heaviside  function  hHxL = 0 for x < 0  and
hHxL = 1 for x > 0 is found as follows:
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(29)H£@fD = -H@f£D = -‡
0

¶

f£ HxL „x = f H0L

Note that we have used the fact that the test function has a bounded support and,
thus, we have fH¶L = 0. Therefore, we have 

(30)h£
HxL = dHxL

That is,  the GD of the Heaviside function is  the Dirac delta function.  Note that
h£HxL = 0 but h£

HxL ≠ 0. We will return to this point later. This result shows that the
GD of an OF can be a singular GF!  
Example 11- The generalized derivative of the Dirac delta function is

(31)d£@fD = ‡ d£HxL f HxL „x = -d@f£D = -f£H0L

Similarly, we have

(32)d HnL@fD = ‡ d HnLHxL f HxL „x = H-1L n f HnLH0L

Note that in eqs. (31) and (32), the integrals are meaningless; they simply stand for
the functional rules to the left of the first equality sign in the respective equations.
Example  12-  Let  the  OF  f HxL  be  differentiable  with  a  single  jump  of
Û f = f Hx0+L - f Hx0-L at the point x0 as shown in Figure 5. 

Figure 5- A differentiable function with a single jump discontinuity at x0
We find the GD of this function as follows. Let F@fD be the functional representa-
tion of this function. Then its GD can be manipulated as follows
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We find the GD of this function as follows. Let F@fD be the functional representa-
tion of this function. Then its GD can be manipulated as follows

(33)

F£@fD =

-F@f£D = -‡ f HxL f£HxL „x = -‡
-¶

x0-
f HxL f£HxL „x - ‡

x0+

¶

f HxL f£HxL „x =

‡
-¶

x0-
f £HxL fHxL „x + ‡

x0+

¶

f £HxL fHxL „x + H f Hx0+L - f Hx0-LL fHx0L =

‡
-¶

¶

f £HxL fHxL „x + Û f fHx0L = ‡
-¶

¶

H f £HxL + Û f dHx - x0LL f HxL „x

Interpreted in symbolic function notation, we have obtained the following important
result

(34)f £HxL = f £HxL + Û f dHx - x0L

Again we have shown that the GD of an OF can be a singular GF. Furthermore,
this result shows the  need for a notation for generalized differentiation which we
have utilized here, i.e., the overbar on the left side.
Example 13- Referring to Figure 4, let the function kHxL be a differentiable func-
tion with a jump discontinuity across the surface f = 0. We define the jump of the
function kHxL across the surface as follows: 

(35)Û kIu1, u2M = k Iu1, u2, 0+M - k Iu1, u2, 0-M ª k Ix f= 0+M - k Ix f= 0-M

where u = Iu1, u2, u3M is the curvilinear coordinate system we used in Example 7.
Note that the function k HxL  is discontinuous in variable u3 = f  only. This is pre-
cisely why we selected such a coordinate system in the vicinity of the surface of
discontinuity. Now we are going to use eq. (34) to derive the following important
result:

(36)

∂k Hx HuLL
∂xi

=

∂u j

∂xi

∂k
∂u j

+ Û k
∂u3

∂xi
d Iu3M =

∂k
∂xi

+ Û k
∂ f
∂xi

d H f L =
∂k
∂xi

+ Û k ni d H f L

We have used the summation convention on repeated index in the above equation.
We can write the above result in vector notation as follows:

(37)ı k HxL = ı k HxL + Û k n d H f L HNote n = ı f here.L

We give here two more important relations which can be remembered easily. Let
k HxL be a vector field with a jump discontinuity across the surface f = 0 with the
jump defined as in eq. (35). Then the following results hold:
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We give here two more important relations which can be remembered easily. Let
k HxL be a vector field with a jump discontinuity across the surface f = 0 with the
jump defined as in eq. (35). Then the following results hold:

(38)ı ÿk HxL= ı ÿk HxL + Û k ÿ n d H f L HNote n = ı f here.L

(39)ıµk HxL= ıµk HxL + nµÛ k d H f L HNote n = ı f here.L

See  Note 3 for a comment on Eqs. (37) to (39). With what we have obtained so far
we can solve a number of interesting problems. Before we give some examples, let
us say a little more about why one should use the generalized derivative. 

ü 2.4- Why We Use Generalized Derivatives
Part 2 of this tutorial is on applications of generalized derivatives and we will have
much to say about GDs. Here we mention some useful results that readers should
know. The most important fact to remember about GDs is that in GF theory gener-
alized differentiation is a continuous operation. In particular, generalized differen-
tiation and integration are inverse operations. This means that the integration of GD
of a GF recovers the function faithfully with all of its jumps. It is well known that
this is not so in the case of the ordinary derivative of an OF. 
Let f HxL be a discontinuous function as in Example 12. The symbolic meaning of
Ÿ-¶
x f ' HyL „y   can  be  found  as  follows.  Form  the  functional

Ÿ-¶
¶
9Ÿ-¶

x f ' HyL „y= fHxL „x =Ÿ-¶
¶ f ' HyL :Ÿy

¶fHxL „x> „y.  Now  define

yHyL = Ÿy
¶fHxL „x  which  is  in  the  test  function  space  D  and  clearly  we  have

y ' HxL = -f HxL.  From  Eq.  (33)  we  have
Ÿ-¶
¶ f ' HyL yHyL „y = -Ÿ-¶

¶ f HxL y ' HxL „x = Ÿ-¶
¶ f HxL fHxL „x. Symbolically, this means

that Ÿ-¶
x f ' HyL „y = f HxL, even if the function f HxL is discontinuous as assumed. Note

that we have essentially followed the procedure that Schwartz used to define the
indefinite integral of a generalized function4, 7.
Example 14- Let hHxL be the Heaviside function defined in Example 10. Then from
the above result we conclude that

