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FOREWORD

Lockheed Martin Corporation, acting through its Lockheed Martin Aeronautics Company (LM Aero) operating unit,
has prepared this document for the National Aeronautics and Space Administration’s (NASA) Langley Research
Center under contract NNLO6AAO8B, delivery order number: NNLO7ABO6T. The work documented herein was
performed from October, 2008 through July, 2009.

Contributors included Jung Riecks, Walter Storm, and Mark Hollingsworth. Additional support was provided by:
Claudia Marshall, Dan Harbour, Diane Nixon, and Tom Schech.
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INTRODUCTION

This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA contract
NNLO6AA08B, delivery order NNLO7ABO6T. The Concept Development for Software Health Management (CD-
SHM) program was a NASA-funded effort sponsored by the Integrated Vehicle Health Management Project, one of
the four pillars of the NASA Aviation Safety Program. The CD-SHM program focused on defining a structured
approach to software health management (SHM) through the development of a comprehensive failure taxonomy

that is used to characterize the fundamental failure modes of safety-critical software.

To enable the detection and mitigation of software errors through SHM, our approach is to treat software as
another system device that exhibits failure modes according to a canonical failure reference of legacy and
emerging safety-critical software. Many SHM concepts stem from failure modes and effects analysis (FMEA) of
software in a manner similar to that used for hardware, however the failure modes for software are not well
known, and the techniques for applying a software FMEA during system design are not widely published [1], [2].
Our goal was to address these shortcomings by quantifying the scope, magnitude and types of fundamental
software errors that manifest themselves throughout the development of advanced flight-critical software. We
developed our approach in two phases: 1) the creation of a taxonomy for fundamental software anomalies based
on data from various advanced, flight-critical software development programs; and 2) the development of

integrated risk models, mitigation schemes, design considerations and patterns based on fundamental failure data.

The following sections document the process and results of the study.

APPROACH

PREPARING THE DATA

The source of our study was the development of flight-critical software systems from a combination of several
recent, advanced development and production programs. The background information required for the
investigation and analysis was gathered from across various database systems and normalized to a common

database. We used the resulting database as the source for our error classification and taxonomy development.

The analysis of the database was performed manually, as several subject matter experts read through and
classified each anomaly report as a type of fundamental failure. The failure types were developed after several
passes through the data, where the root causes were distilled to basic phrases or terms that adequately describe
and classify their nature. Only those terms which adequately described at least 0.1% of all the cases studied were

considered an eligible term for the fundamental failure type.
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CLASSIFICATION DETAILS

As it turns out, all of the raw data sources for this analysis are (more or less) freeform text. From this, it was
quickly evident that the only way to produce a comprehensive taxonomy was to read each account individually.
We held many meetings with our program contacts to study the current anomaly report structures. In the current
anomaly report structure, there is a multitude of information; however there is no easy way to outline the cause
classification or root cause in detail. Nonetheless, we identified areas that still gave us some advantages. Using the
current reporting system, we were able to identify the anomaly found, the phase in which it was introduced and its

severity. This information is the foundation of our study and the basis for our recommendations.

CREATING THE BASELINE

The first step in creating the baseline data set involved eliminating all of the unnecessary information from the raw
reports, and boiling them down to the fundamental symptoms, phases, severities, and root causes. The steps

involved in the data elimination process were:

Delete all the blank sections

Delete unimportant sections for this project. (i.e. User ID, date,...etc)

Delete ‘cancelled’ or ‘analysis’ in status

Delete ‘external’, ‘duplicate’, ‘not a problem’, ‘suspended’ in final resolution

Delete ‘No’ in confirmed problem

o vk w nNoR

Delete all the data which is not a software related problem in problem product

After this purging, the resultant database was the baseline for the project.

CREATING THE FAILURE TAXONOMY

There are four different sections from the anomaly reports that we receive from any given program. These
sections are the: Anomaly Behavior; Expected Behavior; Root Cause and Corrective Action Task. All of these
sections have a description field that is free format text which contains a limit of 2,000 characters. From the four

sections above, we create sections that are named: Anomaly; Cause Classification and Root Failure.

1. The “Anomaly” contains a very short description of the problem behavior. The “anomaly” comes from the
“Anomaly Behavior” and “Expected Behavior” sections from the original report.

2. The “Cause Classification” is the classification and abstraction of the failure. The “Cause Classification”
information comes from the “root cause” and “corrective action task” section of the anomaly reports.

3. The “Root Failure” is the taxonomy of failures. The “Root Failure” information also comes from the “Root

Cause” and “Corrective Action Task” section of the anomaly reports.
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Since we do not have an outline of the Cause Classification and Root Failure, we first started with a sample group
of anomaly reports to attempt to identify a pattern of Cause Classification and Root Failure. While we were
working on this sample group, we realized that the anomaly reports are not a large enough sample group to
discern a pattern of cause classification and root failure. We decided that we needed to review all of the anomaly
reports to create the initial outline of Cause classification and Root Failure. The anomaly report data contains all
the life cycle of the program. After examining several hundred anomaly reports, we started to see some patterns.
The patterns enabled us to keep as much detail as possible with respect to the Cause Classification and Root
Failure while still allowing enough entries to be statistically significant. This analysis was then refined into the final

taxonomy described in the following section.

ANALYSIS RESULTS

Our taxonomy consists of 16 failure classes and 114 fundamental failure types. In order to define a specific failure

type, the type must provide statistical significance for the term by adequately defining at least 0.1% of all anomaly

reports studied. Each class and the fundamental types derived from them are described in the following sections.

FAILURE CLASSES

ALGORITHM

The Algorithm failure class defines a family of 31 software errors that represent, in general terms, fundamental
errors in the software design. For example, errors such as invalid assumptions about the environment in which the

system operates may be considered Algorithm errors.

