1 Observations of recent Arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production

Received 2 March 2010; revised 3 December 2010; accepted 27 January 2011; published XX Month 2011.

[1] Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and Land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003–2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005–2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

1. Introduction

[2] Recent observations have shown a decline in Arctic sea ice areal coverage, freeboard, thickness, and volume [e.g., Stroeve et al., 2008; Farrell et al., 2009; Rothrock et al., 2008; Giles et al., 2008; Kwok et al., 2009] along with widespread environmental and climatic changes in the Arctic [Arctic Climate Impact Assessment, 2005]. These changes to the sea ice system have the potential to impact the Arctic climate by altering the radiation and heat budgets of the ocean and atmosphere. The degree to which the cold Arctic atmosphere is insulated from the relatively warm ocean is affected by the presence of a sea ice cover; the ocean-atmosphere heat flux can vary by nearly 2 orders of magnitude between open water and an ocean covered with thick sea ice for winter time conditions [Maykut, 1978]. This insulating effect of sea ice makes the Arctic much colder than is typical of a maritime environment. The exchange of heat between the ocean and the atmosphere is also responsible for the growth of sea ice as heat lost from the ocean to the atmosphere is balanced by ice production. With thinner ice comes more heat exchange and faster ice growth which could potentially slow or reverse the observed losses in ice thickness.

[3] The loss of sea ice may play a role in Arctic amplification, wherein the Arctic region is expected to see a much greater share of warming as worldwide temperatures increase [Manabe and Stouffer, 1980]. Modeling studies show that decreases in sea ice thickness and its areal coverage lead to increased ocean-atmosphere heat transfer. Due to the strong stratification of the Arctic atmosphere this heat is trapped near the surface leading to increased surface air temperatures [Boé et al., 2009]. In addition to modeling studies, observations from buoy data have suggested that thinning of the sea ice cover during the 1979–1998 time period led to increases in surface air temperature through an increase in the ocean-atmosphere heat flux [Rigor et al., 2002]. There remains, however, much uncertainty into how large a role recent changes in the sea ice cover have, and will continue to play, with regard to Arctic warming. Using reanalysis data, Serreze et al. [2009] found that losses in sea ice areal coverage have played a role in autumn surface air temperature increases in the Arctic. They also found that a winter warming signal may be beginning to emerge which they hypothesize may be due to

[1] Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA.
[2] Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
[3] Cooperative Institute for Climate Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA.
[5] Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, Maryland, USA.

Copyright 2011 by the American Geophysical Union.

1048-0227/11/2010JC006235
67 to delays in autumn freezeup and decreased ice extent and
68 thickness in the winter. However, a major limitation in studies
69 such as these has been the lack of a high-resolution, basin-
70 wide sea ice thickness observational data set with which to
71 adequately study the impact of sea ice thickness changes on
72 the Arctic energy budget.
73 [4] Recent satellite altimetry missions have provided the
74 capability of obtaining basin-wide sea ice thickness
75 measurements. In this paper, we use laser altimetry data
76 from NASA’s Ice, Cloud, and Land Elevation Satellite
77 (ICESat) to estimate sea ice freeboard across the Arctic basin.
78 The freeboard data are then combined with a snow depth
79 model to estimate sea ice and snow thickness values for the
80 Arctic at the high spatial resolution needed for studying the
81 impact of sea ice on the energy budget. The sea ice thickness
82 data are used with meteorological data and a thermodynamic
83 sea ice model to study the impact of sea ice thickness changes on
84 the ocean-atmosphere heat flux and ice growth rate over
85 the 2003–2008 time period when significant changes to the
86 Arctic sea ice cover took place.
87 [5] The meteorological forcings, as well as the data sets
88 and methodologies used to derive the sea ice thickness and
89 snow depth are described in section 2. Section 3 describes
90 the thermodynamic model used for determining the heat
91 transfer through the ocean-ice-atmosphere system and cal-
92 culating the ice growth rate. The calculated heat fluxes, ice
93 growth rates, and uncertainties are presented in section 4 and
94 compared to results from previous studies. The role of
95 observed thinning of the ice and snow covers in increasing the
96 ocean-atmosphere heat flux is also discussed. Section 5
97 expands the analysis to the full Arctic Ocean including
98 nonice-covered regions. Section 6 summarizes the main
99 conclusions of our study.

2.1. Meteorological Data

[7] Reanalysis data from the European Center for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim data set
are used to provide the 2 m air temperature, 2 m dew point
temperature, 10 m wind speed, surface pressure, and snow-
fall. ERA-Interim combines observational and model data
into an assimilated data set using the 4D-VAR method. Data
is provided at 6 h time intervals with a spatial resolution of
1.5° latitude by 1.5° longitude.

[8] Cloud fraction is taken from the daily Moderate
Resolution Imaging Spectroradiometer (MODIS) 1° × 1°
global gridded product. A correction factor of 0.1 has been
added to all cloud fraction data to account for a bias in the
Arctic region of the data set [Ackerman et al., 2008]. Cloud
fractions from MODIS, rather than ECMWF are used because
of the anomalously high values found in the ECMWF data
for this time period; the ECMWF cloud fractions were
found to be approximately 30–40% higher than those from
previously published observations [e.g., Lindsay, 1998].

[9] Sea surface temperatures are classified as the tem-
perature of the top layer of water approximately 1 millimeter
thick. They are taken from the daily 0.25° by 0.25° gridded
product derived from ten-channel Advanced Microwave
Scanning Radiometer–Earth Observing System (AMSR-E)
brightness temperature data [Wentz and Meissner, 2004].
These sea surface temperatures are provided for ice-free
areas to within 75 km of coastlines. The estimated error in
the sea surface temperatures is 0.58 K [Wentz and Meissner,
2000].

2.2. Snow Model

[10] Snow depth on sea ice is modeled using a domain
defined by the 25 km AMSR-E grid. Snow depth on the
model grid is determined by

\[\frac{\partial S}{\partial t} = -\nabla \cdot (V \cdot S) + \frac{\rho_i}{\rho_w} F, \]

where \(S \) is the average snow thickness in a grid cell
(including both open water and ice covered areas), \(V \) is the

Figure 1. Map of the region used in the analysis. The shaded region is defined as the Arctic Ocean in this study.
Table 2. Time Periods Used in This Analysis Based on the Availability of ICESat Data

<table>
<thead>
<tr>
<th>Campaign Name</th>
<th>Period</th>
<th>Days of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON03</td>
<td>Oct 1 to Nov 18 2003</td>
<td>34</td>
</tr>
<tr>
<td>ON03 1</td>
<td>Oct 1 to Nov 8 2003</td>
<td>39</td>
</tr>
<tr>
<td>ON03 2</td>
<td>Oct 15 to Nov 18 2003</td>
<td>35</td>
</tr>
<tr>
<td>FM04</td>
<td>Feb 17 to Mar 21 2004</td>
<td>34</td>
</tr>
<tr>
<td>ON04</td>
<td>Oct 3 to Nov 8 2004</td>
<td>37</td>
</tr>
<tr>
<td>FM05</td>
<td>Feb 17 to Mar 24 2005</td>
<td>36</td>
</tr>
<tr>
<td>ON05</td>
<td>Oct 21 to Nov 24 2005</td>
<td>35</td>
</tr>
<tr>
<td>FM06</td>
<td>Feb 22 to Mar 27 2006</td>
<td>34</td>
</tr>
<tr>
<td>ON06</td>
<td>Oct 25 to Nov 27 2006</td>
<td>34</td>
</tr>
<tr>
<td>MA07</td>
<td>Mar 12 to Apr 14 2007</td>
<td>34</td>
</tr>
<tr>
<td>ON07</td>
<td>Oct 2 to Nov 5 2007</td>
<td>37</td>
</tr>
<tr>
<td>FM08</td>
<td>Feb 17 to Mar 21 2008</td>
<td>34</td>
</tr>
</tbody>
</table>

“The ON03 campaign has been subdivided into two campaigns, ON03 1 and ON03 2, for better temporal comparison with other fall ICESat campaigns.