(40)‡
-¶

x
h £

HyL „y = ‡
-¶

x
dHyL „y = h HxL but ‡

-¶

x
h £ HyL „y = 0 ≠ h HxL

Therefore, any problem involving unknowns with discontinuities should be set
up in GF space and all derivatives must be treated as GDs from the start. Such
discontinuities are either artificially introduced, e.g., as in FW-H equation, or are
genuine, e.g., a shock wave in fluid flow field. The statement following eq. (40) has
profound implications for applications some of which will mentioned below:
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Therefore, any problem involving unknowns with discontinuities should be set
up in GF space and all derivatives must be treated as GDs from the start. Such
discontinuities are either artificially introduced, e.g., as in FW-H equation, or are
genuine, e.g., a shock wave in fluid flow field. The statement following eq. (40) has
profound implications for applications some of which will mentioned below:
1- All local conservation laws obtained from control volume analysis are valid
if all the derivatives are considered GDs.  Examples of such conservation laws
are the mass continuity and the Navier-Stokes equations. 
2- The jump conditions across a natural discontinuity in a flow field are inher-
ent in the conservation laws. These jump conditions are obtained easily by apply-
ing the definition of GD to the conservation laws. See Example 15 below.
3- Any problem involving derivatives in which singular GFs appear must be
set up in GF space. One must then carefully distinguish between the GDs and the
ordinary derivatives of any function appearing in the algebra. An example of such a
problem is finding the Green’s function of an ODE or a PDE. 
4- The generalized differentiation operator commutes with all common limit
operations. This is the most pleasant and useful property of generalized differentia-
tion. The following operations are allowed provided that the limits of the integra-
tion are independent of the variable of differentiation:

(41)
∂

∂xi
‡
W

q Hx, yL „ y= ‡
W

∂q Hx, yL
∂xi

„ y,
∂

∂xi
lim
nØ¶

qn Hx, yL = lim
nØ¶

∂qn Hx, yL
∂xi

See the NASA paper by Farassat31 for more examples. 
Example 15- Let us find one of the jump conditions across an unsteady shock wave
which is described by the surface f Hx, tL = 0. We define the jumps in fluid parame-
ters as in eq. (35). The mass continuity equation is  

(42)
∂r

∂t
+ ı ÿ Hr uL = 0

Here the fluid density is r and the fluid velocity is u. First we know this conserva-
tion law was derived from a control volume analysis. Therefore, it is valid if we
treat all ordinary derivatives as GDs, i.e., we have

(43)∂ r

∂t
+ ı ÿ Hr uL = 0

We now use the definition of GD in this equation as follows

(44)
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(44)

∂ r

∂t
+ ı ÿ Hr uL =

∂r

∂t
+ Û r

∂ f
∂t

d H f L + ı ÿ Hr uL + Û Hr uL ÿn d H f L = Û@r Hun - vnLD d H f L = 0

where we have used the notations un = u ÿn and vn = -∂ f ê∂t  is the local normal
velocity of the shock. We have used eq. (42) in the above result. Therefore, one
jump condition across an unsteady shock wave is 

(45)Û@r Hun - vnLD = 0 or ÛHr unL - vn Û r = 0
Note that we derived this condition without using the pill box analysis employed in
the classical derivation of the result.
5-  We  can  use  the  Green’s  function  technique  to  find  the  discontinuous
solutions of an ODE or a PDE provided that we formulate the problem in GF
space  and use generalized differentiation  everywhere. This is a very powerful
result and its impact on applications is enormous. We will not give any example
here but you can see some good examples in the next section. 
We conclude this section by stating the fundamental theorem that characterizes
GFs in D£:
6- GFs in D£  are GDs of finite orders of continuous functions7. This is a very
profound result obtained by Laurent Schwartz. As a simple example we note that
the Dirac delta function is the generalized second derivative of the continuous func-
tion that is zero on the negative axis and is equal to x on the positive axis.
We will elaborate on all these results in part 2 of the present tutorial.
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ü 2.5- A Note on Test Function Spaces
We have developed above the GF theory using the test function space D. Although
the GF spaces D£  and S£  are very useful in applications, we often have to use test
functions other than the spaces D and S which are not C¶functions. But the con-
struction of GFs in the space D£can be used as a model to get other kinds of
GFs. For example if we take a space of test functions consisting of  C n functions,
then we can define GFs on this space as continuous linear functionals which only
have GDs up to the order n. We must, of course, modify our definition of the conti-
nuity of a linear functional appropriately. To define GFs suitable to treat ODEs and
PDEs, say a differential operator L (a differential equation plus linear homogeneous
boundary conditions (BCs)), the test functions must have continuous derivatives of
some order (related to the order of highest derivative of L) and should satisfy the
adjoint BCs. All things we have learned about GFs here, particularly the operations
on GFs, apply as they are. For this reason we do not specifically identify the test
function space unless such identification will  shed some light on the problem at
hand. From this discussion, it is obvious that we can write Ÿ-¶

¶ dHxL „x = 1  even if
the test function fHxL = 1 in the integrand is not in the test function space D. See
also Example 14.  

3- Some Applications of Generalized Differentiation

We will  give two important applications of generalized differentiation which are
very useful in solving wave propagation problems. These are:
1- The Green’s function of a second order ODE, and
2-  The  imbedding  of  a  problem in  another  problem whose  Green’s  function  is
known.
You should note that in these applications we have to utilize almost everything we
presented on GFs in the previous section. 