Algorithm Failure Class

Failure Type Definition

compound logic incorrect compound logic (i.e. and, or, nand, nor...)
data transfer/message incorrect algorithm of data transferring (refresh)
dead code leftover code form past causes a problem

incorrect decision logic (i.e. if-then-else, case statements, begin-end, mode

decision logic " .
transition, wrong execution sequence....)

design logic of algorithm is incorrect

engineering unit incorrect engineering unit is used in calculation
equation/calculation incorrect equation or calculation

failure detection incorrect failure detection algorithm

failure isolation incorrect failure isolation algorithm

failure management incorrect failure management logic (failure reporting )
failure reporting incorrect failure reporting or trigger logic to generate failure report
incorrect signal incorrect signal is used in calculation

initialization logic incorrect initialization algorithm

initialization of values incorrect initialization values

inverted logic inverted true or false logic
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Algorithm Failure Class (Cont'd)

Failure Type

Definition

missing initialization
missing limiter
prototype

range

relational operator
reset logic

reset timing
response to detected failure condition
sampling time
setting value/variable
syntax

test modeling
threshold

timing

typo

validity check timing

missing initialization function

missing limiter in the calculation

missing prototype

incorrect or unnecessary range in calculation or condition
incorrect relational operator (i.e. >, <, >=, <= ...)

incorrect reset algorithm

incorrect reset timing

incorrect repose to detected failure condition

incorrect sampling time

incorrect algorithm to setting values or variables

syntax error

incorrect test modeling produce incorrect values for the test
incorrect threshold

incorrect delay

typo in algorithm causes disconnect between signals

missing or incorrect or inappropriate timing of validity check

BUS INTERFACE

The Bus Interface class defines a collection of error types that represent data source and bus translation errors.

This is a relatively focused class with the following 4 error types.

Bus Interface Failure Class

Failure Type

Definition

bit position
bus initialization failure
data source

missing signal

incorrect bit position
bus initialization failure
incorrect data source is connected to bus interface

missing a signal in bus interface

CONFIGURATION MANAGEMENT (CM)

Although often referred to in the context of process and tools, problems within CM manifest themselves as real

problems in flight-critical software systems. Through this study, we identified the following 6 CM failure types.

Configuration Management Failure Class

Failure Type

Definition

approval delay
implementation delay
incorrect version of software
missing CR implementation

outdated requirement

requirement incorporation delay

correct version of SW was not approved.

using incorrect version of SW
missing CR implementation

did not update requirement to match a SW change

did not update SW to match a requirement change
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COMPILER ERROR

The Compiler Error is a general class of error that is created by the tools in the software build chain. That is, an
error in any specific tool used in the process of translating source code into executable code is considered a
Compiler Error. In this study, the only type of compiler error identified was the generation of incorrect assembly
code—most likely because the tools used to build the flight-critical systems in the study are mature and have been
pre-qualified. In fact, when developing flight-critical systems using mature software development environments,

compiler errors account for less than 0.5% of all software errors.

Compiler Error Failure Class

Failure Type Definition

Incorrect Assembly Code Incorrect Assembly Code

DATA DEFINITION

Incorrect representation of data structures in memory, data offsets and row ordering are all examples of Data

Definition errors. During this study, we identified the following 6 distinct data definition error types:

Data Definition Failure Class

Failure Type Definition

data structure incorrect data structure

data type incorrect definition of data type

enumeration incorrect enumeration

lookup table data incorrect lookup table data

offset incorrect data offset for 1/0 or bus list or memory-mapped message
size incorrect bit or byte size

DATA HANDLING

A Data Handling error is a class of software error that involves illegal, undefined or incorrect use of a data element
or variable. Data Handling errors differ from Data Definition errors in that they do not manifest themselves at the
module interface, and do not necessarily involve incorrect structure definitions. We have identified the following

14 types of Data Handling errors:

Data Handling Failure Class

Failure Type Definition

bias missing or incorrect bias

bit conversion incorrect handling of 16bit and 32 bit conversions

breakpoint incorrect breakpoint

byte/bit order incorrect byte or bit order(i.e. endianness, byte swap, LSB and MSB reversed)
indexing improper indexing into arrays or table
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Data Handling Failure Class (Cont'd)

Failure Type Definition
input fault tolerance incorrect tolerance to detect input fault
logic incorrect data handling logic

masking data with incorrect values or not masking data which we are expecting

masking data to be masked

memory address using incorrect memory address

mnemonics incorrect mnemonics in hash table

scaling factor using incorrect scaling factor

transition logic incorrect transition logic

variable incorrect variables or variable type to access data
variable scope incorrect variable type (global, local)

DOCUMENTATION

The Documentation Error is a general class that defines errors in the documentation (requirements, design
documents, flowcharts, state-charts, architecture diagrams, etc.) that lead to software anomalies downstream in
the process. There were no emergent patterns from this study to define specific documentation error types with
any statistically significant basis, even though 11% of all errors were of this type. Fortunately, Documentation
errors—having a high phase-containment ratio—are often detected during the development phase in which they

are created, or the very next phase in the process. We discuss the significance of this in more detail later”.

HARDWARE

Hardware Errors are defined as a class of error that elucidate deficiencies or flaws in the physical systems upon

which the software has direct or indirect influence. This study defines 1 type of hardware error:

Hardware Failure Class

Failure Type Definition

unexpected behavior Hardware deficiency mitigated by Software

INPUT-OUTPUT (I/O) SYSTEM

I/0 System Errors represent a class of errors that are resident in modules or subsystems which are responsible for
providing data to (and getting data from) other modules or subsystems within the architecture. Although this class
of error is not the most prevalent, 1/0O System errors have the highest average severity of all the error classes.

Again, the significance of this will be discussed later in the reportz. We recognize 4 distinct I/O System error types.

! See Error Analysis — Rankings by Occurrence.
? See Error Analysis — Rankings by Severity.
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1/0 System Failure Class

Failure Type Definition

data list incorrect data list

I/0 synchronization Coordination of 1/0 timing, lists, etc.
order of data structure incorrect order of data structure
signal assignment missing or incorrect signal assignment

IMPLEMENTATION

An Implementation Error is defined as a general class of error through which a requirement or software change
request was implemented incorrectly in the source code. This study did not reveal any significant or distinct

implementation error types, and all implementation errors account for less than 1% of all anomaly reports studied.