The elevation data from ICESat are used to determine the sea freeboard, which is here defined as the height of the snow and ice layer above the local sea surface. A tie point following the method of Kwok and Cunningham [2008] and the cloud filtering parameters described by Kwok and Cunningham [1999] are first used to filter out low-quality data which has been affected by atmospheric forward scattering. The elevation data from ICESat is used to assess the height of snow and ice layer above the local sea surface. Freeboard is found from the ICESat elevation data through the use of sea surface tie points following the method of Kwok et al. [2007].

Due to the approximately 70 m footprint size of ICESat, some sea surface tie points used in the retrieval of the freeboard from ICESat data are expected to be biased due to contamination of snow and ice within the footprint. Comparisons of ICESat data with coincident high-resolution airborne laser altimetry data have shown this can be problematic with a freeboard bias of up to 9 cm observed in one study [Kurtz et al., 2008]. Corrections to account for biases due to snow and ice within sea surface tie point footprints have been proposed by Kwok and Cunningham [2008] and Kwok et al. [2009] and are applied here in the determination of freeboard. The correction for snow depth biases are taken from Kwok and Cunningham [2008] which relates the albedo dependence of snow depth to the surface reflectivity measured by ICESat. An additional correction to account for remaining residual biases due to contamination of snow and ice within the ICESat footprint is taken from Kwok et al. [2009].

The temporal sampling of ICESat is limited to the times shown in Table 2 which restricts our analysis to time periods when ICESat data is available. Throughout we will refer to ICESat campaigns by their campaign name shown in Table 2, the first two letters of the campaign name refer to the months of measurement while the numerals refer to the year (e.g., ON03 for the October–November 2003 campaign). The length of the ON03 campaign made it suitable to split into two subcampaigns for purposes of comparing the heat flux and ice growth rates between years. The ON03 1 campaign is at a similar time of year to the ON04 and ON07 campaigns while the ON03 2 campaign is at a similar time of year to the ON05 and ON06 campaigns. The FM04, FM05, FM06, and FM08 ICESat campaigns occurred during roughly the same time of year while the MA07 campaign occurred later in the ice growth season than all other campaigns.

The sea ice thickness, h, is calculated by assuming local hydrostatic balance and is given by

\[h_i = \frac{\rho_w h_f}{\rho_w - \rho_i} + \frac{\rho_w - \rho_s}{\rho_w - \rho_i} h_s, \]

where \(h_f \) is the height of the snow and ice layers above the water level, \(h_i \) is the snow depth, \(\rho_w = 1024 \text{ kg m}^{-3} \) is the density of sea water, \(\rho_i \) is the density of sea ice taken to be 915 kg m\(^{-3}\) [Weeks and Lee, 1958; Wedhams et al., 1992], and \(\rho_s \) is the density of snow. \(\rho_i \) is taken to be changing with time following the climatological values compiled by Warren et al. [1999], it varies from a minimum of 260 kg m\(^{-3}\) in early October to a maximum of 330 kg m\(^{-3}\) at the end of the winter ICESat campaigns.

The large difference between the spatial resolutions of the freeboard (approximately 70 m) and snow depth (25 km) data sets leads to ambiguities when combining these data to estimate sea ice thickness. Due to the nonlinear dependence of the heat flux values on snow and ice thickness (an example of which can be seen in Figure 2 for typical winter time conditions), it is necessary to use a high spatial resolution estimate of the thickness values to properly include the contributions of thin, young ice regions which can be present in any area due to ice dynamics. Kurtz et al. [2009] found that the mean heat flux and ice growth values calculated for the Arctic basin using the 70 m spatial resolution of ICESat were approximately one-third higher than those calculated using 25 km mean thickness values. Therefore, the method described by Kurtz et al. [2009] for combining low-resolution snow depth data with high-resolution freeboard data is used to estimate the snow and ice thickness distributions for each of 25 × 25 km grid cells in the Arctic.
rates are calculated here through the use of a thermodynamic

25 km grid cell containing a valid number of measurements. Heat transfer between the ocean, ice, snow, and atmosphere is governed by the temperature of each system, the temperatures of the ocean and atmosphere are specified, while the temperature profiles of the ice and snow are calculated. The temperature of the ocean layer in contact with the ice is taken to be near the freezing point of seawater at \(T_b = 271.35 \text{ K} \), while the surface air temperature and other relevant meteorological parameters are taken from the ECMWF, AMSR-E, and MODIS data discussed in section 2. Temperature gradients are mainly vertical, therefore disregarding horizontal heat fluxes the temperature distribution within the snow and ice layers is governed by the one-dimensional heat diffusion equations

\[
\rho_c c_w \frac{\partial T}{\partial t} = k_s \frac{\partial^2 T}{\partial z^2},
\]

(2)

\[
\rho_v c_w \frac{\partial T}{\partial t} = k_i \frac{\partial^2 T}{\partial z^2},
\]

(3)

where \(c_w = 2.1 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \) and \(c_i = 2.1 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \) are the specific heats of ice and snow, and \(k_s = 0.31 \text{ W m}^{-1} \text{ K}^{-1} \) and \(k_i = 2.04 \text{ W m}^{-1} \text{ K}^{-1} \) are the thermal conductivities of snow and sea ice, respectively, which are empirical values obtained from Maykut and Untersteiner [1969]. A more recent study by Sturm et al. [2002] also found the effective thermal conductivity for snow to be approximately \(0.3 \text{ W m}^{-1} \text{ K}^{-1} \). The numerical scheme used to solve equations 2 and 3 follows the three-layer model of Semtner [1976] with parameterizations for the individual heat flux terms described in detail below.

The resultant mean surface air temperature, ocean-atmosphere heat flux, and ice growth rates used in sections 4 and 5 are the model average values over each ICESat measurement time period. They were calculated by running the thermodynamic model with 6 h time steps over each specific time period shown in Table 2. The initial temperature profiles of the snow and ice layers were determined by first setting the system in thermodynamic equilibrium then running the model over a one week time period prior to the start of each campaign shown in Table 2.

3.1. Heat Flux Parameterizations

The various heat flux terms are calculated by solving the energy balance equation to find the surface temperature, \(T_0 \), based on the method of Maykut [1978]. The energy balance equation at the surface is

\[
F_s + F_L - F_E + F_i + F_e + F_c = 0,
\]

(4)

where \(F_s \) is the net absorbed surface shortwave flux, \(F_L \) the incoming longwave flux, \(F_E \) the emitted longwave flux, \(F_i \) the sensible heat flux, \(F_e \) the latent heat flux, and \(F_c \) the conductive heat flux. A positive flux is defined as being toward the surface while a negative flux is away from the surface.

Figure 2. Plot of the dependence of the ocean-atmosphere heat flux on sea ice thickness for snow-free and snow-covered sea ice using typical winter time conditions in the Arctic. Input parameters are as follows: air temperature of \(-25^\circ \text{C}\), cloud fraction of 0.5, wind speed of 6 m/s, relative humidity of 0.9, and no shortwave flux.

See page 254 for continuation.
The net absorbed shortwave flux, F_s, can be written as

$$F_s = F_{0s}(1 - \alpha)(1 - \eta_0),$$ \hspace{1cm} (5)

where F_{0s} is the shortwave flux reaching the surface, α is the surface albedo, and η_0 is the percentage of shortwave radiation which passes through the surface and into the water. For snow covered ice $\alpha = 0.8$ and $\eta_0 = 0$. For ice with a negligible snow cover (<1 cm thick is treated here as snow free) α is a function of ice thickness, h_i, and calculated using the empirical relation between ice thickness and albedo described by Weller [1972]. η_0 is estimated from radiative transfer calculations described by Maykut [1982].

Many parameterizations of the F_{ro} and F_L radiative flux terms have been proposed in the literature. Key et al. [1996] analyzed various schemes and found that the shortwave parameterization scheme of Shine [1984] and the downdwelling longwave parameterization scheme of Maykut and Church [1973] perform well for Arctic conditions. F_{ro} is calculated here following Parkinson and Washington [1979] by applying the cloudiness factor of Laevastu [1960] to the empirical equation of F_{ro} for clear skies described by Shine [1984]. The downdwelling longwave parameterization scheme of Maykut and Church [1973] is used to calculate F_L.