ü 3.1- The Greenʼs Function of a Second Order ODE 
In working with wave propagation problems in the time or frequency domains, we
often have to obtain the Green’s function of a second order ODE in intermediate
steps. Since we are now able to explain some of the subtleties of the derivation of
this Green’s function from the point of GF theory, we will present a discussion of it
here. We hope that you will agree with us that GF theory is the right tool to use
here. 
Consider the following second order ODE with two linear homogeneous boundary
conditions (BCs): 
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Consider the following second order ODE with two linear homogeneous boundary
conditions (BCs): 

(46)l u = aHxL u″HxL + bHxL u£HxL + cHxL uHxL = kHxL x e @0, 1D
(47)BC1 @uD = 0, BC2 @uD = 0

The Green’s function gHx, yL for this problem is formulated classically as follows8
(see volume 1 of this reference):

(48)lx gHx, yL ª aHxL
∂2gHx, yL

∂x2
+ bHxL

∂gHx, yL
∂x

+ cHxL gHx, yL = d Hx - yL,

x, y e @0, 1D
(49)BC1@gHx, yLD = 0, BC2@gHx, yLD = 0 Hin variable x onlyL

Now we see that we have the Dirac delta function, which is a singular GF, on the
right of eq. (48). So the partial derivatives in this equation are most likely GDs (we
know the answer but we are presenting what most books for engineers and physi-
cists give). But how did we suddenly get into the GF space? Well, we did not really
set up our problem correctly. First from the theory of ODEs we must know some-
thing about the nature of the solution of the BC problem described by eqs.(46) and
(47). Let us assume that we know that u e C2. This can be proved a posteriori when
the solution is at hand. In that case, in the domain of the definition of this function,
since a C2 function cannot have any jumps or sharp corners, we have  

(50)l u ª aHxL u″HxL + bHxL u£ HxL + cHxL uHxL =
aHxL u″HxL + bHxL u£HxL + cHxL uHxL = l u

The Green’s  function  is  used  to  find  the  unknown function  from the  following
relation:

(51)uHxL = ‡
0

1
kHyL gHx, yL „y

Let us discover further properties of the Green’s function from this relation by apply-
ing the linear differential operator (the ODE plus the BCs) to both sides of the equal-
ity. First we get

(52)l uHxL = l uHxL = lx ‡
0

1
kHyL gHx, yL „y = ‡

0

1
kHyL lx gHx, yL „y = kHxL

Note that we freely took the generalized derivatives in lx  inside the integral sign
without concern because this step is allowed in GF theory. From this we immedi-
ately can see that
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(53)lx gHx, yL = aHxL
∂2gHx, yL

∂x2
+ bHxL

∂gHx, yL
∂x

+ cHxL gHx, yL = d Hx - yL

Therefore, we established rigorously that all the derivatives in eq. (48) are GDs.
We will get back to the implications of this fact soon. Next we apply the two BCs
to both sides of eq. (51) remembering that these are linear and homogeneous:

(54)BCx @uHxLD = BCx ‡
0

1
kHyL gHx, yL „y = ‡

0

1
kHyL BCx@ gHx, yLD „y = 0

where the symbol BCx  stands for either of the two BCs but applying to variable x
only. From the above result, because the function kHyL is arbitrary, we conclude that
the Green’s function in variable x satisfies both BCs:

(55)BC1, x@ gHx, yLD and BC2, x@ gHx, yLD

Now let us see what eq. (53) implies about the Green’s function. Obviously this
function changes its character at x = y. So let us assume that it is described as fol-
lows by two C2functions with possible jumps in their values and their derivatives at
x = y:

(56)gHx, yL = :
g1Hx, yL x < y
g2Hx, yL x > y

First of all since the Dirac delta function d Hx - yL is identically zero in the two open
intervals on both sides of x = y, we must have: 

(57)lx g1Hx, yL = lx g2Hx, yL = 0

This means that the functions g1Hx, yL and g2Hx, yL in variable x are solutions of the
homogeneous ODE lx gHx, yL = 0.  Let us take the GD of the first and second order
of the Green’s function described by eq. (56)

(58)∂gHx, yL
∂x

=
∂gHx, yL

∂x
+ @g2Hy+, yL - g1Hy-, yLD d Hx - yL

(59)
∂2gHx, yL

∂x2
=

∂2gHx, yL
∂x2

+ B
∂g2Hy+, yL

∂x
-

∂g1Hy-, yL
∂x

F

d Hx - yL + @g2Hy+, yL - g1Hy-, yLD d£ Hx - yL
We must substitute these two relations in eq. (53) and equate both sides term by
term. Since there is no derivative of the Dirac delta function on the right of eq. (53),
we immediately conclude that
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(60)g2Hy+, yL - g1Hy-, yL = 0

This means that the Green’s function is continuous at x = y. Furthermore, we get

(61)
B
∂g2Hy+, yL

∂x
-

∂g1Hy-, yL
∂x

F =
1

aHyL

Hassuming that aHyL ≠ 0 for y e @0, 1DL
This means that the derivative of the Green’s function with respect to x has a jump
described by the above equation at x = y. We can show that eqs. (55), (57), (60) and
(61) uniquely define the Green’s function. Note that only by using GF theory have
we been able to get the above results rigorously and satisfactorily.
Example 16- Let us take  l uHxL = u″ for x e @0, 1D with the following BCs:  

(62)u H0L - 2 u£H0L = 0 and u H1L + u£H1L = 0
The above procedure will give the following Green’s function for this problem:

(63)gHx, yL = :

Hy- 2L Hx+ 2L
4 x < y

Hy+ 2L Hx- 2L
4 x > y

This  Green’s  function  satisfies  the  conditions  derived  above.  Note  that  the
differential operator in this example is selfadjoint and, therefore, the symmetry of
the Green’s function in variables x and y is expected8. 

