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Abstract  

As a collaborative effort among government aerospace research laboratories an  

advanced version of  a widely used computational fluid dynamics code, OVERFLOW, 

was recently released.  This latest version includes additions to model flexible rotating 

multiple blades.  In this paper, the OVERFLOW code is applied to improve the accuracy 

of airload computations from the linear lifting line theory that uses displacements from 

beam model.  Data transfers required at every revolution are managed through a Unix 

based script that runs jobs on large super-cluster computers.  Results are demonstrated for 

the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are 

evaluated.  Fourier analysis post-processing that is suitable for aeroelastic stability 

computations are performed. 

 

Introduction 

Accurate aeroelastic computations of helicopter rotor blades involve use of high fidelity 

fluids and structures models.  The flows are often dominated by shocks waves, blade-

vortex interactions and flow separation and need the use of 3-D Navier-Stokes equations. 

The primary aeroelastic characteristics of a helicopter rotor blade can be modeled using 

beam theory.  

 

Several 3-D Navier-Stokes based computational fluid dynamics (CFD) codes are in use 

today. Among them OVERFLOW is one of the most popular CFD codes for rotorcraft 

applications. It has been extensively applied for rigid configurations to-date [1,2,3]. 

OVERFLOW uses robust overset structured grids to model the flow field. FUN3D [4] is 

other similar advanced CFD code based on unstructured grid methodology. Efforts are in 
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progress to add aeroelastic capability to OVERFLOW. Recently a 2-D modal [5] and 

beam finite-element [6] based structures were added for isolated blades with single grid 

and were demonstrated for cases that do not need trimming. In collaboration with U.S 

Army engineers[7], NASA added the multi-block-dynamic-deforming grid capability to 

the latest version 2.1z of OVERFLOW to compute accurate airloads using the prescribed 

aeroelastic motions of multiple blades for steady flights[8]. In this effort, OVERFLOW 

solutions are applied to correct the airloads computed from Comprehensive Analysis 

(CA) code CAMRAD2 [9] to improve the accuracy of aeroelastic responses.   

CAMRAD2 which is similar to UMARC [10] and RCAS [11], computes the airloads 

using lifting line theory [12] based the displacements from the beam-model of the rotor 

blade. Results are demonstrated for UH-60A helicopter [13].  

Approach 

Accurate computations of airloads for the UH-60A rotorcraft in forward flight requires 

trim solutions [14]. Current state-of-the art to compute trim is based on lifting line 

solutions tuned with measured thrust forces [7]. Trim solutions using CFD loads are yet 

to be developed.  In this effort trim parameters are computed using CAMRAD2 which  

solves the harmonic Hamiltonian equations to give solutions only at the end of each 

revolution. On the other hand, OVERFLOW is based on a time marching scheme. In 

order to utilize the trim solutions from CAMRAD2, airloads from OVERFLOW are 

computed at end of every revolution and applied to correct the airloads of CAMRAD2 

which in turn are used for computing the aeroelastic displacements. The structural 

displacements are computed using the beam finite element solver in CAMRAD2.  This 

approach, which is known as loose coupling (LC), is described step-by-step in the next 

paragraph.   

 

First a, solution in the form of blade displacement data (known as the motion file for 

OVERFLOW) is obtained from CAMRAD2 using the flight parameters. The linear 

lifting line theory along with free wake model is used to compute this initial estimate of 

motion data from the beam model in CAMRAD2.  Assuming steady forward flight, this 

full-revolution motion data, defined same for all blades, is used as a prescribed motion 

for OVERFLOW.  Using the required time step, computations are made for one 



revolution and aerodynamic forces are computed. These CFD-based aerodynamic loads 

are used to correct aerodynamic forces in CAMRAD2, and a new motion data file with 

superimposed trim corrections. The new motion data file is used as a prescribed motion 

in OVERFLOW to compute corrected aerodynamic forces.  The CAMRAD2/ 

OVERFLOW computations and data corrections are repeated till the results are 

converged. Convergence of results is established by repeating computations by increasing 

both number of OVERFLOW/CAMRAD2 iterations  and number of time steps per 

revolution in OVERFLOW.    

 

Figure 1 shows the flow diagram of the OVERFLOW/CAMRAD2 data exchange 

process.  A Unix shell script [15] is used to facilitate the data exchanges between 

OVERFLOW running on Pleiades super system [16] using Portable Batch System (PBS) 

[17] with Message Passing Interface (MPI) [18] and CAMRAD running on its front end 

Linux node. More details along with source of the script will be given in the final paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. OVERFLOW/CAMRAD2 Data Exchange Process   

 



 

Results 

 

The 4-bladed UH-60A helicopter with its extensive set of  flight data [13] is selected for 

demonstrating the latest version 2.1z of OVERFLOW to correct the airloads and in turn 

aeroelastic displacements computed from CAMRAD2.  Only the rotor blades are 

modeled.  Each blade has a radius of 322 inches and a chord of 20.76 inch is with a swept 

tip at 92.9% radial station.  A 5-million point overset grid with 1.9 million near blade grid 

points is selected.  Blade geometry and grid near the tip is shown in Fig. 2.  The high-

speed test case C8534 [13] that corresponds to a free stream Mach number of 0.236 with 

an advance ratio of 0.37 and a tip Mach number of 0.642 while blades are rotating a 

speed of 4.3 Hz is selected for demonstration.   

