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Human exploration of space beyond low Earth orbit (LEO) requires a safe living and working
environment for crew. Composite materials are one type of material being investigated by
NASA as a multi-functional structural approach to habitats for long-term use in space or on
planetary surfaces with limited magnetic fields and atmosphere. These materials provide high
strength with the potential for decreased weight and increased radiation protection of crew
and electronics when compared with conventional aluminum structures. However, these
materials have not been evaluated in a harsh radiation environment, as would be experienced
outside of LEO or on a planetary surface. Thus, NASA has been investigating the durability of
select composite materials in a long-term radiation environment.

Previously, NASA exposed composite samples to a simulated, accelerated 30-year radiation
treatment and tensile stresses similar to those of a habitat pressure vessel. The results showed
evidence of potential surface oxidation and enhanced cross-linking of the matrix'. As a follow-
on study, we performed the same accelerated exposure alongside an exposure with a
decreased dose-rate. The slower dose-rate is comparable to a realistic scenario, although still
accelerated. Strain measurements were collected during exposure and showed that with a fast-
dose rate, the strain decreased with time, but with a slow-dose rate, the strain increased with
time?. After the radiation exposures, samples were characterized via tensile tests, flexure tests,
Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC).
The results of these tests will be discussed.

! Rojdev, K., et.al. “Long-Term Lunar Radiation Degradation Effects on Materials.” Presented at National Space and
Missile Materials Symposium, Scottsdale, AZ. June 28-July 1, 2010.

2 Rojdev, K., et.al. “In-Situ Strain Analysis of Potential Habitat Composites Exposed to a Simulated Long-Term Lunar
Radiation Exposure.” Presented at lonizing Radiation and Polymers Conference, College Park, MD. October 25-29,
2010.
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INTRODUCTION



Motivation/Purpose

* Long-term surface habitation requires large
structures that must withstand the
environment for the duration of the missions

* Fiber reinforced composites have gained
interest
— Potential weight savings

— Potential enhanced radiation protection for the
crew and electronics

— Potential for infusing cutting edge research
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Problem/Obijectives

* Problem: composite materials have not
been characterized for the space radiation
environment, which is known to cause
damage to polymeric materials

* Objective: assess composite durability in a
simulated long-term lunar radiation
environment
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Assumptions

 The habitat is unshielded from radiation on the exterior

— There is some multi-layer insulation and
micrometeorite/surface ejecta shielding, but no galactic
cosmic ray shielding (i.e. covering the habitat under
regolith)

* The habitat will remain on the surface and be in
service for 30 years

* The habitat is pressurized with air at an elevated
oxygen concentration

* The habitat is exposed to one large solar particle
event during each solar cycle and constant galactic
cosmic ray exposure
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Previous Work (2009)

* |nvestigated two materials
— Carbon fiber + epoxy composite (CF)
— Boron/Carbon fiber + epoxy composite (BF-CF)

* Exposure groups: control, tension only, radiation only,
radiation + tension

« Conclusions: material properties changing, but
Inconsistent results
— Need to validate repeatability of data
— Increase data set for statistical significance

* Work presented at NSMMS 2010:

Rojdev, K., et.al. “Long-Term Lunar Radiation Degradation Effects on Materials.”

Presented at National Space and Missile Materials Symposium, Scottsdale, AZ. June
28-July 1, 2010
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Current work (2010)

» Repeated parts of 2009 study
— Repeatability
— Increase statistical significance

» Added exposure group to study the dose-rate
effects on the material

— Fast dose-rate (0.1478 krad/s) vs. Slow dose-rate
(0.0139 krad/s)
» Added in a study to look at how proton-
radiation, stress, and dose-rate affect the

materials’ performance during hypervelocity
impacts



Test setup and In-situ results

EXPOSURES



Radiation Exposures

* Indiana University Cyclotron Facility
— Total dose: 500 krads (200 MeV protons)
— Fast dose rate: 147.8 rad/s
— Slow dose rate: 13.9 rad/s

Exposure # Dose Rate # of Samples Material
Exposure 1 Slow 10 BF-CF
Exposure 2 Slow 10 CF
Exposure 3 Fast 2 CF
Exposure 4 Fast 2 CF
Exposure 5 Slow 8 4 — BF-CF, 4 - CF
Exposure 6 Fast 8 4 -BF-CF, 4 - CF
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Example Radiation Run

