X-48B Blended Wing Body
Ground to Flight Correlation Update

Dan Vicroy
Senior Research Engineer
Environmentally Responsible Aviation
Integrated Systems Research Program
Contributors

- Tim Risch – X-48B Project Manager, NASA
- Mike Kisska – X-48B Project Manager, Boeing
- Norm Princen – X-48 Chief Engineer, Boeing
- Dhar Patel – X-48C Project Manager, Boeing
- Joe Boland – X-48B Parameter Identification, Boeing

- And many others
Outline

- X-48B – What is it and why
- BWB ground tests
- X-48B flight tests
- Some ground to flight comparisons
 - Pitching moment
 - 1-g stall limits
- What’s next
- Summary
- Questions
X-48B - 8.5% Dynamically Scaled BWB

- Wing Span: 20.4 ft
- Wing Area: 100.5 ft²
- Max Weight: 523 lbs
- Static Thrust: 162 lbs
- Max Airspeed: 118 kts
- Max Altitude: 10,000 ft MSL
- Load Limits: +4.5 g’s to -3.0 g’s
- Duration: 30 min + 5 min reserve
Program Objectives

• Assess stability & control characteristics of a BWB class vehicle in free-flight conditions:
 – Assess dynamic interaction of control surfaces
 – Assess control requirements to accommodate asymmetric thrust
 – Assess stability and controllability about each axis at a range of flight conditions

• Assess flight control algorithms designed to provide desired flight characteristics:
 – Assess control surface allocation and blending
 – Assess edge of envelope protection schemes
 – Assess takeoff and landing characteristics
 – Test experimental control laws and control design methods

• Evaluate prediction and test methods for BWB class vehicles:
 – Correlate flight measurements with ground-based predictions and measurements
BWB Flight Dynamics Research

Langley 20’ Spin Tunnel
- 1% Spin/Tumble
- 2% Rotary Balance

Langley 14’ x 22’ Tunnel
- 3% Static Aero
- 3% Large Angle
- 3% Forced Oscillation

Langley Full-Scale Tunnel
- 5% Free-flight
- X-48B & C (8.5%) Static Test

Langley NTF Tunnel
- 2% BLI Study
- 2% Transonic S&C

AEDC 16T Tunnel
- 2% Transonic S&C

X-48B Flight Test DFRC
Suite of Ground Tests

Vehicle Scale

Chord Reynolds Number, millions

Region of Interest

X-48B Flight Test
X-48 Test in 30x60
Free-flight Test
Forced Oscillation Test
Static Aero Test
Rotary Test
Large Angle Test
AEDC 16T Test
Free Spin/Tumble Test
NTF Test
Phase I Flight Test Blocks

Block 1: Flights 1-11
- Slats EXT

Block 2: Flights 12-20
- Slats RET

Block 3: Flights 21-34, 44-56, 59-61, 67-70
- Slats EXT

Block 4: Flights 35-43, 57-58, 62-66, 71-72
- Slats RET

Block 5: Flights 73-75, 77
- Slats EXT

Block 6: Flights 76, 78-80
- Slats RET

Envelope Expansion

PID / Stalls

/ Engine Out

Maneuvering

Departure Limiter Assaults / Turning Stalls

Increasing Risk
Flight Test Video
X-48B Preliminary Flight Test Results

- Extremely maneuverable in roll
- Aircraft very closely matches sim for up/away flight (and landing)
- Flight control design is very robust
 - Some control law deficiencies were masked during initial slat extended flights
 - Corrected with update
 - Slat EXT stalls successful to 24 deg alpha
 - Controllable to 3 degrees beyond CLmax
 - Slat RET stalls successful to 14 deg alpha
- Departure limiter assaults highly successful!
- Overall, the aircraft flies extremely well
Where are the poor comparisons?

• Ground tests showed significant differences in pitching moment.
 – More on this to follow.

• Early analysis (Flights 1-11) indicated need for improved engine model.
 – Engine model updated prior to flight 73

• More analysis yet to be done.
Cm vs α from various ground tests

- Magnitude of support interference effect on pitching moment much greater than anticipated

3” dia. large post + pitch link
Langley 14x22 foot Tunnel
Cm vs α from various ground tests

- Magnitude of support interference effect on pitching moment much greater than anticipated

![Graph showing Cm vs alpha](image)

3” dia. large post + pitch link
Langley 14x22 foot Tunnel

1.2” dia. bent sting
Langley 14x22 foot Tunnel
Cm vs α from various ground tests

- Magnitude of support interference effect on pitching moment much greater than anticipated

3” dia. large post + pitch link
Langley 14x22 foot Tunnel

1.2” dia. bent sting
Langley 14x22 foot Tunnel
Cm vs α from various ground tests

- Magnitude of support interference effect on pitching moment much greater than anticipated

Swept strut designed for minimum interference in NTF
Cm vs α from various ground tests

- Magnitude of support interference effect on pitching moment much greater than anticipated

Swept strut designed for minimum interference in NTF

X-48B strut mounted in Langley Full Scale Tunnel
Cm vs α from various ground tests

- Magnitude of support interference effect on pitching moment much greater than anticipated
Free-flight Test Technique

Facilities:
• Langley Full-Scale Tunnel
• 14’ X 22’ Subsonic Tunnel
5% BWB Free-flight Test
Langley Full-Scale Tunnel Sept 2005

Test Objectives:
Assess:
- 1g departure onset control
- Asymmetric thrust control limits
- Center engine thrust vectoring control
Free-flight Data Example

- Slats extended
- Aft cg
Free-flight and Flight Test Comparison

Slats Retracted

1g, Static Conditions
0.95 < Nz < 1.05
-1.0 < \(\beta \) < +1.0
-2.0 < p, q, r < +2.0

Flight Fwd CG, \(\sim \)34.2%
Flight Aft CG, \(\sim \)39.0%

Slats Extended

\(1^\circ \)
5 kts

\(\square \) Free-flight 36.4% mac

\(\downarrow \)
5 kts

\(\square \) Free-flight 36.4% mac

\(\downarrow \)
5 kts

\(\square \) Free-flight 40.1% mac
Some lessons learned

• While support interference is a usual and expected occurrence, the magnitude of the impact on pitching moment for BWB is much larger than anticipated

• Free-flight test method provided good correlation with observed 1-g flight test limits

• Ground to flight correlation is difficult without a central repository of wind tunnel, flight, CFD and simulation data
Areas without flight comparison

- Transonic
 - NTF and AEDC 16T data

- Post departure modes (falling leaf, spin, tumble)
 - Large angle static, rotary and free spin/tumble data
So what’s next?

X-48C Configuration

- Replace Winglets with Twin Verticals
- New Elevon 1 and Rudder designs
- Two 75lb thrust engines
X-48C Test Plan

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **2010**: Turbofan Development

X-48C Flight Test
Summary

• 92 successful flights on a single-string flight control system
 – A wealth of low-speed data
 – Aircraft very closely matches sim for up/away flight (and landing)
 – Overall, the aircraft flies extremely well

• Full envelope aero database from ground tests of BWB configuration

• Large pitch sensitivity to support interference

• Much more analysis yet to be done

• No show stoppers