ü 3.2- The Imbedding of a Problem in Another Problem
We became interested in this problem through our work on the Ffowcs Williams-
Hawkings (FW-H) equation2. The situation is described in Figure 6 below. 
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Figure 6- The problem of noise radiation from a moving body (a helicopter
rotor blade here) as formulated by Ffowcs Williams and Hawkings

We are given an inhomogeneous wave equation in the exterior of a moving surface
described implicitly by the function f Hx, tL = 0. This surface will be called the data
surface here. Ffowcs Williams and Hawkings searched for a radiation formula in
the  exterior  of  the  data  surface.  Essentially,  these  authors  used  an  imbedding
method by making their wave equation valid in the entire unbounded space2. This
imbedding allowed the use of the free space Green’s function for getting the radia-
tion formula. They assumed that the fluid inside the data surface is always at rest
with the condition of the undisturbed medium. Since an artificial discontinuity has
been introduced in the medium, one must work with GFs. This imbedding tech-
nique provides  us  with  an elegant  method of  deriving a  radiation formula.  This
technique can be applied to a whole range of other problems involving ODEs and
PDEs,  particularly  those  related  to  wave  propagation.  We will  discuss  some of
these problems here. First, however, we present the imbedding technique.    
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ü 3.2.1- The Imbedding Technique
We will consider the problem of radiation from a moving and deformable surface
f Hx, tL = 0, assuming that ı f = n, where n is the unit outward normal. We have
shown the moving surface at two times in space in Figure 7.

Figure 7- A moving deformable surface described by f Hx, tL = 0 at two differ-
ent times t1and t2 in space
We want to solve the following exterior acoustic radiation problem:

(64)
1
c2

∂2j

∂t2
- ı2 j =

·2 j = Q Hx, tL Hx in exterior of f = 0, c = constantL
We are assuming that  we have all  the data about the function j  on the moving
surface.  These data may be overdetermined but right now we are not concerned
about this fact. We want to extend the domain of the problem to the interior of the
surface  so  that  we can use  the  simple  free  space  Green’s  function of  the  wave
equation. In other words, we want to imbed our problem in another problem with a
larger  domain in  space  (this  can be  done also  for  the  dimension of  time).  This
imbedding will  require the powerful  machinery of  GFs.  Here is  how we do the
imbedding. We start by extending the definition of the two functions in eq. (64) as
follows: 
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(65)jè Hx, tL = :
j Hx, tL f > 0
0 f < 0

, and Q
è
Hx, tL = :

Q Hx, tL f > 0
0 f < 0

The first thing we notice is that with this extension, the new functions satisfy the
following wave equation:  

(66)·2 jè = Q
è
Hx, tL

Note that the unknown function jè  is discontinuous. To find this function, we must
set the problem in GF space. This simply means that we find what the wave opera-
tor looks like when all the ordinary derivatives are written as GDs as follows:

(67)∂jè

∂t
=

∂jè

∂t
+ j

∂ f
∂t

dH f L =
∂jè

∂t
- j vn dH f L

where vn = - ∂ f ê∂t is local normal velocity of the surface which is unambiguously
defined even for  a  deformable surface.  Also we use the notation j = j H f = 0+L
when this function multiplies the Dirac delta function d H f L as in the last term on the
right of eq. (67). Next we find the following relations:

(68)∂2jè

∂t2
=

∂2jè

∂t2
-

∂j

∂t
vn dH f L -

∂

∂t
@j vn dH f LD

(69)ı2 jè = ı2 jè + n ÿı j dH f L + ı ÿ @j n dH f LD
where we have again used the notation that any function of jè  multiplying the Dirac
delta function is evaluated at f = 0+. Let us define the local normal Mach number
of the surface as M n = vn ê c,  and define additionally the following two symbols:
j t = ∂j ê∂t and j n = n ÿı j. Then the above two relations will give us:

(70)·2 jè = ·2 jè -
1
c
j t Mn dH f L -

1
c

∂

∂t
@j M n dH f LD - j n dH f L - ı ÿ @j n dH f LD

Or, after using eq. (66), we obtain

(71)·2 jè = Q
è
Hx, tL -

1
c
j t Mn dH f L -

1
c

∂

∂t
@j M n dH f LD - j n dH f L - ı ÿ @j n dH f LD

Note that we do need to use a bar over the wave operator on the left side since from
the right side it is clear that all derivatives involved are GDs. Now we can use the
Green’s function of the wave equation in the unbounded space, the so-called free-
space Green’s function, to find the unknown function jè Hx, tL everywhere in space.
The result is the Kirchhoff formula for moving surfaces31, 32. The classical deriva-
tion of this formula by Morgans33 is very complicated and in fact until Farassat and
Myers rederived it by the modern method presented here, there were some doubts
expressed about the correctness of Morgans’ result2, 34.
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Note that we do need to use a bar over the wave operator on the left side since from
the right side it is clear that all derivatives involved are GDs. Now we can use the
Green’s function of the wave equation in the unbounded space, the so-called free-
space Green’s function, to find the unknown function jè Hx, tL everywhere in space.
The result is the Kirchhoff formula for moving surfaces31, 32. The classical deriva-
tion of this formula by Morgans33 is very complicated and in fact until Farassat and
Myers rederived it by the modern method presented here, there were some doubts
expressed about the correctness of Morgans’ result2, 34.
We will not derive the Kirchhoff formula for moving surfaces here since the two
references by Farassat and Myers32 and Farassat31 are quite comprehensive alleviat-
ing the need for further elaboration. However, we next derive some classical results
for  stationary surfaces  by the imbedding method which are surprisingly simpler
than the classical methods of their derivation.
Before we end this discussion we want to mention an important question that comes
to mind. Answering this question may lead to further applications of the Green’s
function of the unbounded space. To imbed our exterior radiation problem in 3 we
have imposed that inside the surface both jè  and Q

è
 be zero. Can the functions jè

and Q
è

 be assumed to take other values and are there advantages in doing so?
We will find the answer to this question using an ODE to simplify the analysis.

