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SMAP mission and the Earth Science Decadal Survey

Traceability of measurement requirements to hydrologic applications
Pathways of soil moisture influence on weather and climate
Applications to:

» Drought monitoring and seasonal climate prediction

» Water availability from snowmelt outlooks

» Flood monitoring and forecasting

Data products and latencies
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Tier 1: 2010-2013 Launch

US National Research Soil Moisture Active Passive (SMAP)
Council Report: “Earth ICESAT Il
| Science and Applications DESDynl
il from Space: National CLARREO
Imperatives for the next 157 2 AULE-AIS LAl
SMAP is one of four missions EVYV:;RI
recommended by the NRC “Decadal ASCENDS
Survey” for launch in the 2010-2013 GEO-CAFE
time frame ACE
Tier 3: 2016-2020 Launch
 Feb 2008: NASA announces start of SMAP project LIST
PATH
« SMAP is a directed-mission with heritage from Hydros GRACE-
SCLP
« Hydros risk-reduction performed during Phase A GACM
(instrument, spacecraft dynamics, science, ground system) SD-WINDS

Cancelled 2005 due to NASA budgetary constraints
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DS Objective Application Science Requirement
Weather Forecast | Initialization of Numerical Weather Prediction (NWP) Hydrometeorology
Boundary and Initial Conditions for Seasonal Climate Prediction
Climate Prediction |Models Hydroclimatology
Testing Land Surface Models in General Circulation Models
Drought and Seasonal Precipitation Prediction
Agriculture Regional Drought Monitoring Hydroclimatology
Monitoring Crop Outlook

River Forecast Model Initialization
Flash Flood Guidance (FFG)

Flood Forecast Hydrometeorology

Improvements NWP Initialization for Precipitation Forecast
Seasonal Heat Stress Outlook Hydroclimatology
Near-Term Air Temperature and Heat Stress Forecast Hydrometeorology
Human Health . .
Disease Vector Seasonal Outlook Hydroclimatology
Disease Vector Near-Term Forecast (NWP) Hydrometeorology
Boreal Carbon Freeze/Thaw Date Freeze/Thaw State
Baseline Mission
: Hydro- Hydro- Carbon
Requirement : Soil
Meteorology Climatology Cycle : Freeze/Thaw
Moisture
Resolution 4-15 km 50-100 km 1-10 km 10 km 3 km
Refresh Rate 2-3 days 3-4 days 2-3 daysW 3 days 2 days®
Accuracy 4—6% ** 4—6%** 80—70%* 49p** 80%*

(*) % classification accuracy (binary Freeze/Thaw)
(**) [cm3 cm3] volumetric water content, 1-sigma

MNorth of 45N latitude
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Global mapping of Soil Moisture and Freeze/Thaw state to:

— Understand processes that link the terrestrial water, energy & carbon cycles
—  Estimate global water and energy fluxes at the land surface

—  Quantify net carbon flux in boreal landscapes

—  Enhance weather and climate forecast skill

—  Develop improved flood prediction and drought monitoring capability

B0 M 12 10 W B 4 M 0 WM 4 B B0 100 1M 140 {60 180 Primary(_:ontrOISO_nLand
Evaporation and Biosphere
Primary Productivity

Soill Freeze/
Moisture Thaw

Radiation




™ Pathways of Land Surface Influence

Calfomia nsitic of Technolog on Weather and Climate
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@ Key Determinants of Land Evaporation
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Latent heat flux

5= E or - ' - (evaporation) links the
E p Campbell Yolo Clay Field E_xper_iment Site Water’ enerqv’ and m
Summer 1995, California _'_)T( CyC|eS at the surface.
0.5

Closure relationship, yet
virtually unknown.

o
N
81

Soil Evaporation Normalized by
Potential Evaporation

Lack of knowledge of saoill
moisture control on
evaporation causes

% 0 20 30 uncertainty in land surface
Surface Soil Moisture [% \{olume] .
Measured by L-Band Radiometer and atmOSpherIC mOdeIS

Source: Cabhill et al., J. Appl. Met., 38
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NOAH _

model grid cell and

0,-6,\
= (—9 —5 ) (7)
ref W
represents a normalized soil moisture availability term
where O, 1s the wilting point and ©__; is the field capac-
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Dirmeyer et al., J. Hydromet., 7
1177-1198, 2006
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. . . - . Soil Wetness
functional type and the soil water potential of each soil layer o

Bo=3 wr z1x107 (8.10) Atmospheric model

representations of this

function are

essentially “guesses”,
- \ given scarcity of soill

W e e s.11) moisture and

° for 727 evaporation data.

where W, is a soil dryness or plant wilting factor for layer i. and 7 is the fraction of roots
i layer 7.

