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Abstract 

This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft 
engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It 
also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for 
prolonged periods of time. 

Introduction 

The major obstacle that stops introduction of fiber optic sensor technology into engine flight control and health 
monitoring has been the inability of the sensors to withstand high temperatures. At high temperatures the optical 
fibers experience devitrification and a loss of transmissivity (Refs. 1 to 3). In addition, conventional optical sensors 
based on fiber Bragg gratings (FBGs) experience diffusion of dopants. The diffusion of dopants results in the 
dissipation of gratings themselves (Ref. 4). The temperature affecting performance of the silicon based fiber optic 
sensors varies and depends on the type and concentration levels of dopants. However, the recent developments have 
shown that some FBGs could operate in extreme thermal environments (Refs. 5 to 8). 

This paper discusses optical FBG based sensors packaged to operate at temperatures up to 1000 C. FBGs are 
gratings written holographically in the core of optical fiber along its optical axis using ultraviolet radiation. Prior to 
exposure to radiation the fiber is doped with germanium dioxide or germania. It has been shown that the presence of 
the dopant causes the otherwise homogeneous glass to change its properties in the regions exposed to the radiation. 
The process is widely used in the communication industry to construct wavelength filters and routers that employ 
Bragg gratings. 

Sensor Design and Construction 

The process of manufacturing a high temperature FBG sensor consists of two steps. The first step is to provide a 
sturdy packaging that would permit an easy handling of the device. At this step, FBGs used to construct sensors are 
placed inside housings that consist of one or several tubes placed inside each other concentrically and made out of 
high temperature ceramic. One of the ceramic tubes has an inner diameter that is small but sufficient to 
accommodate the fiber and provides protection to the fiber surface. The fiber with the FBG is placed in such a way 
that the FBG is located inside the small diameter tube close to one of its ends. A fiber optic connector is attached to 
another end of the sensor housing. After completion of this step, the probe is packaged with an FBG inside and 
connectorized. An example of such a packaged probe is shown in Figure 1. 

The second step in the manufacturing process involves an exposure of the packaged probes to 1000 C 
temperatures. The apparatus built and used during the manufacturing and testing of the sensors is shown in Figure 2. 
The setup can accommodate simultaneously up to 4 probes (sensors) that are inserted inside the furnace through 
special ports. The probes are exposed to high temperatures. The FBGs placed inside the furnace return optical 
signals with information about the temperature inside the furnace. That information is encoded in the wavelength of 
the optical signal. The wavelength information is analyzed and decoded with the optical spectrum analyzer. From 
the spectrum analyzer the information is sent to a computer for further analysis. The computer is equipped with the 
LabVIEW (National Instruments) software that controls individual pieces of hardware, collects and process the data. 
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Figure 1.—A probe packaged and connectorized with an FBG inside. 

 
 
 
 
 

 
Figure 2.—Schematic diagram of a setup to manufacture and test high temperature optical sensors. 
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It has been shown that the exposure of conventional FBGs to extreme temperatures leads to formation of 
thermally stable gratings (Refs. 5 and 6). Those secondary gratings appear in place of the original Bragg gratings 
written in the GeO2 doped silica fibers by exposing the fibers to UV light. The time needed for the formation of 
secondary gratings varies and depends mostly on the heating rate. After completion of the second step of the 
manufacturing process the packaged probe becomes a high temperature fiber optic sensor.  

Performance Evaluation of High Temperature FBG Sensors 

Data were recorded from tests performed on several packaged high temperature sensors constructed following 
the steps described in the previous section. In the process of construction, the packaged sensors with the original 
FBG were heated slowly to 1000 C and kept at that temperature for various periods of time. The sensors were also 
exposed to thermal cycling at different heating rates. Tables 1, 2, and 3 sum up the thermal conditions the sensors 
were subjected to. 
 

TABLE 1.—CONTINUOUS EXPOSURE 
[Total, Hours] 

Sample no. Sensor no. 800 C 1000 C 

A1 1246-71716 200 560 

A2 1246-71719 40 1100 

A3 1246-71724 200 610 

A4 1246-71729 200 560 

A5 1246-71730 -- 50 

A6 1246-71734 80 150 

A7 1246-71735 80 100 

B1 1618-1-9 40 15 

B2 1618-1-10 40 15 

B3 1618-1-11 -- 15 

 

TABLE 2.—THERMAL CYCLING 
[Number of cycles] 