The emitted longwave radiation, F_E, is given by

$$F_E = \varepsilon \sigma T_s^4,$$ \hspace{1cm} (6)

where ε is the longwave emissivity of the surface layer taken to be 0.99, σ is the Stefan–Boltzmann constant, and T_s is the temperature of the surface layer.

The turbulent fluxes are calculated using bulk aerosynamic formulas following Pease [1987]

$$F_s = \rho C_p u(T_u - T_b),$$ \hspace{1cm} (7)

$$F_e = \rho C_L u(q_a - q_b),$$ \hspace{1cm} (8)

where ρ is the air density, $C_p = 1004 \text{J kg}^{-1} \text{K}^{-1}$ is the specific heat of air at constant pressure, $C_L = 2 \times 10^{-5}$ and $C_e = 2 \times 10^{-2}$ are the sensible and latent heat transfer coefficients, respectively, for neutrally stratified air and are adjusted for unstable conditions following Hack et al. [1993], u is the average wind speed, $L = 2.3 \times 10^6 \text{J kg}^{-1}$ is the latent heat of sublimation, and q is the specific humidity. The conductive flux, F_c, is calculated by following the three-layer model of Semtner [1976]. Three vertical grid points are used: one in the snow layer, and two evenly spaced grid points in the ice layer.

The surface energy balance equation (equation 4) can now be rewritten through substitution of the parameterizations for F_{ro}, F_L, F_E, F_s, F_c, and F_e. The surface temperature-dependent terms in the surface energy balance equation are linearized to determine the temperature change of the surface layer for each time step. A time step of 6 h is used to coincide with the temporal resolution of the input ECMWF meteorological data described in section 2. Due to the coarse resolution of the temperature grid, a forward differencing scheme is used to calculate the conductive fluxes across the snow and ice layers and find the temperature profile, which is assumed to be linear between interior grid points. The forward differencing scheme is stable for vertical grid points with $h_i > 22$ cm and $h_s > 14$ cm, so the number of grid points is reduced as needed to maintain computational stability. For the case of ice with a thickness less than 22 cm, the “zero layer” method of Semtner [1976] is used to determine the vertical temperature profile, the snow and ice layers are treated as a single system that maintains thermodynamic equilibrium with the external conditions at all times.

The ocean-atmosphere heat flux is defined as the net heat transferred from the ocean to the atmosphere, or $-F_o$. For open water areas, the individual heat flux terms are calculated using the above relations for F_s, F_L, F_E, F_c, and F_e with suitable changes to α, η_0, T_0, and L. The surface albedo of open water is taken to be 0.08 while η_0 is the amount of shortwave energy passing through the ocean mixed layer which is calculated to be 0.2 based on the results of Maykut and Perovich [1987] for a 30 m mixed ocean layer. The latent heat of sublimation, L, is replaced by the latent heat of vaporization which is $2.5 \times 10^6 \text{J kg}^{-1}$. The surface temperature, T_0, is replaced by the ocean surface temperature, T_o. T_o is taken to be constant at 271.35 K for ice-covered regions. The net ocean-atmosphere heat flux is

$$F_o = F_s - F_e - F_L - F_s - F_e.$$

3.2. Thermodynamic Ice Growth Rate

Ablation and accretion of ice at the bottom of the sea ice layer occurs when there is an imbalance between the conductive flux through the bottom of the ice (F_{ro}) and the flux of energy from the water to the ice (F_o). The thermodynamic basal ice growth rate is calculated as

$$\frac{dh_i}{dt} = \frac{1}{Q_i} \left(F_{ro} - F_i \right).$$ \hspace{1cm} (10)

where $Q_i = 3.02 \times 10^8 \text{J m}^{-3}$ is the heat of fusion of ice, F_o is estimated to be $2 \pm 1 \text{W m}^{-2}$ from the results of Steele and Boyd [1998], and F_{ro} is the conductive flux through the lowest ice grid point. The thermodynamic growth rate is calculated only to estimate the mean rate of ice growth for the observed ICESat thickness distributions, it is not used to change the thickness of the ice with time.

4. Results for the Ice-Covered Arctic Ocean

The results presented in this section are for the sea ice covered region of the Arctic Ocean containing valid ICESat data. The ocean-atmosphere heat fluxes and ice growth rates represent approximately a monthly mean value for the study region.

4.1. Heat Flux and Ice Growth in Regions Containing ICESat Data

Changes in the percentage distribution of different Arctic sea ice thickness classes over the 2003–2008 time period are shown in Figure 3 for both the fall and winter time periods. A general thinning of the ice cover is observed due to the loss of ice with thickness greater than 3 m. This is consistent with recent studies showing much of the older, thicker multiyear ice cover of the Arctic being replaced with thinner first year ice [Maslanik et al., 2007; Comiso et al., 2008]. Using similar data sets and methods, Kwok et al.
showed a comparable thinning of the Arctic sea ice cover with an overall decrease in the mean thickness over the same time period. The sea ice thickness results shown here differ from those of Kwok et al. [2009] due mainly to differences in the sea ice density used (Kwok et al. [2009] used $\rho_i = 925 \text{ kg m}^{-3}$ while this study uses $\rho_i = 915 \text{ kg m}^{-3}$). Wadhams et al. [1992] summarize the results of numerous field measurements from the 1950s through the 1970s which suggest the mean density of sea ice is typically within the range 910–920 kg m$^{-3}$ for first year ice and 910–915 kg m$^{-3}$ for multiyear ice. However, whether the density of sea ice has changed with time due to changing ice conditions is an important, but unknown factor in the determination of sea ice thickness. Errors in the calculated heat flux and ice growth rates due to uncertainty in sea ice density are discussed in section 5. Figure 3 also shows the changes that occurred to the mean effective insulation of the sea ice cover over this time period. The effective insulation is defined here as the

\[\text{Effective Insulation} = \frac{\text{Effective Insulation of Snow plus Sea Ice}}{\text{Effective Insulation of Snow Free Sea Ice}}\]
the thermal insulating strength of the snow plus sea ice layer in terms of an equivalent thickness of snow-free sea ice, it is calculated as $h_{\text{eff}} = h_i + \frac{k_i}{h_i}$. The effective insulation of the fall ice pack decreased significantly in 2005 then remained relatively constant. The loss in the effective insulation during the fall periods is associated mainly with thinning of the sea ice rather than a loss of snow. During the winter time periods, the effective insulation stayed relatively constant until 2008 when it decreased by approximately 1 m (Figure 3). This decrease in the winter of 2008 is due to the thinning of both the sea ice and snow covers which is associated with the large loss in multiyear ice and record minimum sea ice extent observed in 2007.

The percentage of ice within a given ice thickness class and the area weighted heat flux values for the various thickness classes are shown in Table 3. Also shown in Table 3 are the following mean input parameters: 2 m air temperature, cloud fraction, wind speed, and the calculated surface temperature. The calculated values are for areas where freeboard data from ICESat were available which can be seen in Figures 4 and 5. Areas without ICESat data were not considered in the analysis in this section.

Table 3 shows that over half of the ice production and ocean-atmosphere heat flux (\dot{F}_s) in the ice-covered regions of the Arctic Ocean occurred over areas with an ice thickness less than 80 cm. In particular, open water and newly refrozen leads with an ice thickness less than 10 cm accounted for nearly one-third of the ocean-atmosphere heat flux and ice production within ice-covered areas. The thickest ice (>1.6 m) is the dominant ice type and was found to make up 50–60% of the total observed ice in the Arctic. Yet, the thickest ice accounted for only 20–30% of the observed ice production and ocean-atmosphere heat flux. The basin wide averaged ice growth rate was generally higher in the winter than in the fall, this was due to the lower surface air temperatures and increased area of first year ice during the winter periods. The percentage contribution of each thickness class to ice production and heat flux varied due to the changing ice thickness distributions and input meteorological parameters.