INTER-PROCESS COMMUNICATION

We define, in general, Inter-process Communication Errors as incorrect hand-shaking between processes or parallel
modules. This includes coordination of resources, failure management and overall timing issues. This study

revealed 9 distinct inter-process communication error types.

Inter-process Communication Failure Class

Failure Type Definition

incorrect decision logic (i.e. if-then-else, case statements, begin-end, mode transition,
wrong execution sequence....)

engineering unit mismatch  engineering unit mismatch

decision logic

failure management incorrect failure management logic
I/0 synchronization 1/0 is not synchronized in inter-channel data box
initialization logic incorrect initialization logic
logic incorrect logic of inter-process communication
reset timing incorrect reset timing
sampling time incorrect sampling time
timing incorrect delay
PERFORMANCE

The class of errors considered under the term Performance defines those errors which violate either real-time
requirements or processor utilization thresholds. During our study, we were able to statistically substantiate the

following performance error type:

Performance Failure Class

Failure Type Definition
Exceed Processor Utilization Target Exceed Processor Utilization Target
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SELF-TEST

As part of the development process for flight-critical systems, it is necessary to incorporate into the system a
sufficient suite of pre-flight tests that verify the suitability of the system relative to the mission it is about to
perform. This test sequence; often referred to as Self Test or built-in test, is designed to provide a go/no-go
decision relative to predetermined fitness conditions. However, errors in the Self Test itself may yield erroneous

results. Such is the class of error defined by this category, from which we identify the following 8 distinct types:

Self-Test Failure Class

Failure Type Definition

improper test condition running test with improper condition

design incorrect test design

inadequate requirement requirement is not specific enough to test

test timing incorrect test timing

time management inefficient use of time

value of location location contains incorrect values in test pattern

values for test incorrect values or reference for test

missing reset function missing reset function in test procedure (for either necessary or work around)

SYSTEM INTEGRATION

System Integration defines a class of errors that arise when major system components come together or interact
with moderate dependency. Such errors may be obvious right at system power-up, while others may not be
identified until the system is subject to unique or unforeseen circumstances. Based on this study, System

Integration errors have the most derived types of all the error classes. We identified 24 of them.

System Integration Failure Class

Failure Type Definition

channel synchronization channels are not synchronized

conflicting requirement conflicting requirement

change request (CR) incorrect CR was written, approved and incorporated.
data source incorrect data source is connected to bus interface
engineering unit mismatch signals from two different systems did not agree on units (i.e. radian, degree)
ICD and SW mismatch ICD and SW are not matching

inconsistent interface order inconsistent index(order) of I/O between systems
incorrect requirement incorrect requirement

interface incorrect interface

manual incorrect manual (flight manual)
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System Integration Failure Class (Cont'd)

missing datapump
missing header file
missing signals in ICD
missing SW update
missing testpoint

no requirement
parameter
parameter order
rate synchronization
requirement not clear
testpoint name

unnecessary requirement

missing data in data pump list

missed include header file in the main code

missing signals in ICD

hardware changed but SW did not change

symbol is missing for test symbol table

there is no requirement for an issues so it needed to be created
incorrect parameter

parameter order

rate synchronization

not enough guide lines to understand requirement
symbol name of signal and signal in code are not the same
unnecessary requirement needed to be deleted

Failure Type Definition
memory use using incorrect kind of memory (i.e. use CPU check RAM instead of internal RAM)
missing data missing data in a table of design document

TOOLS

Unfortunately, tools also introduce errors into software systems. Through our study, we identified the following 2

Tool Error types:

Tool Failure Class

Failure Type Definition

Algorithm tools generates incorrect signal or values

input data missing or incorrect input data so tool generate junk code
USER/PILOT

Any errors associated with the operation of the system purely from the perspective of the user or pilot, under
normal operating conditions, fall under the User/Pilot class. That is, errors identified through specific flight tests or
failure conditions—perhaps employing a pilot or user—are not considered User/Pilot errors. Through this study,
there were no instances where any action on behalf of the user or pilot caused a software failure that was not
properly matched to another error class. All qualifications considered; we identified the following type of

User/Pilot error type:

User/Pilot Failure Class

Failure Type Definition

results that are not necessarily incorrect or unsafe but pilots want to change so they feel more
comfortable or low Cooper-Harper ratings

preference
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ERROR ANALYSIS

Once we identified the proper taxonomy, we were able to perform some useful analysis on the resultant data.

This section describes our analysis and the corresponding results.

BACKGROUND

Similar to many risk management approaches3, our approach considers the primary drivers of probability and
severity. We also add a third dimension—the likelihood of detection. Although similar in name to what one may
encounter in a failure mode and effects analysis worksheet®, this parameter measures how long a given type of
software error is likely to remain present in the system before it is found. That is, it is a measure of the delta
between the phase in which an error is detected and the phase in which the root cause analysis determined it was

likely injected.

The primary difference between our analysis and other risk assessments is that our results are based on data and
events that already exist and have transpired rather than estimating a probability of occurrence and a severity.
We then use the entire collection of data to make predictive inferences and suggestions for solutions that can

mitigate high-risk areas through software health management.

THE RISK PRIORITY NUMBER

The Risk Priority Number (RPN) is a fundamental measure of risk associated with each failure type. It is a
parameter, normalized to a value between 0 and 1000, which clearly indicates the relative risk priority of elements

within the taxonomy. It is calculated as:

RPN =0XSXxD

Where:

O := Relative Frequency of Occurance
S := Severity of Error

D := Phasepetectea — Phaselnjected

CALCULATING RELATIVE FREQUENCY

The relative frequency of a class is calculated by the sum of all anomalies under that class divided by the number of

anomaly reports in the most frequent class. It is represented as a normalized number between 0-10.