ü 3.2.2- Derivation of Some Classical Results Using the Imbedding 
Technique
1- The Green’s Theorem for the Laplace Equation in the Exterior Domain of a
Surface- The problem is described in Figure 8.
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Figure 8- Problem description for deriving the Green’s theorem for Laplace
equation, f > 0 outside the surface and n = ı f  on the surface
We imbed this problem in 3 by extending the definition of j to the interior of the
surface as in eq. (65). We find generalized Laplace equation next:  

(72)
ı2 jè =
ı2 jè + n ÿı j dH f L + ı ÿ @j n dH f LD = j n dH f L + ı ÿ @j n dH f LD Ix e3M

The definition of all symbols are identical to those in Section 3.2.1. We have used
the fact that ı2 jè = 0 in 3. The Green’s function of this problem in the unbounded
space is -1 ê H4 p rL, where r = † x - y §. Here x and y are the observer and the source
(field) variables, respectively. The solution of the above equation will give us the
answer we are seeking as follows:

(73)

4 p jè HxL = -‡
3

j n HyL
r

d H f L „ y - ı ÿ‡
3

j HyL n
r

d H f L „ y =

-‡
3

j n HyL
r

d H f L „ y - ‡
3
j HyL n ÿıx

1
r

d H f L „ y =

‡
f= 0

-
j n HyL

r
+

j cos q
r 2

d S

We have used the result of Example 7, i.e., eq. (13), twice in the last step. The angle
q is between the local outward normal to the surface and r = x - y, see Figure 8.
This is the well-known Green’s theorem for the Laplace equation. Note that a bonus
of the imbedding method is that we know that by construction this equation will
give jè = 0 inside the surface, a fact not at all obvious in classical derivations and
that must be established separately.
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We have used the result of Example 7, i.e., eq. (13), twice in the last step. The angle
q is between the local outward normal to the surface and r = x - y, see Figure 8.
This is the well-known Green’s theorem for the Laplace equation. Note that a bonus
of the imbedding method is that we know that by construction this equation will
give jè = 0 inside the surface, a fact not at all obvious in classical derivations and
that must be established separately.
2-  The  Classical  Kirchhoff  Formula  For  the  Wave  Equation  (The  Exterior
Problem)- We will now give the derivation of this well-known result based on eq.
(71), i.e. using the imbedding method. Referring to Figure 9, we imbed the prob-
lem in 3 and use the fact that M n = 0 in eq. (71) to get:  

(74)·2 jè = -j n dH f L - ı ÿ @j n dH f LD

Figure  9-  Problem description  for  deriving  the  classical  Kirchhoff  formula,
f > 0 outside the surface and n = ı f  on the surface

The Green’s  function of  the wave equation in  the unbounded three dimensional
space is:

(75)GHx, t; y, tL = :
0 t > t
d Ht - t + r ê cL ê4 p r t b t

where r = † x - y §.  Here Hx, tL  and Hy, tL  are the observer  and the source space-
time variables, respectively. We usually use the following symbol: g = t - t + r ê c. 
We are first interested in the solution of the equation:
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(76)·2 y = q Hx, tL dH f L
The solution of eq. (76) is8, 9, 29:

(77)4 p yHx, tL = ‡ q Hy, tL dH f L
dHgL

r
„ y d t = ‡

f = 0

qHy, t - r ê cL
r

„S

The limits of the integral in this equation are given below: 

(78)‡ ... .. „ y d t = ‡
-¶

t

‡
3

... .. „ y d t = ‡
-¶

t

‡
-¶

¶

‡
-¶

¶

‡
-¶

¶

... .. „y1 „y2 „y3 „t

Therefore, the solution of eq. (74) is: 

(79)

4 p jè Hx, tL = -‡
f = 0

j n Hy, t - r ê cL
r

„S - ıx ÿ‡
f = 0

n j Hy, t - r ê cL
r

„S =

-‡
f = 0

j n Hy, t - r ê cL
r

„S - ‡
f = 0
n ÿıx

j Hy, t - r ê cL
r

„S

Taking the partial derivatives with respect to the variable x of the integrand of the
second integral, we obtain the following result:

(80)
4 p jè Hx, tL = ‡

f = 0

c-1 cos q j tHy, t - r ê cL - j n Hy, t - r ê cL
r

„S +

‡
f = 0

cos q j Hy, t - r ê cL
r 2

d S

The angle q is between the local outward normal to the surface and r = x - y, see
Figure 9. This is the well-known classical Kirchhoff formula34- 36. Note that we
know by construction that jè = 0 inside the surface. This fact is not obvious in the
classical derivation and, as in the case of the classical derivation of the Green’s
theorem for the Laplace equation, must be established separately. Notice also that
in our derivation we did not have to resort to the four-dimensional Green’s theorem
for the wave equation. This is a great advantage of the imbedding method over the
classical derivation. 
3- Radiation into Half Space- The Rayleigh Integral- We will derive two well-
known results for radiation into half space by the imbedding method. Let the half
space be defined by x3 > 0. We are, therefore, interested in solving the following
problem:

(81)·2 j = Q Hx, tL Hx3 > 0L
We will say nothing about the BC now because two possible BCs emerge from the
imbedding method. Let us imbed this problem in 3 in two ways as follows:
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We will say nothing about the BC now because two possible BCs emerge from the
imbedding method. Let us imbed this problem in 3 in two ways as follows:

(82)
jè Hx, tL = :

j Hx, tL x3 > 0
-j Hx, tL x3 < 0

,

Q
è
Hx, tL = :

Q Hx, tL x3 > 0
-Q Hx, tL x3 < 0

HImbedding 1L

and 

(83)
jè Hx, tL = :

j Hx, tL x3 > 0
j Hx, tL x3 < 0

,

Q
è
Hx, tL = :

Q Hx, tL x3 > 0
Q Hx, tL x3 < 0

HImbedding 2L

Imbedding  1-  We  can  show  easily  that  on  the  plane  x3 = 0  the  jump
Û jè = 2 j Hx1, x2, 0+, tL ª 2 q Hx1, x2, tL,  and  also   Û H∂jè ê∂x3L = 0.  Therefore,  the
extended function satisfies the wave equation: 