The net radiative flux showed the highest variability of the radiative, turbulent, and conductive heat fluxes. However, if we exclude the anomalous MA07 time period from comparison (which had a higher net radiative flux due to the increased shortwave flux of the later spring period) the net radiation was almost constant and varied by only 4 W m$^{-2}$. The loss of radiative energy by the atmosphere was observed to be much stronger over areas of thick ice rather than thin ice. The sensible heat flux was quite variable with variations of 8 W m$^{-2}$ seen during the study period. It acted to transfer heat from the surface to the atmosphere over relatively warm, thin ice ($h_i < 0.4$ m), while over ice thicker than 0.4 m, it transferred heat from the atmosphere to the surface. Overall, the sensible heat flux was positive owing to the large areas of thick ice in the Arctic, this resulted in a net sensible heat gain by the ice. The latent heat flux varied by 2 W m$^{-2}$ for all time periods and was generally a source of small but steady heat input to the atmosphere.

The input forcings and calculated heat flux values from this study are compared with results and observations from studies by Lindsay [1998], Maykut [1982], and Persson et al. [2002] in Table 4. The results shown in Table 4 for this study represent the mean over sea ice 2.75–3.25 m thick to best correspond with the observations conducted on multiyear ice floes in the comparison studies. The computed heat fluxes and forcing parameters derived in this study are within the range of observational values, with the exception of the sensible heat flux and surface air temperature, which were found to be slightly higher during the fall periods. We also compare our results for ice growth rates with those observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Perovich et al. [2003] studied basal ice growth rates for a 1.75 m thick multiyear ice floe (“Quebec site”) which grew to about 2.25 m thick between early October and March 1998. They report growth rates of 0.10–0.30 cm d$^{-1}$ in the fall and 0.25–0.50 cm d$^{-1}$ in the winter (at comparable times to the fall and winter ICESat campaigns shown in Table 2). For a similar ice thickness class (ice of thickness between 1.75 and 2.25 m), we obtained similar Arctic-wide growth rates of 0.19–0.32 cm d$^{-1}$ (mean 0.24 cm d$^{-1}$) in the fall and 0.27–0.44 cm d$^{-1}$ (mean 0.33 cm d$^{-1}$) in the winter. These comparisons demonstrate reasonable agreement between our derived results and observations from previous studies.

The major advantage of the remote sensing data sets used here is that it is now possible to calculate the ocean-atmosphere heat flux and ice growth rate for all ice-covered areas of the Arctic. Table 3 thus expands on the knowledge from previous observational studies by providing information over the full range of ice thickness classes of the Arctic Ocean.

Maps of the mean effective insulation, surface air temperature, ocean-atmosphere heat flux, and ice growth rate are shown in Figure 4 for the fall time periods and Figure 5 for the winter time periods. Figures 4 and 5 show that there was great spatial and temporal variability in the effective insulation, air temperature, heat flux, and ice growth rate during the study period. An analysis of the variability in the heat flux and ice growth rate, due to losses in the effective insulation coupled with changes in the meteorological forcings, is the subject of section 4.2.

4.2. Analysis of Heat Flux and Ice Growth Variability

The mean values for the ocean-atmosphere heat fluxes and ice growth rates in Table 3 do not show a clear correlation between an increased ocean-atmosphere heat flux/growth rate and the observed decrease in ice thickness and snow depth derived from the ICESat and snow model data sets. This follows since the observed heat flux also depends on the various meteorological forcings with the surface air temperature playing the largest role. Since surface air temperatures in the Arctic tend to be highly variable, it is likely that any trend in the heat flux values over this short 5 year time period is masked by the natural variability caused by variations in the surface air temperature.

The goal of this section is to better understand the causes of the variability that occurred over the study period. That is, we seek to determine whether the observed variability of the heat flux and ice growth is due mainly to changes in meteorological conditions, changes in ice and snow thickness, or uncertainties in the input parameters. First, we first determine the uncertainty in the heat flux and ice growth rates through estimation of the errors in the input parameters. Next we run the thermodynamic model for each time period using constant meteorological forcings to focus...
Table 3. Thickness Distribution Averages, Ice Production, and Heat Flux Values Over the Ice-Covered Regions of the Arctic Ocean

<table>
<thead>
<tr>
<th>Thickness Category</th>
<th>ON03_1</th>
<th>ON03_2</th>
<th>FM04</th>
<th>ON04</th>
<th>ON05</th>
<th>FM05</th>
<th>ON06</th>
<th>FM06</th>
<th>MA07</th>
<th>ON07</th>
<th>FM08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Ice in Each Thickness Category</td>
<td></td>
</tr>
<tr>
<td>0-0.1 m</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
<td>1.3</td>
<td>1.3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>0.1-0.2 m</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>0.2-0.4 m</td>
<td>2.6</td>
<td>2.8</td>
<td>3.4</td>
<td>2.9</td>
<td>4.2</td>
<td>4.7</td>
<td>3.6</td>
<td>3.7</td>
<td>2.7</td>
<td>3.8</td>
<td>2.7</td>
</tr>
<tr>
<td>0.4-0.8 m</td>
<td>9.9</td>
<td>11.6</td>
<td>13.0</td>
<td>10.7</td>
<td>14.3</td>
<td>17.5</td>
<td>15.2</td>
<td>16.4</td>
<td>11.7</td>
<td>15.4</td>
<td>14.2</td>
</tr>
<tr>
<td>0.8-1.6 m</td>
<td>21.9</td>
<td>23.7</td>
<td>28.3</td>
<td>22.0</td>
<td>26.0</td>
<td>29.1</td>
<td>31.3</td>
<td>28.6</td>
<td>29.5</td>
<td>29.8</td>
<td>31.9</td>
</tr>
<tr>
<td>1.6-3.0 m</td>
<td>29.5</td>
<td>28.9</td>
<td>26.2</td>
<td>28.8</td>
<td>23.0</td>
<td>26.3</td>
<td>23.7</td>
<td>27.6</td>
<td>28.4</td>
<td>30.5</td>
<td>32.1</td>
</tr>
<tr>
<td>3.0-5.0 m</td>
<td>34.2</td>
<td>31.0</td>
<td>26.6</td>
<td>33.6</td>
<td>29.7</td>
<td>19.8</td>
<td>23.5</td>
<td>21.3</td>
<td>25.6</td>
<td>18.1</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Net Radiation \(F_r + F_a - F_E \) (W m\(^{-2}\))

<table>
<thead>
<tr>
<th>Thickness Category</th>
<th>ON03_1</th>
<th>ON03_2</th>
<th>FM04</th>
<th>ON04</th>
<th>ON05</th>
<th>FM05</th>
<th>ON06</th>
<th>FM06</th>
<th>MA07</th>
<th>ON07</th>
<th>FM08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensible Heat Flux (F_s) (W m(^{-2}))</td>
<td></td>
</tr>
<tr>
<td>0-0.1 m</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>0.1-0.2 m</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>0.2-0.4 m</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>0.4-0.8 m</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>0.8-1.6 m</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>1.6-(\infty)</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>3.0</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
<td>3.8</td>
<td>4.0</td>
<td>4.2</td>
<td>4.4</td>
<td>4.6</td>
<td>4.8</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Latent Heat Flux \(F_l \) (W m\(^{-2}\))

<table>
<thead>
<tr>
<th>Thickness Category</th>
<th>ON03_1</th>
<th>ON03_2</th>
<th>FM04</th>
<th>ON04</th>
<th>ON05</th>
<th>FM05</th>
<th>ON06</th>
<th>FM06</th>
<th>MA07</th>
<th>ON07</th>
<th>FM08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive Heat Flux (F_c) (W m(^{-2}))</td>
<td></td>
</tr>
<tr>
<td>0-0.1 m</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>0.1-0.2 m</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>0.2-0.4 m</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>0.4-0.8 m</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>0.8-1.6 m</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>1.6-(\infty)</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>5.0</td>
<td>5.2</td>
<td>5.4</td>
<td>5.6</td>
<td>5.8</td>
<td>6.0</td>
<td>6.2</td>
<td>6.4</td>
<td>6.6</td>
<td>6.8</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Ice Growth Rate (cm month\(^{-1}\))