5 test stands with material

exposure “radiation + tension”
5 materials with

exposure “radiation”

s

Radiation
Beam

11



Radiation Beam

- ,,

Strain gauge in center of sample —
gather strain during the radiation Sample in Test Beam Exit

exposure (also included thermocouple Stand
for sample temperature, not shown)
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In-Situ Strain Measurements

X 10°

o
o

Strain (in/in)
AR

=
o

-2.5

Strain vs. Time
(Fast Dose Rate)

Details presented at lonizing Radiation and
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SAMPLE CHARACTERIZATION
AND ANALYSIS



Characterization Completed

* Manufacturing

« (C-scan
 Chemistry

» Fourier Transform Infrared Spectroscopy (FTIR): bulk chemical composition
* Mechanical Properties

» Tension: tensile stress, strength, strain, ultimate strain, chord modulus,
poisson’s ration, stress vs. strain

« Flexure: Flexural stress, strength, offset yield strength, chord modulus,
strain, tangent modulus of elasticity, secant modulus, stress vs. strain

 Thermal Properties

» Differential Scanning Calorimetry (DSC): heat capacity as a function of
temperature, and changes in glass transition temperature

« Surface Properties and Edges
« Scanning Electron Microscopy (SEM): look at surface for visual changes

» Post-Fracture Analysis: Scanning Electron Microscopy (SEM): look at
fracture edge after tension/flexure tests
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Scanning Electron Microscopy (SEM) of
Surfaces (Example: BF-CF Sample #5)

AccV SpotMagn Det wD — 500pm = ~AccV SpotMagn Det WD 1 500 um
500V 40 50x  SE 159 Hybor#5 _ i F9500v 30 bOx SE_ 116 Hybor #5

SRR ..—-,-" e

- vv.w’ .'

No visible surface morphology changes
due to radiation
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Fourier Transform Infrared

Spectroscopy (FTIR) Procedure
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 Before radiation exposure, each
sample was characterized by FTIR
in 9 locations

« After radiation exposure, each
sample was again characterized by
FTIR in the same 9 locations

*Analysis focused on center region
*Post-radiation absorbance values

were subtracted from pre-radiation
absorbance values



FTIR Analysis (example)

OH peak C-H stretch Aromatic peak
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BF-CF Results
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Fast vs. Slow

~ Both dose rates saw in increase in the
peaks of interest. However, the fast dose
~ rate had a greater increase in the peaks.
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CF Results

Fast vs. Slow
5.00E-03

Fast dose rate saw a decrease in the
40003 - peaks of interest, whereas the slow dose
rate saw a general increase in the peaks
3.00e-03 - Of interest.
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Differential Scanning Calorimetry
(DSC): BF-CF sample
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DSC Tg Trends

BF-CF average Tg
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Tensile Test

* 1 coupon was cut per sample
« Coupons were cut perpendicular to 0° plys
 to highlight any matrix sensitivities in tensile properties

« Each tensile coupon included
» tabs to protect the material during test
* single strain gauge in the center to collect tensile data

National Space and Missile Materials Symposium 2011
Madison, WI
June 27-30 23



Average Tensile Modulus
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Flexure Test

1 coupon was cut per sample

« Coupons were cut perpendicular to 0° plys

— to highlight any matrix sensitivities in the
properties
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Average Flexural Strength
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Average BF-CF Flexural Modulus
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NASA

Summary of Results

. SEM of Tensile Flexure Flexure
in-situ strain FTIR DSCT;
surface 8 Modulus strength modulus
: . . decreased
decreasing no increase in smallest decreased
fast C oy . Tg, smaller no change
strain with time change species strength  from control
than slow
decreased
BF-CF
. . . ) from control,
increasing no increase in  decreased decreased .
slow o] . no change slightly
strain with time change species Tg from control
smaller than
fast
decreased
: . decreased
decreasing no decrease in smallest  from control
fast R . Tg, smaller no change
strain with time change species strength and smaller
CF than slow
than slow
increasing no increase in  decreased decreased  decreased
slow o] . no change
strain with time change species Tg from control from control
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Potential Mechanisms