* i.e. quantitative or probabilistic risk assessment
* See http://en.wikipedia.org/wiki/Failure mode and effects analysis for an example.
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CALCULATING RELATIVE SEVERITY

The severity term is calculated by normalizing the anomaly severity codes against a weighted scale. Each anomaly

report we analyzed had an associated severity code ranging from 1-5, where severities 1&2 directly affect safety of

flight. To accurately represent this separation, we normalized the severity code as a number between 1 and 10

according to the following table:

Severity

weight

[So = PR LN ) Y

— |[pa|n

CALCULATING THE DETECTION PARAMETER

The final parameter of the RPN represents how long a software error remained within the system since the error

was first introduced. That is, it is an indicator of how likely a certain class of error will go undetected by the

established verification and validation (V&V) process.

To create the parameter, we analyzed each anomaly report and calculated the weighted delta-phase factor directly

from the table below. For example, if an anomaly was detected during Integration and Test, and the root cause of

the error was found to be an error in the Requirements of that module, then the delta-phase value is 8.

Defect Detection Phase
. R . Integration | Transitionto | __
Defect Introduction Phase Planning |Requirements Design Code and Test Customer Fielded Defect
Planning 1 2 4 [ g 10 10
Requirements 1 3 5 8 10 10
Design 1 4 7 10 10
Code 1 B 10 10
Integration and Test 1 10 10
Weight Factor
PRESCRIPTIONS OF THE RPN MODEL
Error Class Error Type RPN
In general, any element with an RPN greater than 100 can  Zzrthm desizn o5
. ) i . . Algorithm decision logic 353
be considered high-risk. Although this cutoff is open to  wzerithm data transfer/message 350
Data handling scaling factor 324
ConjeCture' the upper end of the RPN spectrum SUFe'V Documentation Documentation error 262
. . Algorithm failure management 228
deserves attention. For instance, the top-most element—  ajzorithm reset logic 203
Data handling memory address 188
algorithm design—can emerge as an entire field of study in  aizorithm initialization of values 169
Algorithm failure izolation 133
its own rlght The table to the rlght ShOWS elements from System |ntegration incorrect requirement 127
Alzorithm setting value/variable 120
the entire taxonomy whose RPN is greater than 100. Algerithm initialization logic 119
Algorithm timing 113
Algorithm range 113
System Integration no regquirement 105
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DETAILED CLASS ANALYSIS

The following sections present a detailed analysis of each error class. The analysis shows the RPN for each specific

error type of the taxonomy as well as the type’s relative distribution profile within the class. The following table is

a summary of those error classes which have a limited number of types.

Error Class Error Type RPN
Documentation Documentation error 262
Implementation requirement implementation error 46
Tools Algorithm 30
Compiler Error Incorrect Assembly Code 29
Pilot Preference 12
Hardware unexpected behavior 8
Performance Exceed Processor Utilization Target 7
Tools input data

A roll-up the individual error types reveals some notable
observations about the individual error classes
themselves. Perhaps the most notable of which is that the
top three error classes—Algorithm, Data Handling and
System Integration—account for over 70% of all software
errors, as illustrated in the graph shown in Figure 10, at

right.

Not only are the top three classes the most frequent; with

RPN values between 100 and 1000, they are also in the

Class-Level Anomaly Composition

The top 3 error classes account

high-risk category, as seen in Figure 11 below.

for over 70% of the entire spectrum.

mAlgarithm

® Data Handling

B System Integration
u Data Befinition

= Documentation

= Configuration Management

B inter-Process
Communication
= imalementstian
= Campiler Error
= Toals
User
Hardware.

Figure 1 - Class-Level Analysis

Class-Level Error Analysis

Cumulative (percent)

Risk Priority Number (RPN}

Figure 2 — Class-Level Error Profile
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RPN COMPONENT ANALYSIS

At this point, we discuss the individual parameters of RPN for the failure class analysis. The most dominant
discriminator for RPN analysis is the occurrence parameter. There is some distinct differentiation between
severity and detection as well, but not nearly as drastic as occurrence. The following sections present the results
of each RPN parameter individually.

OCCURRENCE PARAMETER

Occurrance Scores by Failure Class

10.00 -

1.00 -

010

0.01 -

Figure 3 — Occurrence Dimension

The occurrence parameter is the most discriminating factor of all the failure classes. Figure 3, above, shows the
breakdown by failure class. Note that there are several displacements from the raw RPN breakdown. This is
because, although some errors are more frequent than others, they may not be as severe or as hard to detect—
which justifies the failure analysis across the three fundamental dimensions of occurrence, severity, and likelihood
of detection.

Page |20



SEVERITY PARAMETER

Severity Scores by Failure Class

-
i=1

o " ~ w - w o ~ L] o

Figure 4 — Severity Dimension

The severity dimension, illustrated in Figure 4 above, shows that the dominant failure class is I/O system. That is,
most errors in this class are likely to affect safety of flight—resulting in grounded aircraft or specific operating

limits.

DETECTION PARAMETER

Detection Scores by Failure Class

-
o

© K N W & W @& N & W

Figure 5 — Detection Dimension
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The detection parameter also offers some useful insight into the nature of the errors. Figure 5 shows that
hardware and user errors exist longest in the development cycle, while implementation, tools, and documentation

error types are detected rather quickly.

ALGORITHM ERROR CLASS PROFILE

Error Analysis - Algorithm Failure Class
100% 1000

+ 100

PSS fﬁf«wmf«wﬁw SIS S
SIS S
& W

Cumulative (%)
Fisk Priority Number (RPN)

o

Q o c\ <° g &
A L3 ¢
\e\” ¥

6.:’;?

& Failure Type = ArN =% [Cumulative]

Figure 6 - Algorithm Error Profile

Considering the Algorithm failure class, overall algorithm design has the highest RPN and also accounts for 22% of
all algorithm errors. Decision logic and data transfer/messaging components come in next; where the top three

combined account for nearly half of all the algorithm errors.

