
  

  

Abstract—Flexible structures containing a large number of 
modes can benefit from adaptive control techniques which are 
well suited to applications that have unknown modeling 
parameters and poorly known operating conditions. In this 
paper, we focus on a direct adaptive control approach that has 
been extended to handle adaptive rejection of persistent 
disturbances. We extend our adaptive control theory to 
accommodate troublesome modal subsystems of a plant that 
might inhibit the adaptive controller. 

In some cases the plant does not satisfy the requirements of 
Almost Strict Positive Realness. Instead, there maybe be a 
modal subsystem that inhibits this property. This section will 
present new results for our adaptive control theory. We will 
modify the adaptive controller with a Residual Mode Filter 
(RMF) to compensate for the troublesome modal subsystem, or 
the Q modes. Here we present the theory for adaptive 
controllers modified by RMFs, with attention to the issue of 
disturbances propagating through the Q modes. We apply the 
theoretical results to a flexible structure example to illustrate 
the behavior with and without the residual mode filter. 

I. INTRODUCTION 
lexible structures containing a large number of modes 

can benefit from adaptive control techniques which are 
well suited to applications that have unknown modeling 
parameters and poorly known operating conditions. Creating 
an accurate model of the dynamic characteristics of a 
structure can be extremely difficult, if not impossible. In this 
paper, we focus on the direct adaptive control (DAC) 
approach developed in [1-2]. This approach has been 
extended to handle adaptive rejection of persistent 
disturbances [3] and applied to wind turbines in [4]. 
In this paper, we extend our adaptive control theory to 
accommodate modal subsystems of a plant that inhibit the 
adaptive controller, in particular those residual modes that 
interfere with the almost strict positive real condition. 

A flexible structure Evolving System is a mechanical 
dynamical system consisting of actively controlled flexible 
structure components that are joined together by compliant 
forces. A practical and well-accepted representation of 
flexible structures is based on the finite element method 
(FEM); see [9] for an extensive survey on flexible structures. 
The FEM of the lumped model in physical coordinates q, for 
a linearized actively controlled flexible structure with M 
control inputs, and P control outputs is given in matrix form 
as 

 
M. J. Balas is the Department Head of the Department of Electrical and 

Computer Engineering, University of Wyoming, Laramie, WY 82071 USA 
(mbalas@uwyo.edu).  

S. A. Frost is in the Intelligent Systems Division, NASA Ames Research 
Center, Moffett Field, CA 94035 USA (susan.frost@nasa.gov). 

 (1) 

This system can be put into a modal form with the 
transformation  

€ 

q =Φ0η  (2) 

where 

€ 

Φ0
TM0Φ0 = I

Φ0
TK0Φ0 = Λ0 ≡ diag ωk

2[ ]
 
 
 

  
 

Therefore, using the transformation (2), we obtain the 
modal form of (1): 

€ 

˙ ̇ η + D 0 ˙ η +Λ 0η = B 0up

yp = C 0η + E 0 ˙ η 

 
 
 

  
 (3) 

This system can be put into a modal first-order form with 
the states

€ 

xp
T ≡ η ˙ η [ ] . 

Note that many kinds of systems have modal forms, and 
the results we are developing here apply to any such system, 
not just flexible structures. 

II. DIRECT ADAPTIVE CONTROL WITH REJECTION OF 
PERSISTENT DISTURBANCES 

We give relevant details of this theory here. The plant is 
assumed to be well modeled by the linear, time-invariant, 
finite-dimensional system: 

 (4) 

where the plant state, xp is an Np-dimensional vector, the 
control input vector, up, is M-dimensional, and the sensor 
output vector, yp, is P-dimensional. The disturbance input 
vector, uD, is MD-dimensional and will be thought to come 
from the Disturbance Generator: 

 (5) 

where the disturbance state, zD, is ND-dimensional. All 
matrices in (4)-(5) have the appropriate compatible 
dimensions. Such descriptions of persistent disturbances 
were first used in [5] to describe signals of known form but 
unknown amplitude. Equation (5) can be rewritten in a form 
that is not a dynamical system, which is sometimes easier to 
use: 

€ 

uD =θzD
zD = LφD

 
 
 

 (6) 

where  is a vector composed of the known basis 
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functions for the solution of , i.e.,  are the 
basis functions which make up the known form of the 
disturbance, and L is a matrix of dimension ND by dim . 
The method for rejecting persistent disturbances used in this 
paper requires only the knowledge of the form of the 
disturbance, the amplitude of the disturbance does not need 
to be known, i.e.  can be unknown.  