SEM of Tensile Flexure Flexure
in-situ strain FTIR DSCT;

surface g Modulus strength modulus

fast | Crosslinking - ? Scission - Scission Scission
BF-CF o
slow Scission - ? >cission - Scission Scission
fast | Crosslinking - ? Scission - Scission Scission
cF Scission

slow Scission - ? - Scission Scission
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Future Work

* Analyze the fracture mechanisms in the
tensile coupons using SEM

* Repeat radiation exposures

— Gather more data on in-situ strain
* Investigating potential sources of error

* Repeat tensile tests

— Changing method of coupon manufacture to
attempt to reduce the error bars
 Collect tensile data at + 3 months, +6
months, and +9 months after radiation
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Background — Radiation Environment

10"y

* Primary Radiation Exposure =i,

10° 4

— Galactic Cosmic Rays (GCR) ;&

« Consists of stripped nuclei o)
(hydrogen to uranium)

d

Relative Abi

— Solar Particle Events (SPE) ol

« Consists of mainly high energy
protons

* Concerned with high energy
particle radiation
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* 11 year cycle

— Caused by the
changing magnetic |
field of the sun e :

— Solar maximum L‘ 2.4
 Sunspots v
 Coronal mass (":“\ 1996

ejections ww e
* Flare phenomenon

— Solar minimum

« Minimal activity
« Solar wind always
present
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Mainly protons
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Fast moving
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Band Fit for Large SPE

Differential Spectra for very large SPEs
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Solar Particle Events and Dosc#®

* Absorbed dose (D): change in mean energy
iImparted to matter over a discrete mass (dm)

 Mean energy (¢): the change in the number of
particles emitted, transferred, or received multiplied

by the energy of the particles plus the change in rest

energy
D— de . d(Rn _R)ut+zQ) R
e Rout
dm dm
R=NE
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Galactic Cosmic Rays

Climax Neutron Monitor Data
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Dominant Radiation on the Lunar Surface

GCR vs. SPE exposure
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Doses Material will See Due to
this Radiation Exposure

Holmes-Siedel, A., Adams, L., Handbook of Radiation
Effects. Oxford University Press: 2002.

1.E+10

1.E+09

1.E+08
1.E+07 visible damage begins to occur in F

some plastic materials

B

1.E+06

o [

1.E+04
1.E+03 -

Dose (cGy)

1.E+02 -
1.E+01 -
1.E+00 -

10 year 20 year 30 year
Mission Lifetime (years)
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Doses Material will See Due to
this Radiation Exposure

Holmes-Siedel, A., Adams, L., Handbook of Radiation
Effects. Oxford University Press: 2002.
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Conventional composites failure

.
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Mission Lifetime (years)
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Radiation Effects on Polymeric
Materials

* Previous radiation research on polymers is mainly
electron, neutron, or gamma radiation

* Previous research on materials different from today

 Effects discussed in literature

— Cross-linking — bonds that link one polymer chain to another
through chemical reaction
» Pro: increases stiffness of material, potentially making it stronger

« Con: if the stiffness is increased too much, the material becomes brittle and
easily fractured

— Chain scission — a chemical reaction that breaks the bonds of
the backbone polymer chain
» Con: weakens the polymer strength
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Madison, WI
June 27-30

43



Stresses on a Pressure Vessel &&8
Longitudinal Stress
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Stresses on a Pressure Vessel ‘&
— Hoop Stress
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Stress on a Pressure Vessel

= Due to the internal pressure of the pressure shell
(~ 8psi) and the potential thickness of the material,
there will be two tensile stresses imparted on the
material

o Hoop stress (2x longitudinal stress)
o Longitudinal stress

= Based on the minimum gauge necessary for the
habitat, these stresses are the following:

o Sandwich structure
= Hoop stress: 5.43 MPa
= Longitudinal stress: 2.71 MPa

o Skin-stiffened structure
= Hoop stress: 40.72 MPa
= Longitudinal stress: 20.36 MPa
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« Material #1 (boron/carbon + epoxy)
« Material #2 (carbon + epoxy)

« 6 plies - quasi-isotropic, balanced, and
symmetric layup

. [+60°,-60°,0°,0°,-60°,+60°]

« Material #1 (boron/carbon) — press cure
« Material #2 (carbon) — autoclave cure
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