Some examples of an Algorithm error may be: incorrect power-up or initialization routines after a reset that cause
failure monitors to trip in another module; good-channel average selection algorithms that inadvertently include
the bad signal in the calculation; or perhaps a set of limit values that are not used when different loading or air
vehicle configurations are selected from another subsystem. In hindsight, these types of errors may seem obvious
and may lead one to believe more unit-testing is required. The reality is, however, that these types of errors may
be so embedded in the algorithm that unit tests would not exercise the unforeseen states properly. Consider the
case of the limiter value switching algorithm. A unit test may verify that the set of limits is properly switched
under all conditions through which a request may be made. But if the logic in the algorithm is designed to never

make the proper request, the limit set is never switched.
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This report is not intended to provide philosophical or anecdotal justification of the data presented; however this
particular case is considered at length in [3]. Essentially, proper algorithm design requires intimate knowledge of
the environment in which the software is to operate as well as sufficient domain knowledge to consider purposeful
or inadvertent changes to that environment. This study reveals the gravity of this error class and recommends that

technologies be developed to address it.

BUS INTERFACE ERROR CLASS PROFILE

The bus interface errors we studied all have an RPN lower than 100, but greater than 10. Based on the entire set
of data represented in this study, RPN values between 10 and 100 could be considered medium-risk, where RPN
values lower than 10 represent low-risk items. The distribution of error reports classified as interface error types

are fairly evenly distributed across the specific types within the class, as identified by the cumulative percentage

line in red.
Error Analysis - Bus Interface Failure Class
100% T 1000
90%
B0%
70%
I 100
60% 4 é
£ i
£ £
5 50% z
i
H
40% 1 E
E

30% 4

data source businitislization failure bit position missing signal

Failure Type e — Cumulative (%)

Figure 7 — Bus Interface Error Profile

Page |23



CONFIGURATION MANAGEMENT ERROR CLASS PROFILE

All CM errors are in the medium-risk RPN range. Many of these errors can be addressed by existing processes.

Error Analysis - Configuration Management Failure Class

100% 1900
90%
BO%
T0% 1
100
50% | | é
Z | §
£ | B
i S0% z
i z
- 40% 4 E
=
k T 19
20% |
0%
10%
0% 4 . . . . 1Y
missing CR i i ion delay outdated i i of saftware approval delay requirementincorporation delay
Failure Type =peN = Curulstive (%)
Figure 8 — Configuration Management Error Profile
DATA DEFINITION ERROR CLASS PROFILE
Data definition errors are also medium-risk errors and can be addressed earlier by more detailed data and
interface models.
Error Analysis - Data Definition Failure Class
100% 1000
TO%
: I g
Fa X
I £
£ H
H :
; I I |
I |
+ 10
0%
o% 1
size lookup table data offset data structure data type enumeration
Failure Type RPN Cumulative (%)

Figure 9—- Data Definition Error Profile
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DATA HANDLING ERROR CLASS PROFILE

The two high-risk error types for the data handling error class are: scaling factor and memory address. This is
essentially the interface between subsystems and can be addressed with more detailed interface modeling and

design verification techniques.

Error Analysis - Data Handling Failure Class

I I I I I I I Vm
I .l.1

scaling factor memory Indexing variable logic input fault  transition logic  byte/bit order masking data  bit conversion
address tolerance

Cumulitive (%)
Rik Priority Number (RPN)

Foibure Type. = RpN  —— cumulative (5]

Figure 10 — Data Handling Error Profile

INTER-PROCESS COMMUNICATION ERROR CLASS PROFILE

IPC errors are generally low-risk. Timing and synchronization errors can practically be caught only in a lab
environment, although formal analysis and design verification can address several of the others.

Error Analysis - Inter-Process Communication Failure Class

BO%

70%

s0% |

50% -

Cumulitive (%)

Risk Priority Number (RPN}

timing Yo jon  engineeringunit  failure ing time. resettiming  decision logic
Mlsmaich

Failure Type = PN = Cumalative (%)

Figure 11 — IPC Error Profile
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INPUT/OUTPUT SYSTEM ERROR CLASS PROFILE

1/0 errors are generally difficult to find during development and exist for a significant time in the product lifecycle.
More detailed and realistic modeling could address these issues, but would require a detailed cost-benefit analysis

to determine break-even points for mitigating the risk.

Error Analysis - IO System Failure Class

50% |

50% o

Cumbtive (%)

3
Risk Priority Number (RPN)

data list signal assignment order of data structure /O synchronizstion

Failure Type = RPN Cumalstive (%)

Figure 12 —1/0 System Error Profile

SELF-TEST ERROR PROFILE

Self-test errors are of marginal concern and could be addressed through process and technique.

Error Analysis - Self-Test Failure Class

80%

70%

s0% -

50% o

Cumubitive %)

Risk Priority Nunber (RPN}

aose -

I I I Im

values for test missing reset function time management value of location test timing improper test condition design inadequate requirement

Failure Type — N Cumulative (%)

Figure 13 — Self-Test Error Profile
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SYSTEM INTEGRATION ERROR CLASS PROFILE

The system integration class contains many specific failure types. This observation in itself shows that a significant
amount of errors, in general, are of this class. Although software may work well in individual modules or unit-test
levels, it is when the modules are integrated with a larger system that all of the environmental assumptions and
erroneous invariants begin to surface. This error class requires an entire dedicated study, as the root of the errors

lie in the original requirements and specifications that needed interpretation.

Error Analysis - System Integration Failure Class
T 1000

#‘

50%

80% o

70% o
60% 1
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Figure 14 — System Integration Error Profile

ROOT FAILURE CAUSE AND EFFECT RELATIONSHIP ANALYSIS

Having calculated the RPN for the Fundamental failure types, we moved our focus from individual risk assessment
to examining the relationships between the fundamental failure types. We made charts to show the relationships.

This section describes the root failure cause and effect relationship charts and our analysis on it.