<table>
<thead>
<tr>
<th>Thickness Category</th>
<th>ON03_1</th>
<th>ON03_2</th>
<th>FM04</th>
<th>ON04</th>
<th>ON05</th>
<th>FM05</th>
<th>ON06</th>
<th>FM06</th>
<th>MA07</th>
<th>ON07</th>
<th>FM08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Input Parameters</td>
<td></td>
</tr>
<tr>
<td>(\langle</td>
<td>T_s</td>
<td>\rangle) (K)</td>
<td>253.8</td>
<td>250.2</td>
<td>244.5</td>
<td>252.9</td>
<td>249.3</td>
<td>251.7</td>
<td>249.1</td>
<td>250.8</td>
<td>253.1</td>
</tr>
<tr>
<td>(\langle</td>
<td>T_a</td>
<td>\rangle) (K)</td>
<td>251.8</td>
<td>248.2</td>
<td>242.7</td>
<td>251.0</td>
<td>246.3</td>
<td>250.2</td>
<td>247.0</td>
<td>249.7</td>
<td>251.6</td>
</tr>
<tr>
<td>(\langle</td>
<td>C_l</td>
<td>\rangle)</td>
<td>0.64</td>
<td>0.58</td>
<td>0.42</td>
<td>0.61</td>
<td>0.48</td>
<td>0.58</td>
<td>0.44</td>
<td>0.67</td>
<td>0.55</td>
</tr>
<tr>
<td>(\langle u \rangle) (m s(^{-1}))</td>
<td>6.2</td>
<td>5.5</td>
<td>6.2</td>
<td>6.0</td>
<td>6.3</td>
<td>6.2</td>
<td>6.5</td>
<td>6.2</td>
<td>6.8</td>
<td>6.7</td>
<td>5.7</td>
</tr>
</tbody>
</table>

The heat fluxes and ice production rates for the different ice thickness categories have been weighted by the percentage of ice within each respective thickness category.

564 exclusively on how the observed changes to the sea ice and
565 snow thickness distributions affected the heat flux and
566 growth rates across the Arctic ice pack.

4.2.1. Sensitivity to Input Parameter Uncertainties

568 [33] We now estimate the sensitivities and uncertainties
569 in the heat flux and growth rate due to variations in the
570 input parameters. To determine the impact of variability in
571 the input parameters on the heat flux and ice growth rate,
572 the thermodynamic model was run multiple times to simulate
573 variations in each individual parameter separately over a
574 range of values. The goal was to calculate the sensitivities of
575 the heat flux (\(\frac{\Delta F}{\Delta x} \)) and ice growth rate (\(\frac{\Delta \text{ice}}{\Delta x} \)) to the input
576 parameters (\(x \)), and estimate an uncertainty value by multi-
577 plying the sensitivity by the estimated uncertainty, \(\sigma_x \), Sea-
578

8 of 19
sonal sensitivities were calculated and used in the estimation of the uncertainties of the heat fluxes and ice growth rates in section 4.2.2. Average values of the calculated sensitivities and estimated uncertainties for the fall and winter time periods are shown in Table 5. In the following discussion, only the freeboard uncertainties are assumed to be from a zero mean random process. All other error sources are not well constrained, thus the net error estimates s_{F} and s_{growth} presented in Table 5 are RSS errors calculated from the individual error terms.

Estimating uncertainties for the meteorological input parameters is challenging since errors in the ECMWF Interim surface air temperature, and wind speed for the Arctic have not been adequately determined at this time. For sea ice covered regions, the ECMWF meteorological parameters are modeled assuming a uniform snow-free 1.5 m thick ice slab, ice concentration is considered using a blend of model and observation data [Stark et al., 2007]. As shown in Figures 4 and 5, the assumption of a uniform effective ice thickness of 1.5 m is typically not valid which may impact the ECMWF model results. The uncertainties in the ECMWF data depend not only on the model accuracy, but also on the quantity and quality of observations used in the assimilation which can vary considerably in time and space. Here we estimate the uncertainties in these values by assuming that they represent 50% of the maximum observed variability of the areal mean across similar time periods. For example, the mean surface air temperature of the ice-covered Arctic, $\langle T_a \rangle$, varied from 253.3–257.9 K between the ON03 1, ON04, and ON07 campaigns leading to an observed variability of 4.6 K and an estimated uncertainty of 2.3 K. Similarly, uncertainties of 0.6 m/s were estimated for the wind speed. Lupkes et al. [2010] compared ECMWF Interim near surface air temperatures and wind speeds to data from several ship cruises in the late summer in the Arctic and found a warm bias of 1.5–2 K in the Interim temperature data set and near zero error in the wind speed. While this bias in the summer data may not apply to the fall and winter time periods used in this study, it suggests that our uncertainties for the surface air temperature and wind speed may be a reasonable estimate. However, the uncertainty in the surface air temperature may vary regionally as it depends on the number of observations used in the assimilation. Additionally, the low resolution of the ECMWF data could potentially lead to errors near the ice.
Errors in the MODIS cloud fractions are estimated to be 0.1 for the Arctic region based on a study by Ackerman et al. [2008].

Errors in the ice thickness and snow depth input parameters are due to uncertainties in the freeboard, snow depth, and density values. Errors in the freeboard were assumed to be unbiased (after the corrections for biases due to snow and ice contamination were applied) but estimated to have a random normally distributed error of $\sigma_{fb} = 5$ cm [Kwok and Cunningham, 2008]. σ_{ri} is estimated to be 10 kg/m3 which represents the range of expected densities for sea ice between 0.3 and 3 m thick [Kovacs, 1996].

Table 4. Comparison of Heat Flux and Forcing Parameters for the Mean of All 2.75–3.25 m Thick Ice Areas With Observations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>This Study (Ice Only)</th>
<th>L98</th>
<th>M82</th>
<th>P02</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_r (W m$^{-2}$)</td>
<td>$-22 (-23)$</td>
<td>$-24 (-26)$</td>
<td>$-23 (-18)$</td>
<td>$-20 (-20)$</td>
</tr>
<tr>
<td>T_a (K)</td>
<td>$8 (4)$</td>
<td>$12 (5)$</td>
<td>$5 (5)$</td>
<td></td>
</tr>
<tr>
<td>h_s (cm)</td>
<td>$248 (252)$</td>
<td>$241 (250)$</td>
<td>$242 (249)$</td>
<td>$251 (250)$</td>
</tr>
<tr>
<td>u (m s$^{-1}$)</td>
<td>$6 (6)$</td>
<td>$4 (4)$</td>
<td>$5 (5)$</td>
<td>$5 (7)$</td>
</tr>
<tr>
<td>Cl (%)</td>
<td>$0.5 (0.6)$</td>
<td>$0.5 (0.6)$</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 5. Sensitivity of the Ocean-Atmosphere Heat Flux and Ice Growth Rate to Variations in the Input Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Heat Flux (W m$^{-2}$)</th>
<th>Growth Rate (cm month$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a (K)</td>
<td>2.3</td>
<td>1.1</td>
</tr>
<tr>
<td>F_r (W m$^{-2}$)</td>
<td>10</td>
<td>$0.2 (0.01)$</td>
</tr>
<tr>
<td>h_s (cm)</td>
<td>5</td>
<td>$0.3 (0.3)$</td>
</tr>
<tr>
<td>u (m s$^{-1}$)</td>
<td>5</td>
<td>$0.2 (0.01)$</td>
</tr>
<tr>
<td>Cl (%)</td>
<td>10</td>
<td>$0.1 (0.1)$</td>
</tr>
</tbody>
</table>

Results for the winter time periods are in parentheses.