The plant wilting factor w; is
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American Meteorological Society (AMS)
Statement

Drought is often grouped into four basic types: 1)
meteorological, 2) agricultural, 3) hydrological, anc
4) socioeconomic.

|

Meteorological drought ... magnitude [and
duration] of a precipitation shortfall

Agricultural drought is largely the result of a deficit
of soil moisture...

Hydrological droughts are concerned with shortfal

|dentification of Drought

Matural Climate Variability

Precipitation deficiency | |[High temp., high winds, low| [_
(amount, intensity, timing)| || relative humidity, greater 8
f sunshine, less cloud cover g‘%
Reduced infiltration, runoff | _ =
deep percolation, and Increased evaporation 85
ground water recharge and transpiration 2
E -
2 | Soil water deficiency | S
§ i ! | =S
T Plant water stress, reduced | | .23
o i i =0
o biomass and yield E
ﬁ | } —
Reduced streamflow, inflow to i}
reservoirs, lakes, and ponds; g-f-g
reduced wetl ands, sz
wildlife habitat '-i',:,'
L I

|

| Economic Impacts | | Social Impacts || Environmental Impacts |

on surface or subsurface water supply...Rootzone,
vegetation and streams response
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Drought and Soil Moisture

Agricultural drought (deficit of soil moisture) cannot necessarily be inferred

from precipitation deficit.

Standardized Precipitation Index
One Month

July 2010

National Climatic Data Center, NOAA

exceptionally extremely y m ¥ near abnommally  moderately very exiremely  exceplionally
dry dry dry dry dry normal maokst molst maist maist moist
H B E = [ N H N B
200 =199 1.59 1.29 0.7 0.50 +0.51 +0.80 +1.30 +1.60 +2.00
and o ] o o o ] [1:] to to and
below =160 -1.30 =0.50 -0.51 +0.50 «0.79 +1.29 +1.59 +1.99 above

The Standardized
Precipitation Index (SPI)
for July 2010.

National Climatic Data Center, NOAA

axireme
drought

B3
-4.00

and
below

Palmer Hydrological Drought Index
Long-Term (Hydrological) Conditions

July 2010

severe moderate mid- moderately very
drought drought range moist moist
B [
-3.00 -2.00 11.99 +2.00
o
299 +1.99 +2.99

Palmer Drought Severity
Index (PDSI)
for July 2010.

i

extremel
maist y



National eronacs and Role of Root-Zone Soil Moisture In

comemse o e DrouUQNt Duration and Climate Change Impacts

Drought in Australia Root-zone soil moisture dynamics may contribute
i s LT JM e to prolonged drought conditions.
wheat crop in Australia ol- J |
Sepernter 2006 = o Conditions are similar to those expected under
"‘ﬁw 5

e [ 6 global change.

| umr much II

below average !
] Below average N /
[ Avarage Perth _aR \}1{;

r:_] Above average /;ﬂ‘\g_d '\% 1. ‘;flg.:;ﬁ
B Veymuch | _ - Cai et al., 2009: Rising temperatures depletes soil moisture and exacerbates severe
- :a::e?“““ = & Gt drought conditions across southeast Australia, Geophy. Res. Letters, 36.

racord 181008 3P

L")
H 1 | W | e T | (S O | | L
“Compared with the WWII drought, multi-year =) N correl =0.98 5
averages of rainfall and subsurface soil moisture B~ 120 ]
during the Big Dry are not as low, but the g = - oy vl
sensitivity of soil moisture to rainfall decline is -0 0 et . _;]'
over 80% higher. 86 - | ]
T2 aol :
We show that a relationship exists between =2 80 - | =
subsurface soil moisture variations and E B | ]
fluctuations of temperature not associated with 60 | | | | ]
1| Ly S N I R | A

rainfall over eastern Australia in all seasons, and

: : y 80 90 100 110 120
over SEA in austral spring and summer. Annual rainfall (% of clim.)
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Seasonal Climate Prediction

Multi-model consensus view
of land contribution to air
temperature forecasts.