(84)·2 jè = Q
è
Hx, tL - 2 q Hx1, x2, tL d£Hx3L Ix e3M

Using the free space Green’s function of the wave equation, we get

(85)
4 p jè Hx, tL = ‡

3

Q
è
Hy, t - r ê cL

r
„ y - ‡

3

2 d£Hy3L q Hy1, y2, t - r ê cL
r

„ y

= ‡
3

Q
è
Hy, t - r ê cL

r
„ y+‡

2

∂

∂y3
B

2 q Hy1, y2, t - r ê cL
r

F
y3=0

„y1 d y2

When we take the derivative in the integrand of the second integral, we obtain the
following result:

(86)
4 p jè Hx, tL = ‡

3

Q
è
Hy, t - r ê cL

r
„ y +

2 ‡
2

c-1 cos q qt Hy1, y2, t - r ê cL
r

+
cos q q Hy1, y2, t - r ê cL

r 2
„y1 d y2

Here we have used qt = ∂q ê∂t  and the angle q  is between the radiation direction
x - y and the x3 - axis. Note that the function Q

è
 is defined in eq. (82). This result is

the solution of the following problem in the half space x3 > 0:

FF & MKM- GFs Pt 1 (11-09) V5.nb  38



(87)·2 j = Q Hx, tL, j Hx1, x2, 0, tL = q Hx1, x2, tL Hx3 > 0L

Imbedding 2- We can show that on the plane x3 = 0, the jump Û jè = 0, and also
Û H∂jè ê∂x3L = 2 ∂jè Hx1, x2, 0+, tL ê∂x3 ª 2 q Hx1, x2, tL. Therefore, the extended func-
tion satisfies the wave equation:  

(88)·2 jè = Q
è
Hx, tL - q Hx1, x2, tL dHx3L Ix e3M

Using the free space Green’s function of the wave equation, we get

(89)
4 p jè Hx, tL = ‡

3

Q
è
Hy, t - r ê cL

r
„ y - ‡

3

2 dHy3L q Hy1, y2, t - r ê cL
r

„ y

= ‡
3

Q
è
Hy, t - r ê cL

r
„ y-‡

2
B

2 q Hy1, y2, t - r ê cL
r

F
y3=0

„y1 d y2

Since the source in the last integral lies always on the y3 = 0 plane, we can drop this
subscript in integrand and we obtain:

(90)4 p jè Hx, tL = ‡
3

Q
è
Hy, t - r ê cL

r
„ y-‡

2

2 q Hy1, y2, t - r ê cL
r

„y1 d y2

Note that the function Q
è

 is defined in eq. (83).This is the solution of the following
problem in the half space x3 > 0:

(91)·2 j = Q Hx, tL,
∂j

∂x3
Hx1, x2, 0, tL = q Hx1, x2, tL Hx3 > 0L

Equation (90) without the volume term is known as the Rayleigh integral36.
4- The Imbedding Problem for a Second Order ODE- We consider the second
order  ODE   l uHxL = u″HxL = kHxL  for  x e @a, bD Õ @0, 1D  with  two  linear  and
homogeneous BCs which we denote  as  BC£

1@uD = 0 and BC£
2@uD = 0.  Assuming

that the solution exists, we want to find the solution by the imbedding method using
the Green’s function of the Example 16. The situation is shown in Figure 10. 
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Figure 10-  Imbedding an ODE problem for the interval  @a, bD  in the larger
interval @0, 1D for the same differential equation
Note that the ODE of Example 16 is the same as the one on the smaller interval
This  is  required  in  an  imbedding  method.  Let  us  extend  the  unknown function
uHxL to the larger interval as follows

(92)uèHxL = :
uHxL x ε @a, bD
0 x ε @0, 1D \ @a, bD

, and k
è
HxL = :

kHxL x ε @a, bD
0 x ε @0, 1D \ @a, bD

See Figure 10 above. Notice that uè  satisfies the BCs of Example 16 given by eq.
(62). This is required because if this condition is not satisfied, then we cannot use
the  Green’s  function  of  Example  16  given  by  eq.  (63).  Note  that  we  have
l uè = uè″ = f

è
. We next find the following result valid on @0, 1D:

(93)
l uè HxL = uè″HxL =

uè″HxL + u£HaL d Hx - aL - u£HbL d Hx - bL + u HaL d£Hx - aL - uHbL d£Hx - bL =
k
è
HxL + u£HaL d Hx - aL - u£HbL d Hx - bL + u HaL d£Hx - aL - uHbL d£Hx - bL

Now let gHx, yL be the Green’s function of Example 16 given by eq. (63), then we
can find a representation of the solution as follows:

(94)

uèHxL = ‡
0

1
k
è
HyL gHx, yL „y + u£HaL gHx, aL - u£HbL gHx, bL +

u HaL
∂gHx, aL

∂y
- uHbL

∂gHx, bL
∂y

= ‡
a

b
kHyL gHx, yL „y +

u£HaL gHx, aL - u£HbL gHx, bL + u HaL
∂gHx, aL

∂y
- uHbL

∂gHx, bL
∂y

We  are  not  finished  yet.  We  can  show  that  using  eq.  (94),  uèHa-L = 0  and
uèHa+L = uHaL give identical relations among the boundary values (BVs) of the imbed-
ded problem. Similarly, we can show that uèHb+L = 0 and uèHb-L = uHbL also give us
another identical relations among the BVs of the imbedded problem. We also have
two relations supplied by the BCs of the imbedded problem. These four relations
will give us the four unknowns uHaL, uHbL, u£HaL, and u£HbL which we can then substi-
tute in eq. (94) to completely solve this problem.
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We  are  not  finished  yet.  We  can  show  that  using  eq.  (94),  uèHa-L = 0  and
uèHa+L = uHaL give identical relations among the boundary values (BVs) of the imbed-
ded problem. Similarly, we can show that uèHb+L = 0 and uèHb-L = uHbL also give us
another identical relations among the BVs of the imbedded problem. We also have
two relations supplied by the BCs of the imbedded problem. These four relations
will give us the four unknowns uHaL, uHbL, u£HaL, and u£HbL which we can then substi-
tute in eq. (94) to completely solve this problem.
Looking at this procedure we note that all we have required of the behavior of the
extended  function  uèHxL  is  that  it  should  satisfy  the  BCs  of  the  problem whose
Green’s function is available in the larger domain. This means that any solution vHxL
of Example 16 can be assumed in the extended region. Assuming that we have
l vHxL = jHxL, then eq. (92) must be modified as follows:

(95)uèHxL = :
uHxL x e @a, bD

vHxL x ε @0, 1D \@a,bD
, and k

è
HxL = :

kHxL x e @a, bD
jHxL x ε @0, 1D \@a,bD

and eq. (93) becomes

(96)

l uè HxL = uè″HxL =
uè″HxL + @u£HaL - v£HaLD d Hx - aL - @u£HbL - v£HbLD d Hx - bL + @u HaL - vHxLD

d£Hx - aL - @u HbL - vHbLD d£Hx - bL =
k
è
HxL + @u£HaL - v£HaLD d Hx - aL - @u£HbL - v£HbLD d Hx - bL + @

u HaL - vHxLD d£Hx - aL - @u HbL - vHbLD d£Hx - bL
Again using the Green’s function of Example 16, we find the representation of the
unknown function as: 

(97)
uèHxL = ‡

0

1
k
è
HyL gHx, yL „y + @u£HaL - v£HaLD gHx, aL - @u£HbL - v£HbLD

gHx, bL + @u HaL - vHxLD
∂gHx, aL

∂y
- @u HbL - vHbLD

∂gHx, bL
∂y

Two relations are obtained from uèHa+L = uHaL and uèHb-L = uHbL among the BVs of
the imbedded problem. Together with the two BCs of the imbedded problem, we
can then find uHaL, uHbL, u£HaL, and u£HbL and substitute in eq. (97) to find the solu-
tion of the imbedded problem.
The implication of this result for wave propagation problems can be substantial. It
means that we do not have to assume that fluid inside the moving body is at rest
with the conditions of the undisturbed medium in the derivation of the FW-H equa-
tion. We can take any solution of the wave equation ·2 j = q inside the surface and
then  apply  the  imbedding  technique.  This  will  allow  us  to  use  the  free-space
Green’s function and perhaps not have some of the shortcomings of the FW-H equa-
tion such as the cancellation between the contributions of the surface and volume
integrals.
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The implication of this result for wave propagation problems can be substantial. It
means that we do not have to assume that fluid inside the moving body is at rest
with the conditions of the undisturbed medium in the derivation of the FW-H equa-
tion. We can take any solution of the wave equation ·2 j = q inside the surface and
then  apply  the  imbedding  technique.  This  will  allow  us  to  use  the  free-space
Green’s function and perhaps not have some of the shortcomings of the FW-H equa-
tion such as the cancellation between the contributions of the surface and volume
integrals.

4- Concluding Remarks

In this paper we have discussed some applications of GF theory principally to wave
propagation problems. We have first given a fairly complete tutorial on GF theory
and then have utilized most of the properties of GFs in the examples and applica-
tions presented.  We have emphasized generalized differentiation here which is  a
very important operation on GFs with many applications. These are some of our
main conclusions:
1- GF theory is a very powerful analytic tool in physics and acoustics with a wide
range of applications,
2- The derivation of many classical results in physics and acoustics can be enor-
mously simplified by using GF theory,
3- The power of the Green’s function technique is  substantially increased if  GF
theory is utilized as in the imbedding technique, and 
4- It is possible to use functions other than the null function inside a moving surface
in the imbedding problem used for obtaining the FW-H equation. Some of these
choices may have advantages over the use of a null function in the extended region
while still allowing one to use the free-space Green’s function.
Generalized function theory is a very powerful tool in mathematics that every physi-
cist and mathematically minded engineer should strive to learn. We hope that we
have managed to impart to the readers our enthusiasm in learning and using GFs in
their work.    