BACKGROUND

When we were working on the failure type taxonomy, we realized that some of the failure types have cause and
effect relationships. For instance, the failure types of “algorithm: initialization of values”, “algorithm: timing”, and
“algorithm: initialization logic” would all be related in the failures of initializing correctly to start a new mode

during a mode transition. This has shown up in concrete examples where a process switched into a new mode
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before another process generating inputs had switched to the new mode. In this case, the analysis engineers

would record the defect in one of the three failure types but it is a mistake to consider that failure type in isolation

from the other two. We constructed diagrams indicating the failure types that we should consider together. We

connected related failure types by arrows. The direction of the arrows is from the broader scoped failure type to

the more specific failure type. Then we pulled together the connected parts into logical groupings centered on

the largest of the 17 failure classes. Several of the 17 failure classes ended up split between logical groupings.

GROUND RULES

1.

The relationships were not necessarily direct cause-effect relationships, but were rather a logical
correlation between the two.

An error or confusion in one area might tend to imply an error or confusion in the related area.

Each failure type appears only once in the diagrams. We split the diagrams so that no relationships were
lost. Only the requirements class appears in multiple diagrams to indicate where the requirements come
into those diagrams.

We color coded the 114 failure types to indicate their RPN percentile among the failure types by:

- Red = 5% Highest RPN failure types

- Orange = Next 10% RPN failure types

- Yellow = Next 15% RPN failure types

- Blue = Next 20% RPN failure types

- Green = Remaining Lowest 50% RPN failure types

In this report we call these the “RPN percentile groups”. The red and orange blocks are the “high-RPN”

failure types. The yellow and blue blocks are the “medium-RPN” failure types.

OVERVIEW OF ROOT FAILURE CAUSE AND EFFECT RELATIONSHIP CHART

We organized the 114 failure types into related items and formed seven logical groups. The seven logical groups

are Requirement, Configuration Management (CM), External Problems, Documentation, Algorithm, System

Integration/Communication, and Self-Test.
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Figure 15 shows the top-level organization of these seven groups. The “Requirements” category is at the center
because it affects virtually all of the other categories. “External Problems” category does not consist exclusively of

software problems but they are problems

that require software modification to

overcome them. The “Algorithm” - -
Configuration :

. . Algorithm
category is the largest and contains a Management
concentration of high-RPN failure types. ‘1}
System

“System Integration/Communication” is integration/ Requirements Self - Test
Communication

also a large category with some high-RPN = {5

i “Self- ” External
failure types. The “Self-Test” category e Documeniaten
has no high-RPN failure types.

“Documentation” was a large category

Only because we did not sub-divide it. Figure 15 — Related Root Failure Categories

We left the “Configuration Management”
category as a stand-alone item because it involves every step in the software development process. We can look
at the “Configuration Management” category as a process problem that runs parallel with other categories of

problems. For its small size, it has a large number of medium-RPN failure types.

Here is the number of different RPN percentile groups in each category:

Requirements: 2 orange, 1 yellow, 1 green

CM: 2 yellow, 4 blue, 2 green

External problems: 1 blue, 3 green

Documentation: 1 red

Algorithm: 3 red, 9 orange, 6 yellow, 8 blue, 20 green

System Integration/Communication: 1 red, 1 orange, 7 yellow, 8 blue, 17 green
Self-Test: 1 yellow, 2 blue, 13 green

DOCUMENTATION AND EXTERNAL PROBLEMS CATEGORY

Figure 16 shows the Documentation category. Documentation errors are in the top 5% RPN due to the rate of
occurrence. These failures accounted for over 11% of the total failures. The severity score was average and the

detection score was low (meaning they were easy to

detect and were removed quickly). We did not analyze

or sub-divide this failure type category. We did not try DOCU mentation
to analyze the relationships between these failures and -

others. We did not try to determine if other failures

influenced the documentation errors or vice-versa.

There might be some connection between them. Figure 16 - Documentation Category
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Figure 17 shows the

External Problems
category. It is a
“Catch-All” category
for a small number
of problems. The
root causes of these
failures are all
external to the core
software

development

External
Problems

Hardware
unexpected behavior

Pilot
preference

system integration
manual

process of the

Figure 17 — External Problems Category

application code. They are primarily are due to requirements for the application software to mitigate unexpected

failures in other areas. Except for “Compiler Error: Incorrect Assembly Code”, all these failure types are in the low-

RPN range (green). The “Compiler Error: Incorrect Assembly Code” has unremarkable severity and detection

scores. The “Pilot: preference” failure type is due to test pilots not agreeing or changing their preference. It has a

low severity score but a relatively high detection score. None of these failure types has a high occurrence rate, but

their detection scores are high. The “system integration: manua

type has an especially high detection score although its severity score is low.

refers to errors in the flight manual. This failure

REQUIREMENTS CATEGORY

Figure 18 shows the
Requirements category.
These are all system
integration  problems.
Requirements rarely
conflict and are usually
clear enough. They are
more likely to be
missing or incorrect.
There are two high-RPN
failure types. The RPN

Requirements

requirement not clear

system i i system i

conflicting requirement

Figure 18 — Requirements Category

differences of the Requirements category are mostly due to the rate of occurrence. There are no clear

relationships between these failure types or with any other failure types.
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CONFIGURATION MANAGEMENT CATEGORY

Figure 19 shows the Configuration Management category. Most of these failures are related to Change Request
(CR) process delays and their impact on system integration. This category has two yellow failure blocks and several
blue blocks. It is a significant failure category. The RPN differences of the Configuration Management category are

mostly due to the rate

of occurrence. This is

the first category with CIVI

relationships  between

failure types. Several

“system integration” =

missing CR
implementation

cm
implementation delay

failure types appear in

requirement

this diagram because of

their relationships with

the “configuration Figure 19 — Configuration Management Category

management” failure types.  The two yellow blocks, “CM: implementation delay” and “CM: missing CR
implementation” are grouped together with the green “CM: requirement incorporation delay” to collect the
problems with delays in already approved changes. This collection relates to several “system integration” failure
types, all having to do with incompatible software or interfaces. The “system integration: missing SW update”
failure type can be caused by the “CM: implementation delay”, or “CM: missing CR implementation” failure types.
The same relationship is true for the “system integration: inconsistent interface order” and “system integration:
ICD and SW mismatch” failure types. The green “CM: approval delay” is green because it does not occur often, but

its severity score is high. It can contribute to the “CM: incorrect version of software” failure type, which is blue.

