GPS FOM Chimney Analysis using Generalized Extreme Value Distribution
Rick Ott, Joe Frisbee and Kanan Saha

Abstract. Many a time an objective of a statistical analysis is to estimate a limit value like 3-sigma 95% confidence upper limit from a data sample. The generalized Extreme Value Distribution method can be profitably employed in many situations for such an estimate. It is well known that according to the Central Limit theorem the mean value of a large data set is normally distributed irrespective of the distribution of the data from which the mean value is derived. In a somewhat similar fashion it is observed that many times the extreme value of a data set has a distribution that can be formulated with a Generalized Distribution.

For a set of data x_1, x_2, \ldots, x_n, let the mean value be denoted by X_m where

$$X_m = \frac{(x_1 + x_2 + \ldots + x_n)}{n}$$

Let $Z = (X_m - \mu) / \sigma / \sqrt{n}$ where μ, σ^2 are population mean and variance.

Central limit theorem states that for large n, Z is normally distributed with zero mean and unit variance. Similarly in many situations the extreme value of a large data set has a Generalized Extreme value distribution given by

$$G(z) = \exp \left\{ -\left[1 + \xi \left(\frac{(z-\mu)}{\sigma} \right) \right]^{\frac{1}{\xi}} \right\},$$

where ξ is a parameter that together with μ and σ specifies distribution characteristics.

In space shuttle entry with 3-string GPS navigation the Figure Of Merit (FOM) value gives a measure of GPS navigated state accuracy. A GPS navigated state with FOM of 6 or higher is deemed unacceptable and is said to form a FOM 6 or higher chimney. A FOM chimney is a period of time during which the FOM value stays higher than 5. A longer period of FOM of value 6 or higher causes navigated state to accumulate more error for a lack of state update. For an acceptable landing it is imperative that the state error remains low and hence at low altitude during entry GPS data of FOM greater than 5 must not last more than 138 seconds.

To test the GPS performance many entry test cases were simulated at the Avionics Development Laboratory. Only high value FOM chimneys are consequential. The extreme value statistical technique is applied to analyze high value FOM chimneys. The Maximum likelihood method is used to determine parameters that characterize the GEV distribution. And then the limit value statistics are estimated.
GPS FOM Chimney Analysis using Generalized Extreme Value Distribution

- Rick Ott, Joe Frisbee and Kanan Saha
STPOR Recovery Data

- Data: One entire small set, n = 60 (59)
- Data does NOT pass Normal QQ Regression Test
 \[r = 0.949377, \text{ p-value} < 1\% \] (See Advanced Statistics: Monte Carlo, Bootstrapping, Multivariate Methods, 1991 C. Hallum & R. Chhikara)
- Since complete set is given, the first method chosen is a Generalized Pareto Threshold Model
- Threshold Chosen from Mean Residual Life Plot and Parameter Threshold Plots (if possible)
- Generalized Pareto Threshold Model is
 Nonparametric, Very Conservative, No
 Assumptions besides Max of F(x) follows a
 Generalized Extreme Value Distribution!
STPOR Recovery Mean Residual Life Plot (w/ 289)
STPOR Recovery Mean Residual Life Plot (wo/ 289)

without outlier point of value 289

Mean Excess

0 5 10 15 20 25

40 50 60 70 80 90 100

St. max point

u = 70.

As u = Threshold Value.
Mean Residual Life Plots

- Without 289 MRLP suggest threshold $u \approx 70$
- With 289 MRLP plot severely influenced by suspected 289 outlier – No threshold suggested
- PROBLEM: Even if 70 is used as threshold only 12 (11) points used for parameter estimation. Without 289 Data Set, software does not converge to give estimates if threshold above 63.
Parameter Threshold Plot w 289
Parameter Threshold Plot wo 289

- Top graph: Modified Scale vs. Threshold
- Bottom graph: Shape vs. Threshold
STPOR Recovery GPD
(Generalized Pareto Distribution)
Estimates and Standard Errors (w/ 289)
Threshold 63

Number of points used in estimation: 28 out of 60

Max Negative log-likelihood: 107.126

mles: $\sigma^* = 9.7694690, \xi = 0.5466667$

$se_{\sigma^*} = 3.2344973, se_{\xi} = 0.2908163$
Threshold 63 w 289 Diagnostic Plots

- Probability Plot
- Quantile Plot
- Suspected Outlier makes a bad fit
- Return Level Plot
- Density Plot

Graphs showing diagnostic plots for threshold 63 with 289 data points.
STPOR Recovery GPD

ξ Profile Log-Likelihood (w/ 289, $u = 63$)

Shows Long Tail Distribution since CI = (.15, 1.35) above 0
STPOR Recovery GPD 99.865\%tile
Profile Log-Likelihood (w/ 289, u = 63)

Huge CI for 99.865\%tile
(100,14000) - Expected with
one suspect outlier, bad
GPD fit, and so few points
STPOR Recovery GPD 99.865%tile
Profile Log-Likelihood (w/ 289, u = 70)

Better CI for 99.865%tile (100,10000) with higher threshold as MRLP suggested – Still expected with one suspect outlier, bad GPD fit, and so few points
STPOR Recovery GEV
Estimates and Standard Errors (wo/ 289)
Threshold 63

Number of points used in estimation: 27 out of 60
Max Negative log-likelihood: 96.18224

mles: \(\sigma^* = 15.9403808 \quad \xi = -0.2065505 \)
\(\text{se}_{\sigma^*} = 10.0720236 \quad \text{se}_{\xi} = 0.6031458 \)
Threshold 63 wo 289 Diagnostic Plots

Probability Plot

Quantile Plot

Return Level Plot

Density Plot

Better fit without suspected Outlier
STPOR Recovery GPD

ξ Profile Log-Likelihood (wo/ 289, $u = 63$)

MLE Shows Short Tail but CI includes 0, thus maybe long, medium, or short tailed –
Expected with such few points in total data set
STPOR Recovery GPD 99.865%tile
Profile Log-Likelihood (wo/ 289, u = 63)

Better CI for 99.865%tile
(100,950) - Expected with no suspect outliers, better GPD fit, but so few points
Conclusions

• Data does NOT pass Normality Test
• Large CI for 99.865%tile due to lack of data and nonparametric GPD method

• Next to Come:
 – Weissman Estimates based on assuming a specific GEV family for k largest statistics
 – Extreme Spacing Test to Reject Medium Tail Distribution in Favor of Large or Short Tail