5- Notes
Note  1-  To  understand  GF  theory  deeply,  one  must  have  some  knowledge  of
Lebesgue measure and integration theory. Unfortunately, this theory is abstract and
requires some mathematical maturity to master.  Riemann integration is taught in
undergraduate  calculus  courses  and  the  students  of  physics  and  engineering  see
many applications of Riemann integrals in their work. On the other hand, one rarely
has to evaluate the Lebesgue integral of a function but the properties of Lebesgue
integrable functions are essential in solving many problems of physics and engineer-
ing. It is important to remember that Lebesgue integrable functions constitute the
largest and wildest class of functions ever encountered in applications. This prop-
erty alone makes this class most suitable for use in applications. Lebesgue integra-
tion theory gives us the definition of the integral, the properties and the theorems
needed to work with this class of functions. Furthermore, this theory sheds light on
differentiability and continuity properties of functions in the most general setting.   
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Note  1-  To  understand  GF  theory  deeply,  one  must  have  some  knowledge  of
Lebesgue measure and integration theory. Unfortunately, this theory is abstract and
requires some mathematical maturity to master.  Riemann integration is taught in
undergraduate  calculus  courses  and  the  students  of  physics  and  engineering  see
many applications of Riemann integrals in their work. On the other hand, one rarely
has to evaluate the Lebesgue integral of a function but the properties of Lebesgue
integrable functions are essential in solving many problems of physics and engineer-
ing. It is important to remember that Lebesgue integrable functions constitute the
largest and wildest class of functions ever encountered in applications. This prop-
erty alone makes this class most suitable for use in applications. Lebesgue integra-
tion theory gives us the definition of the integral, the properties and the theorems
needed to work with this class of functions. Furthermore, this theory sheds light on
differentiability and continuity properties of functions in the most general setting.   
To learn about Lebesgue integration, one starts by defining the measure of a set.
For sets on the real line, the measure is basically a generalization of the notion of
the  length  of  an  interval.  Sets  for  which  we  can  define  a  measure  are  called
measurable sets. One can safely assume that he/she will never encounter a set that is
not measurable in any application because defining a set that is not measurable is
very difficult and involves the use of esoteric nonconstructive techniques or the use
of nonstandard analysis. Next one defines a measurable function on the interval [a,
b] as a function f HxL for which the set 8x  f HxL > c, c e } is measurable. Finally,
the  Lebesgue  integral  of  a   measurable  function  is  defined  as  a  significant
generalization of the Riemann integral leading to the class of Lebesgue integrable
functions  L  which  is  a  proper  subset  of  the  class  of  measurable  functions.  A
function f  is Lebesgue integrable if and only if f  is. The definition of Lebesgue
integral is quite abstract and subtle but one can become very comfortable with the
use of  the powerful  results  that  are subsequently obtained.  The extension of the
Lebesgue  integration  theory  to  multidimensional  space  is  feasible  and  fairly
straightforward. 
It is important to know that all finite and countable sets are of measure zero. There
are uncountable sets that are of measure zero, e.g., the Cantor ternary set on @0, 1D
obtained by dividing this interval into three parts and removing the middle third
open interval and repeating this process ad infinitum on the remaining closed inter-
vals. If a property holds on a set S with the exception of a set with measure zero in
that set, we say that the property holds on S almost everywhere. For example, we
can prove that two measurable functions that are equal almost everywhere on the
same interval have the same Lebesgue integrals. That is why there is no regular
function  that  behaves  like  the  Dirac  delta  function  because  if  there  were,  its
Lebesgue integral would be zero (remember that the Dirac delta function is zero
almost  everywhere  and,  therefore,  viewed as  an  ordinary  function,  its  Lebesgue
integral must be zero). A very important theorem that one should know is that a
bounded function f HxL on the closed and bounded interval @a, bD is Riemann inte-
grable if and only if it is continuous almost everywhere.   
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It is important to know that all finite and countable sets are of measure zero. There
are uncountable sets that are of measure zero, e.g., the Cantor ternary set on @0, 1D
obtained by dividing this interval into three parts and removing the middle third
open interval and repeating this process ad infinitum on the remaining closed inter-
vals. If a property holds on a set S with the exception of a set with measure zero in
that set, we say that the property holds on S almost everywhere. For example, we
can prove that two measurable functions that are equal almost everywhere on the
same interval have the same Lebesgue integrals. That is why there is no regular
function  that  behaves  like  the  Dirac  delta  function  because  if  there  were,  its
Lebesgue integral would be zero (remember that the Dirac delta function is zero
almost  everywhere  and,  therefore,  viewed as  an  ordinary  function,  its  Lebesgue
integral must be zero). A very important theorem that one should know is that a
bounded function f HxL on the closed and bounded interval @a, bD is Riemann inte-
grable if and only if it is continuous almost everywhere.   
One  should  realize  that  currently  several  different  approaches  exist  for  learning
Lebesgue measure and integration theory. We are not familiar with a  particularly
superior approach. We believe that one requires a concentrated and dedicated effort
to master the subject using any approach. There are many excellent books available
on  the  subject.  Two  well  known  and  lucidly  written  books  are  by  Riesz  and
Nagy37 and by Hartman and Mikusinski38. A recent excellent textbook is by David
M. Bressoud39. This book covers all the necessary background as well as advanced
subjects on Lebesgue measure and integration that one needs in applications. See
the references in this book to many other books on this subject. 
We conclude this  note  by giving here  Littlewood's  three  principles  that  sum up
nicely several important conclusions of Lebesgue theory39, 40. In Bressoud's words,
these are:
i- Every measurable set is almost a finite union of open intervals,
ii- Every measurable function is almost a continuous function,
iii-  Every  convergent  sequence  of  measurable  function  is  almost  uniformly
convergent.
The word "almost" here means that the statement is true except on a set with arbitrar-
ily small measure. Bressoud describes how these principles can be used to extend
theorems proved using open sets, continuous functions and uniformly convergent
sequences  to  much  more  general  situations  IBressoud39,  page  192).  The  second
principle is actually Lusin's theorem and the third is basically Egorov's theorem39.
Nikolai  Lusin,  who  was  a  student  of  Dimitri  Egorov,  was  the  founder  of  the
Moscow School of Mathematics known also as Lusitania. For those interested in
the history of mathematics, a recent book by Graham and Cantor41 gives the (often
tragic) history of many brilliant Russian mathematicians of the twentieth century
involved  in  the  development  of  modern  mathematics  with  amazing  depth  and
breadth.  
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The word "almost" here means that the statement is true except on a set with arbitrar-
ily small measure. Bressoud describes how these principles can be used to extend
theorems proved using open sets, continuous functions and uniformly convergent
sequences  to  much  more  general  situations  IBressoud39,  page  192).  The  second
principle is actually Lusin's theorem and the third is basically Egorov's theorem39.
Nikolai  Lusin,  who  was  a  student  of  Dimitri  Egorov,  was  the  founder  of  the
Moscow School of Mathematics known also as Lusitania. For those interested in
the history of mathematics, a recent book by Graham and Cantor41 gives the (often
tragic) history of many brilliant Russian mathematicians of the twentieth century
involved  in  the  development  of  modern  mathematics  with  amazing  depth  and
breadth.  
Note 2- To the best of our knowledge this notation was introduced by F. Farassat in
mid-nineteen seventies42.  It  was routinely used for  many years in the course on
partial differential equations ApSc-215 of The George Washington University by
this author. Ram P. Kanwal gives credit to Farassat for the introduction of this nota-
tion into GF theory in the first edition of his book on GFs11. This notation seems to
appear most often in the literature of aeroacoustics.  
Note  3- Equations (37) to (39) were first published in these compact forms by F.
Farassat in 197743. It must be mentioned that several variations of these results are
available in some books on partial differential equations but not in the simple forms
presented here.  
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