ALGORITHM CATEGORY

Figure 20 illustrates the Algorithm category. This is a significant and interrelated category of failure types. It shows
the relationship between algorithm design, inter-process communication, and requirements category. It is the
most significant collection of related failure types. It includes the top two RPN-ranked failure types, “algorithm:
design” and “algorithm: decision logic”. The “algorithm: design” failure type alone accounts for over 10% of all the
root failures in the study. The next highest is “algorithm: decision logic”, which accounts for over 5% of all the root
failures in the study. The final red root failure type in the diagram is “algorithm: failure management”. This type
involves the logic of signal redundancy, selection, and verification. It accounts for about 3% all the root failures.
The designs in that system should not require a great deal of modification in the normal design loop. Another
noticeable part of the Algorithm diagram is the three related orange failures of “algorithm: initialization logic”,
“algorithm: timing”, and “algorithm: initialization of values”. Together these are over 4% of all the root failures.

This failure type includes problems in timing of initializations when modes change and the inputs are not correct
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for the new mode. In addition, state variables may not have been reset correctly when new mode started running.
Several of the failure types group together. In the upper left of the diagram is a set of three signal definition
problems, “data definition: lookup table data”, “algorithm: incorrect unit”, and “algorithm: incorrect signal”.
These are problems which are interior to the algorithm but they can be influenced by the “system integration”
fault types of “system integration: missing data” or “system integration: engineering unit mismatch”. This set of
failure types can cause “algorithm: equation/calculation” failure types. Another significant collection of failure
types deals with the range processing of signals. It consists of the “algorithm: range”, “algorithm: threshold”, and
“algorithm: missing limits” failure types. This set also can influence the “algorithm: equation/calculation” failure
type. One set of failures which is unrelated to other failures is the set of random “mutation” type failures,
“algorithm: syntax”, and “algorithm: typo”. Usually the compiler detects these types of errors immediately but the
ones that slip through can be very difficult to detect. It is difficult for the compiler to detect a variable name typo
that ends up matching the wrong, but otherwise valid, variable. It is also difficult for compilers to spot the “if( A =
B )” vs. “if( A == B )” problem unless the first one is specifically disallowed. These failures can go undetected for a
long time. We have also included “algorithm: dead code” in this set although it may have relationships to CM
failure types which we have not established yet. The “algorithm: reset timing” failure type is green. It has a low
occurrence rate but a high severity score. It is influenced by the “algorithm: reset logic” failure type, which is
orange due to a high occurrence rate. The “algorithm: reset timing” failure type is secondary to the “algorithm:
reset logic” failure type. There is a significant set of discrete logic problems consisting of (listed in order of
decreasing RPN) “algorithm: decision logic”, “algorithm: inverted logic”, “algorithm: relational operator”, and
algorithm: compound logic”. The “algorithm: decision logic” failure type is red due to its high rate of occurrence.
It may include some failures that belong in the other more specific logic categories if we examined them further.
These failures are largely self-initiated due to the complexity of the logic and do not have relationships to other
failure types. They are structural / discrete logic defects that may be detected if formal methods can be applied.
Toward the right of the diagram are several failure management / failure reconfiguration blocks. Many of these
are have significant RPN values. The entire collection is “algorithm: failure detection”, algorithm: failure
reporting”, “algorithm: failure management”, “algorithm: failure isolation”, “algorithm: response to detected
failure condition”, “interprocess communication: failure management”, “data handling: input fault tolerance”, and
“bus interface: bus initialization failure”. At the lower left of the diagram is a large collection of low-RPN

green/blue blocks dealing primarily with interprocess communication timing problems. The red “algorithm:

design” block has already been discussed.
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Figure 20 — Algorithm Category
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SYSTEM INTEGRATION / COMMUNICATION CATEGORY

Figure 21 shows the System Integration / Communication Category. It includes a significant number of
high/medium RPN failure types and includes many relationships.

Requirements

data definition
affsat

data definition
size

Data handling
fagic.

Figure 21 — System Integration / Communication Category
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The high-RPN root failures here are “algorithm: data transfer/message”, “data handling: scaling factor”, and “data
handling: memory address”, which account for about 4%, 4%, and 3% of the all the root failures, respectively.
These data dictionary interface problems can be dealt with using system engineering tools such as SysML or AADL.
The tools should be system-wide. Part-task interface controls do not have the same benefits unless they are
coordinated. The “data handling: scale factor” failure type points to the difficulty of tracking fixed-point scaling
correctly through all the engineering units, hardware interfaces, etc. The engineering disciplines use different
units when they address fixed point scaling and bias. Electrical diagrams will have Volts, current, and other
engineering units. Software engineers want least significant bit (LSB) values, full range max/min, etc. And all are
further complicated by biases, both physical and computational, along the way. Possibly engineers need a tool to
help with fixed-point range, bias, scale, engineering units/LSB, etc. Several system integration / communication
blocks have already appeared in other diagrams where they had significant relationships with the blocks there.
We divided the diagrams so that no relationships were broken. All the blocks here connect to the main diagram.
The red “algorithm: data transfer/message” failures can be caused by the set of “data handling: logic” and “data
handling: transition logic”. They can, in turn, cause “algorithm: validity check” failures. In the upper, center of the
diagram is a collection of missing interface items, “system integration: missing signals in ICD”, “bus interface:
missing signal”, and “system integration: missing datapump”. These are all green blocks and are not very
significant. They can be caused by the “I/O system: data list” failure type which is yellow due to a high severity
score. In their turn, they can contribute to the “data handling: indexing” failure type, which is yellow due to a high
occurrence rate. This reflects problems caused by shifting data when a signal is missing. In the bottom left of the
diagram is a collection of medium-RPN data definition failure types. They are “data definition” offset, size, data
type, and data structure. The final large collection of failure types is the data handling collection to the bottom
right of the diagram. These are data dictionary issues. The “data handling: scaling factor” and “data handling:

memory address” failure types are the most significant by far. They have been discussed above.
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SELF-TEST CATEGORY