In much of the control literature, it is assumed that the 
plant and disturbance generator parameter matrices 

 
are known. This knowledge of the plant 

and its disturbance generator allows the Separation Principle 
of Linear Control Theory to be invoked to arrive at a State-
Estimator based, linear controller which can suppress the 
persistent disturbances via feedback. In this paper, we will 
not assume that the plant and disturbance generator 
parameter matrices  are known. But, we 
will assume that we know the disturbance generator 
parameter, F, from (5), i.e., the form of the disturbance 
functions is known.  In many cases, knowledge of F is not a 
severe restriction, since the disturbance function is often of 
known form but unknown amplitude. 

Our control objective will be to cause the output of the 
plant, yp, to asymptotically track zero while accommodating 
disturbances of the form given by the disturbance generator. 
We define the output error vector as: 

€ 

ey ≡ yp −0  (7) 
To achieve the desired control objective, we want 

. (8) 
Consider the plant given by (4) with the disturbance 

generator given by (6). The control objective for this system 
will be accomplished by an adaptive control law of the form: 

€ 

up =Geey +GDφD  (9) 
where Ge and GD are matrices of the appropriate compatible 
dimensions, whose definitions will be given later. In [8], the 
gain adaptation laws were developed to make asymptotic 
output regulation possible. 

Now we specify the adaptive gain laws, which produce 
asymptotic tracking: 

€ 

˙ G e = −eyey
T h11

˙ G D = −eyφD
T h22

 
 
 

  
 (10) 

where h11 and h22 are arbitrary, positive definite matrices. 
The adaptive controller is specified by (9) with the above 
adaptive gain laws (10). See [3] for the stability analysis of 
this controller and proof that the adaptive gains, Ge and GD, 
remain bounded and asymptotic tracking occurs, i.e., 

. 

III. RESIDUAL MODE FILTER AUGMENTATION OF ADAPTIVE 
CONTROLLER 

In some cases the plant in (4) does not satisfy the 
requirements of ASPR. Instead, there may be a modal 
subsystem that inhibits this property. This section will 

present new results for our adaptive control theory. We will 
modify the adaptive controller with a Residual Mode Filter 
(RMF) to compensate for the troublesome modal subsystem, 
or the Q modes, as was done in [6] for fixed gain non-
adaptive controllers. Here we present the theory for adaptive 
controllers modified by RMFs. In a previous paper, we 
examined the RMF with adaptive control, but assumed that 
there was no leakage of the disturbance into the Q modes 
[7]. Here we will deal with the issue of disturbances 
propagating through these modes. 

Let us assume that (4) can be partitioned into the 
following modal form: 

€ 

˙ x 
˙ x Q

 

 
 

 

 
 =

A 0
0 AQ

 

 
 

 

 
 

x
xQ

 

 
 

 

 
 +

B
BQ

 

 
 

 

 
 up +

Γ

εΓQ

 

 
 

 

 
 uD

yp = C CQ[ ]
x

xQ

 

 
 

 

 
 ; ε ≥ 0

 

 

 
 

 

 
 

 (11) 

Define 

€ 

xp ≡
x
xQ

 

 
 

 

 
 ;Ap =

A 0
0 AQ

 

 
 

 

 
 ;Bp =

B
BQ

 

 
 

 

 
 ;

 

  

€ 

Γp = Γ εΓQ[ ]
 T
; Cp = C CQ[ ]  and Disturbance 

Generator 

€ 

˙ z D = FzD

uD =θ zD

 
 
  

or 

€ 

zD = LφD  as before in (5)-(6).  
The Output Tracking Error and control objective remain as 
in (7)-(8), i.e. 