JJA Skill contribution at the
30-day lead (days 31-45).

Erom: Final Report of GLACE-2:
Quantifying the Effects of Land
Moisture Initialization on Precipitation
Forecasts (Pl: Randal Koster, 2010)
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Seasonal Climate Prediction
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European heatwave cause
35,000 deaths,
New Scientist, Oct. 2003.

a) DRY25-CTL b) WET25-CTL
Temperature (2m) [C] Temperature (2m) [C]

Seasonal Climate Prediction:
50 km Resolution
Initialize rootzone moisture

2 45 -1 05 0 05 1 15 2

Fischer et al. (2007), J. of Climate, 20.
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Global Change and Water Cycle
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Future Climate and Water Cycle: Soil moisture influence on precipitation intensifies the regional
water cycle response to global change.

Mean Summer (JJA) soil
moisture feedback parameter on
precipitation among 19 IPCC
models [cm/month]

2.0
1.0
0.6
0.3
0.1

2.0
1.0
0.6
0.3

0.1

Same for Winter (DJF)

G|0b_a|_ average monthl_y Notaro, M., 2008: Statistical identification of global hot spots in soil moisture
precipitation over land is feedback among IPCC AR4 models, J. Geophys. Res., 113.

~8 cm/month
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Water Availability from Snowmelt

Soil moisture information can contribute skill to streamflow forecasts

\
Linear regression analysis examining observed

streamflow, snow, climate and soil moisture:

“This study demonstrates that
available macroscale estimates
of soil moisture have the
potential to enhance

streamflow prediction...”

(Berg and Mulroy, Hydro. Sci.,
51, 642-654, 2006)
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2<0 ©#0.-02 ®02-042 ¢ 042-06 #06-1.0

Contribution (r?) of Jan. 1
soil moisture initialization to
MAM streamflow prediction.

-
W 1

"x
\1' |

Synthetic analysis showing where soill
moisture initialization may improve
streamflow prediction at seasonal
timescales. Results are supported by
available streamflow observations.

(Mahanama et al., in preparation)



Naiona Aconauicsand Soil Moisture Information Enhances Water

Resource Availablility Predictions

Pasadena, California

Koster et al., 2010: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and
snow”, Nature-Geoscience, in press.

(a) CTRL: Forcings, initial show & SM known ‘ ’ ’(b) Exp1: Initial snow, initial SM known ‘ S
(not true forecasts) |
belongstoS(a\l\so‘l &2

May-July
streamflow
forecasts
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@ ™ Flood Applications: The Forecast

1) Characterization of pre-storm soil moisture
2) Accurate real-time rainfall monitoring (in large basins)
3) Numerical weather prediction of extreme rainfall

4) Monitoring inundation
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Characterization of Pre-Storm Soil Moisture
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National Weather Service
Regional Map
3 ffonr Flash Flood Guidance
Updated August 15, 2000 7:45 PM CDT

Puerto Rico

= i i i 5= [0 1 E‘“ 1 Ell i = {d 8 i i = o
W 1 | W m 1 1

Current: Empirical soil moisture indices based on filtering precipitation time-
series at county resolution (~50 km)

Future: Direct observations: SMAP at 10 km



@/ SR Characterization of Pre-Storm Soil Moisture

Pasadena, California

Blue — Remote
Sensing/ Model
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Red — Remote
Sensing Only
(TRMM TMI)

Black — Model
Only

Blue — Remote
Sensing/ Model
KF Combined

Characterization of Pre-Storm Soil Moisture
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SMAP will:

@)
o
—
&
am
d
=

e |Lead to more added skill.
(Here: X-band, SMAP: L-band)

* Allow for implementation in finer-

scale basins.
(Here: >1000 km?, SMAP: >100 km?)

|.|.|.T.|.|.|.|.|.|.|.|.T?|_

1 357 91113151719212325
Basin Number

( >30% km? MOPEX Basins in Southern US)
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Crow et al. (2009), JHM, 10(1), 199-212.
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Improvement in TRMM 3B40RT 3-day accumulation skill

a) RMSE
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Crow et al. (2009), JHM, 10(1), 199-212.
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Accurate Rainfall Monitoring