Figure 22 shows the Self-Test Category. There are no high-RPN root failures here and only three medium-RPN
failure types. The most serious root failure is the yellow “outdated requirement” root failure which accounts for
slightly over 1% of all the root failures. There are two blue failure types, “self-test: values for test” and “tools:
algorithm”. These reflect the problem of generating “truth data” from the tools for use in the self-test. All the rest
of the blocks are green. At the top, center of the diagram are a collection of top-level design problems. They are
“self-test procedure: missing reset function”, “self-test: test timing”, “self-test: time management”, and
“performance: exceed processor utilization target”. At the center, right are two green blocks that reflect the need
to include testpoints in the code for monitoring or test value insertion. They are the “system integration: missing
testpoint”, and the “system integration: testpoint name” failure types. At the bottom, left of the diagram are two
requirements issues: outdated and unnecessary. At the bottom right of the diagram are several issues with

modeling and generating valid truth data.

Requirements ==} .

Figure 22 — Self-Test Category

APPLICATION OF DATA ANALYSIS RESULTS TO EVALUATING FUTURE TECHNOLOGIES

The data analysis results can be used to analyze the impact of the technologies, for example, possibly applying
formal methods to the algorithms. Looking at figure 20, the algorithm-related defects are a mixture of discrete
logic errors like “algorithm: decision logic” and floating-point calculation errors like “algorithm: design”. An
application of formal methods could be used to identify and remove discrete logic defects in the early

development stages. In figure 20, formal methods would reduce the number of errors in “algorithm: decision
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logic”, “algorithm: failure management”, “algorithm: initialization logic”.

An adjustment could be made in the Occurrence or Detection numbers method 1 2
for those entries in the RPN calculations. Under the System Integration method 2 3

o ) ) ) ) ) method 3 2
/ Communication section, the collection of data handling failures points i 1
to the possible benefit of an automated data-dictionary driving the method 5 1

interface generation tools. Additionally, evidence points to the benefits

of having model based design tools that encompass the entire system. In Figure 23 - Related Root Failure Categories
particular, requirements failure types may be reduced by using system level design tools like SysML or AADL.
Conflicting or imprecise requirements would be spotted by Formal Methods where it could be applied. In general
figure 20, shows that the data dictionary information is a problem (size, location, address, bit order, etc).

However, it is very hard to find a single technology that covers the entire problem space.

However, it is believed with high confidence that a significant number of software problems can be reduced before
entering the next phase of the program by identifying the correct combination of technology to cover the problem

space.

Here is one example of how the data analysis results can be used to identify possible combinations of technologies

for software health management:
1. Create Matrix of evaluation of technologies with each root failure.

A. Select technologies/ methods that you want to examine.

B. Prepare a table that contains information of the RPN and which factor is the most and the least
dominating factor of the RPN. (Color Code in example. Orange = the most dominant factor, Yellow = 2"
dominant factor, and Green = the least dominant factor)

C. Evaluate all the Technologies/Methods chosen with respect to the occurrence, severity, detection of each
root failure. (Figure 23 illustrates this process)

2. Evaluate each Technology/Methods by affectability with respect to the most and least dominant factor of the

RPN. (Figure 24 is the example of this process)

RPN

1000

100

50

Figure 24 — Related Root Failure Categories
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3. From Step 2, come up with different combination of Technologies/Methods to use and evaluate them. From
Table 2, we can draw conclusions that “method 1” is the most effective for Software Health management method.
However, it does not cover all the issues. Figure 23 provides some additional example tables that show how many

problems that can be covered with different combinations of Technologies/Methods.

Individuals that are developing methods or tools for software health management and using currently available

methods or tools can benefit from this kind of practice.

For the Developer of methods or tools for software health management, this practice can be their assessment, and

it will help users identify what kind of methods they are going to use for their project.

Apply Method 1
Root
RPN Failure Occurrence | Severity | Detection
1000 A
100 B
50 G
10 D
Apply Method 1 & 5
Root
RPN Failure Occurrence | Severity | Detection
1000 A
100 B
50 G
10 D
Apply Method 1 &S & 3
Root
RPN Failure Occurrence | Severity | Detection
1000 A
100 B
50 G
10 D
Apply Method 1 &S &3 &2
Root
RPN Failure Occurrence | Severity | Detection
1000 A
100 B
50 G
10 D

Figure 25 — Combining Technologies and Methods
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Here are some software development technologies which are of interest in the literature and research:

e Automated Verification Management

e  Formal Requirements Specifications

e Requirements and Traceability Analysis

e  Formal Methods

e Computer-Aided System Engineering

e V&V Run-Time Design

e  Rigorous Analysis for Test Reduction

e Requirements and Design Abstraction

e  Probabilistic/Statistical Test

e  Testing Metrics
It would be valuable to examine some of these technologies with the new information obtained from this study.
Selection of the emerging technologies to be evaluated should be guided by the “lessons learned” in research
efforts such as VVIACS (Validation & Verification of Intelligent and Adaptive Control Systems), CerTA FCS CPI
(Certification Techniques for Advanced Flight Critical Systems — Challenge Problem Integration), and MCAR (Mixed
Criticality Architecture Requirements). Several technologies including Auto-Code, Auto-Test, Rapid Prototyping,

System Model-Based, and Simulation-Based Design are mature enough to already be established with recognized

benefits.

Future research should include analysis of some additional programs to reflect a larger variety of software

development processes.
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