Sample no. Sensor no. RT-1000 C 400 to 800 C 

A1 1246-71716 20 100 

A2 1246-71719 -- 20 

A3 1246-71724 20 100 

A4 1246-71729 20 100 

A5 1246-71730 -- -- 

A6 1246-71734 -- 20 

A7 1246-71735 -- 20 

    

B1 1618-1-9 -- 20 

B2 1618-1-10 -- -- 

B3 1618-1-11 -- -- 

 
 

 
TABLE 3.—THERMAL CYCLING 

[Heating rates and time at maximum temperature, hours.] 
Sample no. Sensor no. RT-1000 C 400 to 800 C   

  Rates, 
C/min 

Hold   Rates, 
C/min 

 Hold 

A1 1246-71716 2 3 h 0.5 2 -- 6 8 10 2 h 

A2 1246-71719 -- -- -- -- 5 -- -- -- 2 h 

A3 1246-71724 2 3 h 0.5 2 -- 6 8 10 2 h 

A4 1246-71729 2 3 h 0.5 2 -- 6 8 10 2 h 

A5 1246-71730 -- -- -- -- -- -- -- -- -- 

A6 1246-71734 -- -- -- 2 -- -- -- -- 2 h 

A7 1246-71735 -- -- -- 2 -- -- -- -- 2 h 

           

B1 1618-1-9 -- -- -- -- 5 -- -- -- 2 h 

B2 1618-1-10 -- -- -- -- 5 -- -- -- 2 h 

B3 1618-1-11 -- -- -- -- -- -- -- -- -- 
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Results and Conclusions 

A process of manufacturing high temperature FBG-based sensors has been developed and demonstrated. The 
process has permitted construction of robust packaged sensing devices capable to withstand extreme temperatures. 
The process starts with a construction of ceramic housings for polyimide coated fiber with an FBG. The structures 
then are placed into a furnace and heated slowly from room temperature to 1000 C. After reaching 1000 C the 
sensors are kept at that temperature for periods of time from 20 to 50 hr and then are allowed to cool back down the 
room temperature. The entire process is controlled and recorded using LabVIEW software. Data obtained during the 
manufacturing process is shown in Figures 3 and 4. Figure 3 depicts typical temperature (time) dependent intensity 
changes in the signal reflected back by the grating. In the case shown in Figure 3 the heating rate is 2 C/min. Thus, 
the temperature of 1000 C is reached in about 8 hr from the start of the process. The plot is similar to the one 
obtained in the previous work (Ref. 6) for a free standing fiber and also displays a hump in the normalized peak 
power profile. The hump is associated with the formation of the secondary thermally stable grating.  

Figure 4 shows typical changes in the wavelength during the heating and cooling process. The lower and upper 
lines represent changes in the wavelength correspondingly during the heating and cooling. 

 

 
Figure 3.—Change in the relative intensity during the first 20 hr 

of the manufacturing process. 
 
 

 
Figure 4.—Wavelength dependence on the furnace temperature 

during the manufacturing heating and cooling process. 
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After the manufacturing process is completed the sensor is subjected to a continuous exposure to high 
temperature. Figure 5 shows the wavelength stability of a typical sensor over a 500 hr long exposure at 1000 C.  

The evaluation of the sensor’s stability displayed in Figure 5 has shown that the 1000 C temperature 
corresponds to an approximate wavelength reading of 1311.8 nm. Over the period of 500 hr, while the temperature 
is maintained at a 1000 C level, the wavelength drifts between approximately 1311.95 and 1311.65 nm with a 
maximum deviation of 0.15 nm. A straight line on the left side represents the peak wavelength during the initial 
heating of the sensor from the room temperature to 1000 C. 

Another set of tests of a manufactured sensor involves a thermal cycling. The sensor is subjected to 20 thermal 
cycles from 400 to 800 C with various heating rates. Figures 6 and 7 show typical responses of a sensor to the 
thermal cycling. In Figure 6 the plot follows wavelength readings in time domain as the sensor undergoes 20 cycles 
from 400 to 800 C with 2 hr long holds at 800 C. Figure 7 tracks wavelength readings as a function of temperature 
during the thermal cycling. 

 

 
Figure 5.—Wavelength stability of a sensor exposed to1000 C 

for 500 hr. 
 
 

 
 

Figure 6.—Wavelength readings during 20 thermal cycles from 
400 to 800 C. 
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Figure 7.—Wavelength readings as a function of temperature during 

thermal cycling from 400 to 800 C. 
 

Similarly to the plot in Figure 4, the lower and upper lines in Figure 7 represent correspondingly the heating and 
cooling periods of the thermal cycling. 

More vigorous durability tests are currently being performed. 
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