 

 

 

 

   

 

 

 

 

 

 

 

 

Fig. 2 UH-60A Blade System with Grid near Tip  

 

All computations are made time-accurately by using a constant time-step in 

OVERFLOW.  First, computations are started with 1440 steps per revolution and 

CFD/CSD data exchanges are repeated until the results are converged.  Convergence is 

monitored by tracking the normal force at 86.5% radial station when the first blade is at 

 
 

 

 



120 deg azimuth. It required about 25 CFD corrections for convergence. This calculation 

is  repeated by increasing the number of steps per revolution (NSPR) in increments of 

1440.  Figure 3 shows convergence plots for increasing NSPR. Results converge at about 

NSPR = 7200. This is verified by using NSRP = 8640 which produced result nearly  

identical with NSPR = 7200.      

 

Figures 4 and 5 show plots of computed and flight sectional normal force Cn and pitching 

moment Cm for 86.5% radial station, respectively. The comparisons are favorable. Other 

sections will be analyzed in the final paper. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Convergence of normal force at 86.5% radial station for the first blade. 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Comparison of normal force with the flight data at 86.5% radial station. 

 

 



 

 

 

 

 

 

 

 

 

 

Fig. 5 Comparison of pitching moment with flight data at 86.5 % radial station. 

 

Based on the procedure discussed in Ref. 19, deviations of computed Cn and Cm from 

flight data [13] are calculated.  Plots of these deviations are shown in Figs. 6 and 7 for Cn 

and Cm, respectively.  All computed values are within 10% of the measured data except 

for 4 values that go beyond 10% for Cm.  The average deviations are 3.51% and 3.81% 

for Cn and Cm, respectively.  These values are less than the corresponding average 

deviations, 4.1%, and 4.7%, reported in Ref. 19 based on a survey results taken from 

literature.  

 

   

 

 

 

 

 

 

 

 

 

Fig 6. Deviation of computed normal force coefficient from C8534 flight case. 

 

 

 



 

 

 

 

 

 

 

 

Fig. 7 Deviation of pitching moment from C8534 flight case. 

 

Fourier Transformations for Aeroelastic Stability Analysis 

The aerodynamic forces computed using OVERFLOW need to be converted to Fourier 

quantities for use in aeroelastic stability analysis [20].  The deviations shown in Figs. 6 

and 7 provide information only about magnitude of the airloads. For aeroelastic stability 

analysis both magnitude and phase angles play an important role. Fourier analysis[21] 

will also determine the deviations of phase angles from measured data. 

 

Fourier transformations [21] are next applied to the airloads computed from 

OVERFLOW. Magnitudes and phase angles with respect to azimuth of the first blade are 

computed for 20 harmonics.  Figure 8 shows the comparison between computed and 

flight normal force magnitude at r/R = 0.865. The values of magnitude become small 

after about 9
th

  

 

 

 

 

 

 

 

 

Fig. 8 Comparison of normal force magnitude harmonics at 86.5% radial station 

 

 



 

 

 

 

 

 

 

 

 

 

Fig. 9 Comparison of normal force phase angles at 86.5% radial station.  

 

harmonic. Comparison between computed and measured data is good for all 20 

harmonics for magnitude.  Figure 9 shows corresponding plots for phase angles.  

Differences between computed and measured phase angles significantly differ after 4
th

 

harmonic.  These differences can be attributed to lack of time-accurate couplings between 

the  OVERFLOW and CAMRAD2 computations and also smaller magnitude of loads.  

Figure 10 show the corresponding comparison of phase angle scaled by the ratio of 

current magnitude to the magnitude of the first harmonic. This plot shows good a 

comparison for all harmonics. 

 

 

 

 

 

 

 

 

 

Fig. 10   Comparison of scaled phase angles of normal force at 86.5% radial station 

 

 

 



 

Figure 11 shows a comparison of magnitude between computed and flight pitching 

moment magnitude at r/R = 0.865. The pitching moment magnitude becomes small for 

higher harmonics. Comparison between computed and measured data is good for all 20 

harmonics except for some discrepancies around 5
th

 harmonic. 

 

Figure 12 shows the plot of computed and measured phase angles for the pitching 

moment. Difference between computed and measured phase angles are more significant 

after the 3
rd

 harmonic. Figure 13 shows phase angle the comparison scaled by the ratio of 

current magnitude to magnitude of the first harmonic. The scaled values show good 

comparison for all harmonics. 

 

 

 

 

 

 

 

 

 

 Fig. 11 Comparison pitching moment magnitude at the 86.5% radial station 

   

 

 

 

 

 

 

 

 

Fig. 12 Comparison  pitching moment phase angles at 86.5% radial station. 

 

 



 

                                                             

 

 

 

 

 

 

Fig. 13 Comparison of scaled of pitching moment phase angles at the 86.5% radial station 

 

Conclusions 

Computations are made in the paper to demonstrate the use of advanced CFD codes for 

aeroelastic stability analysis of helicopter blades.  A procedure to measure the deviation 

of computed data from flight test data is presented.    More details about the coupling 

procedure and the Fourier analysis of the data will be discussed in the full paper. A 

procedure to use Fourier coefficients to compute the aeroelastic stability boundary will be 

discussed in the full paper. It will be based on the procedure developed in Ref. 22 for 

computing the stability boundary by using the Fourier Coefficients of unsteady 

aerodynamic data from Transonic Small Perturbation theory.   
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