Figure 5. Map of the effective insulation, snow depth, and air temperature parameters and the calculated ocean-atmosphere heat fluxes and ice growth rates for the winter and early spring measurement periods.
with a thickness greater than 3 m experienced the greatest insulation during these time periods. The percentage of ice distribution and an associated large decline in the effective period has a higher heat flux than the FM04 time period surface air temperatures. Similarly, the winter FM08 time changes in the ON05, ON06, ON07, and FM08 time periods are disproportionate compared to earlier changes in the mean ocean observed variability in the ocean forcings shown in Table 5 demonstrate that changes in the sensitivities due to variations in the density of sea water, dew point temperature (humidity), and surface air pressure are small and not considered here. Errors in the snow depth are unknown and estimated to be 5 cm here, but this value will be shown to be of small importance in the following discussion.

Table 5 shows that most of the uncertainty in both the heat flux and ice growth values is due to the relatively large uncertainty estimated for T_a with lesser contributions due to uncertainty associated with sea ice freeboard, cloud fraction, wind speed, snow density, and ice density. Errors due to snow depth uncertainties are minor and contribute little to uncertainties in the heat flux and growth rates since errors in the snow depth are nearly canceled by the corresponding retrieval errors in ice thickness. Essentially, 1 cm of snow has an effective insulation of $k_s/k_h = 6.5$ cm of ice, while a 1 cm error in snow depth leads to a corresponding error of $\frac{s}{n} \approx 0.7$.

Variability in the surface air temperature is therefore one of the main factors that must be considered in analyzing the heat flux and growth rates calculated here, additional studies of the error in the observed variability in the ocean-atmosphere heat flux and ice growth rates is due to freeboard uncertainties, these errors are due to instrumental uncertainties and set a lower limit for the total uncertainty in the calculated heat flux and ice growth rate.

4.2.2. Heat Flux Variability in Ice-Covered Regions

The sensitivity results for the various meteorological forcings shown in Table 5 demonstrate that changes in T_a are much more dominant than C_1 and u in affecting variability in the calculated heat fluxes and ice growth rates. Variability in the surface air temperature is therefore one of the main factors that must be considered in analyzing the observed variability in the ocean-atmosphere heat flux and ice growth rate. Figure 6 shows the mean ocean-atmosphere heat flux and ice growth rate for the ice-covered Arctic Ocean over the different time periods as well as the corresponding mean surface air temperatures. The observed heat fluxes and growth rate values can be seen to primarily change with variations in the surface air temperature. However, the changes in the ON05, ON06, ON07, and FM08 time periods are disproportionate compared to earlier changes in T_a. The ON05 and ON06 heat fluxes were much higher than those observed during the ON03-2 time period despite the higher surface air temperatures. Similarly, the winter FM08 time period has a higher heat flux than the FM04 time period despite a higher surface air temperature of 2.1 K. Figure 3 shows that there was a significant change in ice thickness distribution and an associated large decline in the effective insulation during these time periods. The percentage of ice with a thickness greater than 3 m experienced the greatest decline beginning around the fall of 2005 and this was accompanied by an increase in the percentage of 0.4–1.6 m ice in the fall and 0.8–1.6 m ice in the winter. As shown in Figure 2, the ocean-atmosphere heat flux is sensitive to changes in the percentage of thin ice, especially for ice less than approximately 1 m thick. The percentage of the thickest ice classes (<0.4 m) did not change significantly over the 2003–2008 time period, however this value is reported for the ice-covered Arctic only and does not take into account the large changes in open water and loss of ice area for the entire Arctic also observed during this time period.

The FM05 and FM06 time periods have similar mean growth rates, heat fluxes, and surface air temperatures (Figures 6b and 6d) even though there was a decline in the percentage of thick ice during this time and a decline in mean ice thickness of 38 cm. The decrease in the percentage of the ice >3 m thick was compensated by an increase in the percentage of ice 1.6–3.0 m thick (Figure 3b). Since the ocean-atmosphere heat flux and ice growth are much less sensitive to changes in ice in this thickness range it appears that variability in heat flux and ice growth during these winter time periods was dominated more by variability in the surface air temperature. The MA07 heat flux and growth rate is much lower than the other winter time periods, this is likely due to the higher surface air temperatures resulting from the later date of data collection as well as thicker ice cover due to the longer time available for sea ice growth.

The full effect of the observed increase in the ocean-atmosphere heat flux due to a thinning of the ice and snow cover is difficult to quantify since the ocean-atmosphere heat flux and surface air temperature are coupled. The ocean-atmosphere heat flux will increase with decreasing temperature and vice versa until an equilibrium is reached between the surface heat flux and other factors (such as atmospheric energy transport) which determine the surface air temperature. Nevertheless, to investigate the effect of changes in the snow and ice thickness distribution on the observed heat flux values (independent of changes due to meteorological conditions), we ran the thermodynamic model for the ice and snow thickness distributions for each individual time period using the same fixed meteorological conditions. Figure 7 shows the ocean-atmosphere heat flux differences for the individual time periods under the same meteorological conditions relative to the first campaign of the fall or winter season. This shows that thinning of the sea ice and snow covers led to potential ocean-atmosphere heat flux increases of nearly 6 W m$^{-2}$ for the fall 2005–2007 time periods compared to the 2003 time period (an increase of approximately 40% over the heat flux observed in ON03_1). Despite the similarly large decrease in the effective insulation observed in ON05 and FM08 (Figure 3), the FM08 ocean-atmosphere heat flux would only be 2 W m$^{-2}$ higher than FM04 under equivalent meteorological conditions (an increase of approximately 10% from the observed heat flux in FM08), but this is also within the uncertainty of the values.

The results show that the observed thinning of sea ice during the 2005–2008 time period led to large increases in the ocean-atmosphere heat fluxes for the subsequent fall periods. The increased ocean-atmosphere heat flux likely impacted the surface air temperatures and may have played a part in the surface air temperature anomalies observed during this same period by Serrze et al. [2009]. The winter results suggest that despite losses in ice thickness and
effective insulation, growth of the sea ice and the addition of snow over the fall and early winter limited increases to the winter heat flux. The MA07 results show a lower equivalent heat flux than FM04 which is due to the additional time for growth for the thin ice classes which reduces the overall heat flux. The FM08 results suggest that an increase in the ocean-atmosphere heat flux may be beginning to appear in the winter due to the large decrease in ice and snow thickness (effective insulation), however this cannot be fully determined here due to uncertainties in the input parameters.

4.3. East and West Arctic Differences

Sections 4.1 and 4.2.2 showed that ice thickness and energy exchange for the ice-covered regions of the Arctic Ocean experienced changes for the 2003–2008 time period, however certain regions of the Arctic were impacted differently than others. Here we discuss the regional impact of such changes by dividing the Arctic into two regions, East Arctic (0°–180° longitude) and West Arctic (180°–360° longitude), for the purpose of studying the regional variability of ice thickness, energy exchange, and ice growth.

Figure 6. The mean ocean-atmosphere heat flux, basal ice growth rate, and 2 m air temperature for ice-covered regions during the Arctic fall and winter seasons.
Much of the ice of thickness greater than 3 m was replaced by ice 0.4–1.6 m thick, with large increases in the 0.2–0.8 m ice thickness class in the East Arctic. Both regions experienced similar variabilities in the surface air temperature, but differences in growth rate variabilities can be seen between the eastern and western Arctic regions due to differences in the ice thickness distribution. In 2005 and 2006 the East Arctic region experienced sharp increases in the ice growth rate/heat flux compared to the ON03_1 period (which had a lower surface air temperature) due largely to the increased amount of 0.2–0.8 m thick ice. The West Arctic region experienced similar, but less prominent, increases in the ice growth/heat flux in 2005 and 2006 due to the loss of thick ice >3 m.

Figure 9 shows the regional thickness distributions, ice growth rate, and surface air temperature for the winter periods. The East Arctic winter time periods also experienced a general decline in the percentage of thick ice >3 m while the West Arctic did not see large changes in the ice thickness distribution until 2008. Despite losses in the thickest ice category as well as the overall mean ice thickness, the ice growth rate/heat flux is similar for the respective regions with similar surface air temperatures. Thus, as was observed in section 4.2 for the ice-covered Arctic, most of the winter time variability in ice growth rates appears to be due to changes in surface air temperature rather than due to changes in the ice thickness distribution.

