DOES SHORT-DURATION SPACE FLIGHT HAVE A NEGATIVE EFFECT ON BONE DENSITY?

1Shreyasee Amin MD CM, MPH, 1Sara J. Achenbach MS, 1Elizabeth J. Atkinson MS, 1Sundeep Khosla MD, 2Jean Sibonga PhD.

1Mayo Clinic, Rochester, MN; 2Johnson Space Center, NASA, Houston, TX, USA.

BACKGROUND

● Unlike the effect on bone loss of long-duration microgravity exposure, the effect on bone of short-duration exposure to microgravity has not been as well studied.

● Bone resorption markers increase within days of microgravity exposure, with an uncoupling from bone formation markers observed.

● The mechanism for bone loss in the microgravity environment of space is likely multifactorial, with some having a short-term effect, while others potentially contributing to long-term consequences.

● Although short-term exposure to microgravity may not have a measurable effect on bone density immediately after flight, it is unknown what effect cumulative exposure to short-duration space flight has on bone density long-term.

OBJECTIVES

● To examine the effect of cumulative short-duration space exposure on bone density among US crew members.

METHODS

BMD Measurements in US Crew members

- BMD (g/cm²) by DXA was measured between 1991-2010, and triennially as of 1997, but with no specific timing around short-duration flights.

- BMD was measured using 4 different scanners (Hologic QDR 1000, 2000, 4500 & Discovery) over time.

- BMD measures at the total hip, lumbar spine, wrist (ultra-distal and mid-shaft radius) and total body, prior to any long-duration flight, were used in analyses.

Cumulative Space Flight Exposure

- Cumulative exposure to space was defined in 2 ways:
 1) total number of days in space prior to a BMD measurement
 2) total number of days in space within 2 years prior to a BMD measurement

Covariates in Analyses

- Age at the time of BMD measurement
- DXA Scanner

Analyses

- To examine the effect of cumulative space flight exposure on BMD, we used linear mixed effects models, accounting for the fact that each crew member may have had multiple BMD measures.

- We examined the effect of either definition of cumulative space flight exposure on each BMD site available.

- All analyses were adjusted for age at BMD and DXA scanner.

- Men and women were analyzed separately.

RESULTS

Among 259 eligible US crew members (217 men and 42 women), 21% either declined participation, were not able to be contacted or did not respond, leaving 175 men and 30 women for analyses.

- The median days per short duration flight was 10 days (range <1-28) for men and 10 days (range 4-17) for women. Additional descriptive characteristics are summarized in the Table.

- In men, the BMD at all sites tended to be slightly lower with greater cumulative exposure days in space, but was only statistically significant at the spine:
 - for every 10 cumulative days in space, the lumbar spine BMD was 0.016 g/cm² lower, p<0.0001

- Restricting the cumulative duration in space exposure to within 2 yrs prior to the BMD measure, most sites in men showed no association with cumulative duration in space except at the mid-shaft radius, but the effect was small: for every 10 cumulative days in space within 2 yrs of BMD measurement, the mid-shaft radius was 0.003 g/cm² lower, p=0.016

- Interestingly, women showed a similar association as men: for every 10 cumulative days in space within 2 yrs prior to BMD, the mid-shaft radius was 0.006 g/cm² lower, but was not statistically significant (p=0.094)

- Other than the observation at the mid-shaft radius, greater cumulative space exposure (total or within 2 yrs prior to BMD) was not significantly associated with lower BMD at any site in women.

SUMMARY

- For every 10 days of cumulative space flight exposure, the lumbar spine BMD was 0.016 g/cm² lower in men (p<0.0001)

- For every 10 days of cumulative space flight exposure within 2 yrs prior to BMD, the mid-shaft radius BMD was 0.003 g/cm² lower in men (p=0.016) and 0.006 g/cm² lower in women (p=0.094), but these effects are small.

LIMITATIONS

- The N of women was small so our power to detect an effect may have been limited.

- Although our participation rate by US crew members was favorable, it is unknown if results would be similar if data from non-participants were available for analyses.

CONCLUSIONS

- We found no negative effect of cumulative short-duration space flight, at most sites, in men or women.

- While our observations of lower BMD at the mid-shaft radius were consistent between men and women, they were still overall small.

- Our findings of lower lumbar spine BMD in men with longer cumulative space flight exposure is intriguing and deserves further exploration.

ACKNOWLEDGEMENTS

- Supported by NASA (NNX08AQ20G)