Improvement in TRMM 3B40RT 3-day accumulation skill
a) RMSE
o 3 ERA S
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SMAP will:
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*1+ Enhance correction in vegetated areas. (Here:

«{ *Allow for implementation at finer space scales.
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Crow et al. (2009), JHM, 10(1), 199-212.
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California Institute of Technology
Pasadena, California

Flash flood event near Fort Collins
July 13, 1996 R

Chen et al. (2001), JAS, 58, 3204-3223.
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Inundation detection
using dual-polarization
QuikSCAT backscatter
data. Shades of blue on
land represent
inundation

[Form Son Nghiem, JPL]

O SMAP provides 3 km resolution dual-polarization
7/ _ — radar data with 2-3 days revisit (all-weather and
regardless of illumination)
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An airborne campaign
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SMAP Mission Concept

» L-band unfocused SAR and radiometer
system, offset-fed 6 m light-weight
deployable mesh reflector. Shared feed for

> 1.26 GHz dual-pol Radar at 1-3 km (30%
nadir gap)

> 1.4 GHz polarimetric Radiometer at 40 km

» Conical scan, fixed incidence angle across
swath

« Contiguous 1000 km swath with 2-3 days
revisit

e Launch November 2014

» Mission duration 3 years
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e Soil moisture retrieval algorithms are
derived from a long heritage of
microwave modeling and field

. Soil Moisture (%

L-band Active/Passive Assessment
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science objectives
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Short Description

Resolution

SMAP Data Products

Latency

L1A SO Radar raw data in time order — 12 hours
L1A TB Radiometer raw data in time order — 12 hours
L1B SO LoRes Low resolution radar g, in time order 5x30 km 12 hours
- — Instrument Data
L1B_TB Radiometer T in time order 36x47 km 12 hours
L1C SO HiRes High resolution radar o, 1-3 km 12 hours
L1C_TB Radiometer Ty 36 km 12 hours
L2 SM_A Soil moisture (radar) 3 km 24 hours
: : : Science Data
L2 SM P Soil moisture (radiometer) 36 km 24 hours .
(Half-Orbit)
L2 SM_A/P Soil moisture (radar/radiometer) 9 km 24 hours
L3 FIT_A Freezel/thaw state (radar) 3 km 36 hours
: : , Science Data
L3 SM P Soil moisture (radiometer) 36 km 36 hours . .
(Daily Composite)
L3 SM_A/P Soil moisture (radar/radiometer) 9 km 36 hours
L4 SM Soil moisture (surface & root zone) 9 km 7 days Science
L4 C Carbon net ecosystem exchange (NEE) 9 km 14 days Value-Added




Interested in joining the SMAP Working Group?
e Sign up at

1. Algorithms Working Group (AWG)

2. Calibration & Validation Working Group (CVWG)

3. Radio-Frequency Interference Working Group (RFIWG)
4. Applications Working Group (ApWG)

File Edit View History Bookmarks Teeols Help
@ A c £t | | http://smap.jpl.nasa.govi/applications/ T -‘l— Google
L Language ||| MITtravel || Wx Search Engines News Iran Journals Orgs Fun Financial Radic SMAP

| - Applications +

nasa vet Propulsion Laboratory
5 California Institute of Te

BRING THE UNIVERSE TO YOU:

Mapping soil moisture and freeze/thaw state from space

SMAP

Soil Moisture Active & Passive

search (EEINEIND &

T — Applications Overview

Science The SMAP mission has the potential to enable a diverse range of applications including drought and flood guidance, agricultural
N - productivity estimation, weather forecasting, climate predictions, human health risk, and defense systems. Applications across agencies
Applications are a unique feature of SMAP.
Links lications Working Group coordinates applications activities for the mission. The working group recently held the 1st SMAP
cshop, atthe NOAA Science Center, Silver Spring, MD, September 9-10, 2009.

ssion Description

Bment Weather & Climate Forecasting: soi maisture variations afiect the evolution of weather and t 1

climate over continental regions. Initialization of numerical weather prediction and seasnnal climate models wwtn
U

e


http://smap.jpl.nasa.gov/science/wgroups�
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