5. Results for the Full Arctic Ocean

Section 4 showed changes to the ocean-atmosphere heat flux and ice growth rate for areas containing ICESat data. We now extend the analysis to the full Arctic Ocean, including open water areas, to better place the results into context given the large changes in sea ice areal coverage over the time period.

In this section, the heat flux and ice growth rates are calculated for nonice-covered areas by using sea surface temperature data described in section 2. Areas with an ice concentration greater than 0 and less than 30% were treated initially as open water, but with a sea surface temperature at the freezing point of sea water. For the nonice-covered areas, the ice growth rate and ocean-atmosphere heat flux were calculated at 6 h time intervals. If the sea surface temperature was at the freezing point the ice was allowed to grow in thickness and the growth rate was approximated from the net surface heat flux in nonice-covered areas, to better place the results into context given the large changes in sea ice areal coverage over the time period.

To determine the net heat output and ice production of the Arctic Ocean, we first grid the heat flux and ice growth rate data onto a 25 km polar stereographic grid. Gaps in the gridded data were filled in through the use of a Gaussian smoother with a 20 km length scale (following Kwok et al. [2009]). Ice-covered and nonice-covered areas were filled in independently using their respective data sets. The pole

Figure 7. Ocean-atmosphere heat flux differences for the different time periods under the same meteorological conditions, differences are relative to the first campaign of the season. The error bars for the heat flux differences are taken from the combined uncertainties from the freeboard, snow depth, snow density, and ice density uncertainties discussed in section 4.2.1.
hole north of 86 degrees was not filled in due to the large uncertainty introduced in interpolating the data over such a large region. The total area of the Arctic Ocean considered in this section for all time periods is 6.47×10^6 km2. The net surface heating rate and net ice volume production are this area value multiplied by the ocean-atmosphere heat flux and ice growth rates, respectively. Results for the net surface heating rate and ice volume production as well as the areal coverage of ice and nonice areas are shown in Figure 10.

5.1. Net Arctic Ocean Heat Output

Figure 10c shows an increasing trend in the total Arctic Ocean heating rate for the fall periods, while Figure 10d shows comparatively little change in the winter heating rate. Figures 10a and 10d show that for sea ice-covered regions, the net heating rate did not change markedly compared to the full Arctic Ocean domain in both the fall and winter. The heating rate over nonice-covered areas changed most dramatically in 2007 due to the larger amount of open water in that year (Figures 10b and 10e), increasing by nearly a factor of 5 from the previous years. Though ice-covered areas made up the dominant portion of the Arctic Ocean, the total heating rates were nearly equal over ice-covered and nonice-covered areas for the fall periods (with the exception of 2007). In 2004, 2005, and 2006 the net heating rate increased by 44%, 17%, and 12% from 2003, respectively. While in 2007 the large increase in nonice-covered areal coverage caused the total heating rate for the Arctic Ocean to increase by 300% from that in 2003. With the exception of the much later MA07 measurement time period, there was much less change in the winter time heating rates with a maximum change of 16% observed.

[47] The results show an overall increase in the amount of ocean-atmosphere heat transfer in the fall periods. Section 4.2.2 showed that independent of changes in meteorological conditions, thinning of the sea ice cover is...
responsible for up to a 40% increase in the net heat output in the ice-covered Arctic Ocean. However, this increase is small compared to the effect caused by changes in the ice areal coverage. The anomalously low areal coverage of sea ice in 2007 marked a turning point where the net Arctic Ocean heating rate became dominantly determined by the amount of ice-free area.

5.2. Net Arctic Ocean Ice Production

The observed changes in sea ice thickness and ocean-atmosphere heat flux also lead to changes in the ice growth rate. Of particular interest is whether the observed losses in sea ice thickness and areal coverage led to a higher rate of ice production which could aid in the recovery of sea ice thickness and volume. For sea ice-covered regions, the mean basal ice growth rates are shown in Table 6. Though basal ice growth varied with time depending on the surface air temperature and ice thickness distribution in a similar manner as the heat flux, Table 6 shows that a higher growth rate in the fall was generally followed by a lower growth rate in the winter and vice versa. The observed decreases in ice thickness may be due to a longer melt season as observed by Markus et al. [2009], increased oceanic heat flux as observed for the western Arctic by Woodgate et al. [2010], and/or increased ice export rather than due to changes in ice growth. These observations show that an expected increased basal ice growth rate associated with decreasing ice thickness did not largely occur over the 2003–2008 time period mainly due to associated changes in the surface air temperature.

The rate of ice volume production for ice-covered and nonice-covered areas is shown in Figure 10, the production of ice can be seen to vary considerably from year to year. For the fall season ice-covered portion of the Arctic Ocean, the production of ice peaked in 2005 and 2006 due in part to the thinning of the ice cover and associated

Figure 9. Winter time period ice thickness distributions, mean basal ice growth rates, and mean surface air temperatures for the ice-covered east and west Arctic regions.
Figure 10. Net ocean-atmosphere heating rate and ice volume production for the (a) ice-covered, (b) nonice-covered, and (c and d) total Arctic Ocean. (e) The dark colored bars represent the areal coverage of ice-covered regions, and the light colored bars represent the nonice-covered areal coverage. For the winter time periods, all regions are ice covered. The total area of the Arctic Ocean domain for all time periods in this study is 6.47×10^6 km2.
increased ocean-atmosphere heat flux discussed in section 4.

In 2007, the production of ice in ice-covered regions reached the lowest point due to the high surface air temperatures and low ice areal coverage of the time period. While in nonice-covered areas the ice production increased by nearly a factor of 3 compared to the previous fall seasons.

[52] For the full Arctic Ocean fall periods, the combination of ice production in ice-covered and nonice-covered areas led to a peak in the ice production in 2005 and a decrease in the following years. Despite the large increase in total ocean-atmosphere heat output in 2007, warm ocean and air temperatures kept the level of ice production near to that of 2004. Thus, the 2007 ice minimum led to a greatly increased release of heat from the ocean to the atmosphere, however this increased heating rate did not lead to an increase in overall ice production because the ocean had yet to cool to the freezing point. The winter period ice production was much less variable, excluding the much later MA07 measurement period the ice production varied by less than 20% over the 2004–2008 time period. The winter time ice production variability was driven primarily by variability in the surface air temperature.

6. Summary and Discussion

[53] The heat flux and ice growth rates in ice-covered regions presented here are consistent with those from previous observational studies conducted on multiyear ice. The advantage of the data sets used in this study is that they allow for estimates of heat flux over the entire Arctic basin. Also in agreement with the results of previous studies [e.g., Kwok et al., 2009; Giles et al., 2008; Maslaniak et al., 2007], this study shows that during the 2003–2008 time period the mean Arctic sea ice thickness decreased with much of the thickest ice (>3 m) being replaced by ice 0.8–3.0 m thick. Variability in the calculated ocean-atmosphere heat flux and basal ice growth for ice-covered regions was primarily driven by changes in the surface air temperature as well as by the observed changes in the ice thickness distribution.

Heat fluxes during the fall periods were more sensitive to changes in the ice thickness distribution, with the eastern Arctic experiencing the greatest change in ice growth and heat flux due to changes in the ice thickness distribution. Taking variations in meteorological conditions into account, the fall period ocean-atmosphere heat fluxes were found to be greatly increased in 2005, 2006, and 2007 compared to 2003 due to thinning of the sea ice cover. The winter time heat fluxes were much more impacted by changes in the surface air temperature rather than changes in the ice thickness distribution. Although the mean ice thickness decreased over the 2004–2008 winter time periods, the winter effective insulation did not largely change until 2008 at which time it experienced a large decline of nearly 1 m in effective sea ice thickness. The large decline in the winter 2008 effective insulation is also associated with an increase in the heat flux after differences in meteorological forcings are taken into account, though this increase is not as prominent as that observed in the fall and is within the estimated uncertainty.

