Health Monitoring of Composite Overwrapped Pressure Vessels (COPVs) using Meandering Winding Magnetometer (MWM®) Eddy Current Sensors

Rick Russell
NASA Kennedy Space Center

David Grundy, David Jablonski, PhD,
Christopher Martin, Andrew Washabaugh, PhD
and Neil Goldfine, PhD
JENTEK Sensors, Inc.

Aircraft Airworthiness and Sustainment Conference
April 2011
Agenda

- Define COPV
- Background
- Proof of concept test plan
- MWM technology
- Coupon Testing/Results
- Full COPV Testing/Results
- Conclusions
What is a COPV?

- NASA Orbiter Pressure Vessel
- Need was a light weight high strength pressure vessel
- NASA COPV was designed in 1970’s
- Basic Composition:
 - Boss
 - Composite Overwrap
 - Metallic Liner
- Safety is key factor
• There are 3 mechanisms that affect the life of a COPV
 – The age life of the overwrap
 – Cyclic fatigue of the metallic liner
 – Stress Rupture life

The first two mechanisms are understood through test and analysis

• A COPV Stress Rupture is a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time.

• Currently there is no simple, deterministic method of determining the stress rupture life of a COPV, nor a screening technique to determine if a particular COPV is close to the time of a stress rupture failure.
A key factor in the stress reliability model is the Stress Ratio

\[\text{STRESS RATIO} = \frac{\text{Stress in Overwrap @ MEOP}}{\text{Stress in Overwrap @ Burst}} \]

- The stress at burst varies from vessel to vessel, therefore the discrete stress ratio varies from vessel to vessel
- Recent Orbiter COPV testing has proven that analytic prediction of the stress ratio and subsequent reliability modeling to be highly inaccurate
 - ~20% off
- Proposed technology would provide the ability to directly measure the stresses at various depths in the overwrap and potential directly calculate the Stress Ratio
KSC funded a proof-of-concept study to study the ability eddy current sensors to measure stresses in a carbon wrapped COPV.

Why MWM Eddy current?

- MWM and MWM-Arrays measure bulk conductivity within the depth of penetration with a selectivity biased towards those fibers aligned with the sensors drive windings.
- Conductivity and density of carbon fibers varies with stress.
MWM® Technology

- Magnetic Stress Gages (MSGs) will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM-Array eddy current sensor technology
 - What is MWM? (see slide 10 for an example of an MWM-Array)
 - Primary winding is a linear construct that can be aligned with fibers
 - Secondary windings for sensing the response
 - Fabricated on thin flexible substrate creating a conformable sensor
 - Can be manufactured in various array configurations
 - Depth of penetration varies with sensor wavelength (spacing) and frequency
 - Vendor has capability to perform computer simulations

![Diagram showing primary and secondary windings](image)
Proof-of-Concept Test Plan

- Select an MWM eddy current sensor for COPV application
- Design and test coupons for initial configuration testing
- Adapt sensors and procedures
- Hydrostatic test with sensors on full COPV
- Final report
Test Article

- Fibers: Toray T-800 24k
- Resin: 826/Huntsman T403

1 helical 17 degrees
5 hoops
2 helicals 18 degrees
5 hoops
1 high angle helical (60 degrees)
1 helical 17 degrees
Aluminum
Fiber Orientation Effects

- Multiple fiber orientations in several different layers
- Orientation measurements with FS33
 - 15.8 MHz data indicated
- Limited penetration depth of MWM so outermost hoop (90°) layer barely visible

![Graphs showing fiber orientation effects with data at ±17° and ±60°](image)

![Diagram of fiber orientations and layers](image)
Sensors Used

MWM-Array FA41

- Drive Winding
- Near Channels
- Far Channels
- Scan Path Width: 0.9 in.
- Far Channels: 0.036 in., 0.0875 in., 0.050 in.

FA41 $\lambda \approx 480/190$ mils

MWM-Array FA28

- Sensing Elements
- Primary: 0.25 mm, 1 mm
- 1 mm = 0.04 in.

FA28 $\lambda \approx 150$ mils

MWM FS36

FS36 $\lambda \approx 400.0$ mils
Coupon Testing

- Coupon cut from center section of COPV (~4” wide)
- Two test fixtures designed
- Due to cutting only hoop direction could be measured
- Several different sensor designs and orientations were tested
Hydrostat Test

- Full COPV tested hydrostatically at KSC on February 5, 2011
- Vessel cycled to 8,000 psi and back to zero stopping at 2,000 psi increments
 - Pressure chosen to mimic MEOP
 - Estimated design burst pressure of COPV is 16,000 psi
- Based on coupon tests 3 sensor configurations were chosen
 - Different wavelength to obtain various depth of penetration
- Tests were performed with 3 sensor orientations
 - 90°, 60° and 17° to align sensor drive with fiber orientations
GridStation Results

FA41 (far channel) magnitude at 17° sensor orientation

- Channel to channel variability still being studied
- Layer orientation variability will contribute to channel variability
- Sensor magnitude correlates with pressure and strain

Hoop strain from strain gage

Axial strain from stain gage
FA41 (far channel) Results:
17°, 60° and 90° Orientations

- Average of 18 far channels of the FA41
- Two repeat pressure cycles: 0 psi to 8,000 psi and back to 0 psi shown
Both sensors show a response and correlation with pressure
FA41 response is much larger than FA28
FA41 and FA28 Comparison
Results on Same Vertical Scale

• FA41 shows a much larger response to pressure than the FA28
Conclusions

- Demonstrated a correlation between MWM response and pressure or strain.
- Demonstrated the ability to monitor stress in COPV at different orientations and depths.
- FA41 provides best correlation with bottle pressure or stress.