[55] For the whole of the Arctic Ocean, this study shows that increases in the net ocean-atmosphere heat output have occurred due to thinning and area (volume) loss of the Arctic sea ice cover. However, a remaining question is: what magnitude of changes to the surface air temperature have occurred due to this decrease in sea ice volume and associated increase in the ocean-atmosphere heat flux? Surface air temperatures in the Arctic are highly variable so quantifying the impact of a changing sea ice cover on surface air temperatures is difficult [Serreze and Francis, 2006]. Serreze et al. [2009] show that decreases in the areal extent of Arctic sea ice are tied to increased surface air temperatures for the 1979–2007 fall seasons, but that this effect is not largely present during the winter season. The increased surface air temperatures in the fall were found to be due to a surface heating source and attributed to an increased surface heat flux. This study shows that over the 2003–2008 time period losses in both ice thickness and areal coverage did indeed lead to an overall increase in the surface heat flux. Despite large losses in ice thickness and effective insulation, changes in ice areal coverage were found to be the dominant factor in impacting the surface heat flux. Most notably, the anomalously low areal coverage of sea in the fall of 2007 led to an ocean-atmosphere heat output nearly 3 times higher than that from previous years.

[56] Serreze et al. [2009] also note that slight warming may also be beginning to appear in the winter time. They state this may be due to delays in autumn freezeup, but eventually decreased ice extent and thickness in the winter will also begin to play a role. Delays in autumn freezeup have been observed by Markus et al. [2009]. However, this study shows that though there was a decrease in the mean thickness and amount of thick (>3 m) ice in the winter, these changes did not lead to a large change in the ocean-atmosphere heating rate since it is less sensitive to changes in the amount of
1021 thick ice. It appears that a surface warming signal associated
1022 with a thinning sea ice cover could just be beginning to
1023 emerge in the winter, but future observations will be required
1024 to determine whether this effect becomes stronger and more
1025 significant with time.
1026 [57] Overall, these results show that the decreasing volume
1027 of the Arctic sea ice cover has led to a decreasing ability to
1028 insulate the atmosphere from the relatively warm underlying
1029 ocean. This effect is currently most pronounced in the fall,
1030 with the winter being less affected as the ice has sufficiently
1031 thickened to a point where the ocean-atmosphere heat flux is
1032 less sensitive to changes in the ice thickness. These increased
1033 heat fluxes in the fall periods likely played a role in increasing
1034 surface air temperatures in the Arctic. Though this data set
1035 spans only 5 years, it was collected at a time when large losses
1036 in sea ice thickness and areal extent were observed. The
1037 continuation of large-scale sea ice thickness measurements
1038 from future airborne and satellite missions such as NASA’s
1039 Operation IceBridge and the planned ICESat-2 mission, as
1040 well as ESA’s CryoSat-2 mission, will be vital to under-
1041 standing future changes to the sea ice cover and its impact
1042 on the climate.
1043 [58] A major limitation in this study of the Arctic ocean-
1044 atmosphere heat flux and ice growth rate is the irregular time
1045 sampling and limited temporal availability of ICESat data.
1046 Future satellite altimetry missions will maintain year-round
1047 data collection for improved observation of year-to-year
1048 variations. For the currently available ICESat data, it would
1049 be useful to combine the observational data with model data
1050 using an assimilation approach. Doing so would enable a
1051 better understanding of reasons for the large losses in ice
1052 volume over the time period, how annual ice production was
1053 affected by the observed changes, and how an increased
1054 ocean-atmosphere heat flux from a reduced ice cover affected
1055 surface air temperatures throughout the whole of the Arctic.

References

1066 Acknowledgments. The authors would like to thank two anony-
1067 mous reviewers for their invaluable suggestions, which helped in improving
1068 the manuscript. The ECMWF data for this study are from the Research Data
1069 Archive (RDA), which is maintained by the Computational and Information
1070 Systems Laboratory (CSIL) at the National Center for Atmospheric Research
1071 (NCAR). NCAR is sponsored by the National Science Foundation (NSF).
1072 The original data are available from the RDA (http://dss.ucar.edu) in data
1073 set number ds627.0. We also acknowledge NSIDC for providing the
1074 AMSR-E and ICESat data used in this study (http://nsidc.org/).

1086 Key, J. R., R. A. Silcox, and R. S. Stone (1996), Evaluation of surface
1087 radiative flux parameterizations for use in sea ice models, J. Geophys.
1089 Kovacs, A. (1996), Sea ice: Part II. Estimating the full-scale tensile, flexural,
1090 and compressive strength of first-year ice, Rep. 96-11, Cold Reg. Res. and
1091 Eng. Lab, Hanover, N. H.
1092 Kurtz, N. T., T. Markus, D. J. Cavalieri, W. Krabill, J. G. Sonntag, and
1093 J. Miller (2008), Comparison of ICESat data with airborne laser altimeter
1094 measurements over Arctic sea ice, IEEE Trans. Geosci. Remote Sens., 46,
1095 1913–1924.
1096 Kurtz, N. T., T. Markus, D. J. Cavalieri, L. C. Sparling, W. B. Krabill,
1097 A. J. Gasiewski, and J. G. Sonntag (2009), Estimation of sea ice thickness
1098 distributions through the combination of snow depth and satellite laser
1098JC005292.
1099 Kwok, R., and G. F. Cunningham (2008), ICESat over Arctic sea ice:
1100 Estimation of snow depth and ice thickness, J. Geophys. Res., 113,
1102 Kwok, R., H. J. Zwally, and D. Yi (2007), Ice, Cloud, and Level
1103 Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard,
1105 Kwok, R., G. F. Cunningham, M. Wenshahai, I. Rigor, H. J. Zwally, and
1106 D. Yi (2009), Thinning and volume loss of the Arctic Ocean sea ice cover:
1108 Laevastu, T. (1960), Factors affecting the temperature of the surface layer
1109 of the sea, Rep. 96, 114, 2663.
1110 Kwok, R., and G. F. Cunningham (2008), ICESat over Arctic sea ice:
1111 Estimation of snow depth and ice thickness, J. Geophys. Res., 113,
1113 Lapetus, C., T. Vithna, E. Jakobsen, G. Konig-Langlo, and A. Tetzlaff
1114 (2010), Meteorological observations from ship cruises during summer to
1115 the central Arctic: A comparison with reanalysis data, J. Geophys. Res.
1117 Makshtas, A. P., J. C. Stroeve, and J. Miller (2009), Recent changes in Arctic
1118 sea ice melt onset, freeze-up, and melt season length, J. Geophys. Res.,
1120 Maslank, J. A., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and
1121 W. Emery (2007), A younger, thinner Arctic ice cover: Increased
1122 potential for rapid, extensive sea ice loss, Geophys. Res. Lett., 34,
1124 Maykut, G. A. (1978), Energy exchange over young sea ice in the central
1125 Maykut, G. A. (1982), Large-scale heat and ice production in the central
1125 Maykut, G. A., and P. E. Church (1973), Radiation climate of Barrow,
1127 Maykut, G. A., and N. Untersteiner (1969), Numerical prediction of the
1127 thermodynamic response of Arctic sea ice to environmental changes,
1128 Doc. RM-6093-PR, Rand Corp., Santa Monica, Calif.
1128 Parkinson, C. L., and W. M. Washington (1979), A large-scale numerical
1130 Perovich, D. K., T. C. Grenfell, I. A. Richter-Menge, B. Light, W. B. Tucker
1130 III, and H. Eicken (2003), Thin and thinner. Sea ice mass balance measure-
11302001JC001079.
1131 Perovich, P. O. G., C. W. Fairall, E. L. Andrews, P. S. Guest, and
1132 D. K. Perovich (2002), Measurements near the Atmospheric Surface
1132 Flux Group tower at SHEBA: Near surface conditions and surface energy
1133 the Arctic oscillation, J. Clim., 15, 2648–2663.
1134 Rothrock, D. A., D. B. Percival, and M. Wensnahan (2008), The decline
1134 in Arctic sea-ice thickness: Separating the spatial, annual, and interannual
1134 variability in a quarter century of submarine data, J. Geophys. Res.,
1135 Semtner, A. J., Jr (1976), A model for the thermodynamic growth of sea ice
1136 Stone, M. J., and J. A. Francis (2006), The Arctic amplification debate,