€ 

ey ≡ yp t→∞
 →   0.  

However, now we will only assume that the subsystem 

€ 

A,B,C( )  is Almost Strictly Positive Real (ASPR), rather 

than the full un-partitioned plant 

€ 

Ap ,Bp ,Cp( ) , and the 

modal subsystem 

€ 

(AQ ,BQ ,CQ )  will be known and open-
loop stable, i.e. 

€ 

AQ  
is stable. Also note that this subsystem 

is directly affected by the disturbance input. Recall that 
ASPR means 

€ 

CB> 0  and 

€ 

P(s) =C(sI − A)−1B  is 
minimum phase. So, in summary, the actual plant has an 
ASPR subsystem and a known modal subsystem that is 
stable but inhibits the property of ASPR for the full plant. 
Hence, this modal subsystem must be compensated or 
filtered away. 

We define the Residual Mode Filter (RMF): 

€ 

ˆ ˙ x Q = AQ ˆ x Q + BQup

ˆ y Q = CQ ˆ x Q

 
 
 

  
 (12) 

And the compensated tracking error:  

€ 

˜ e y ≡ yp − ˆ y Q  (13) 

Now we let 

€ 

eQ ≡ ˆ x Q − xQ  and obtain: 

€ 

˙ e Q = AQeQ −εΓQuD   (14) 
Consequently,  

€ 

˜ e y ≡ yp − ˆ y Q = Cx + CQ xQ −[CQ xQ + CQeQ ]
= Cx −CQeQ

 (15) 

As in [1]-[2], we define the Ideal Trajectories, but only for 



  

the ASPR Subsystem:  

€ 

˙ x * = Ax* + Bu* +ΓuD

y* = Cx* = 0
 
 
 

  (16) 

where 

€ 

x* ≡ S1
*zD

u* ≡ S2
*zD

 
 
 

  
  

This is equivalent to the Matching Conditions:  

€ 

S1
*F = AS1

* +BS2
* +Γθ

CS1
* = 0

 
 
 

  
 (17) 

which are known to be uniquely solvable when CB is 
nonsingular. However, we do not need to know the actual 
solutions for our adaptive control approach. 

Let  

€ 

Δx ≡ x − x*

Δu ≡ up − u*

Δ ˜ y ≡ ˜ e y = Cx −CQeQ

 

 
 

 
 

.  Then we have  

€ 

Δ ˙ x = AΔx + BΔu
Δ ˜ y = Cx − y* −CQeQ = CΔx −CQeQ

 
 
 

 (18) 

because, from (16), . This system can be rewritten: 

  

€ 

Δ ˙ x 
˙ e Q

 

 
 

 

 
 =

A 0
0 AQ

 

 
 

 

 
 
Δx
eQ

 

 
 

 

 
 +

B
0
 

 
 
 

 
 Δu +

0
εΓQ

 

 
 

 

 
 uD

= A 
Δx
eQ

 

 
 

 

 
 + B Δu +εΓ QuD

Δ ˜ y = C −CQ[ ] 
Δx
eQ

 

 
 

 

 
 = C 

Δx
eQ

 

 
 

 

 
 

 

 

 
 
  

 

 
 
 
 

 (19) 

Now we have the following: 

Lemma: 

€ 

A =
A 0
0 AQ

 

 
 

 

 
 ,B =

B
0
 

 
 
 

 
 ,C = C −CQ[ ]

 

 
  

 

 
  
 
ASPR 

if and only if  ASPR. 

Proof: 

€ 

C B = C −CQ[ ]
B
0
 

 
 
 

 
 = CB > 0

 
and 

€ 

P (s) ≡C (sI − A )−1B 

= C −CQ[ ]
(sI − A)−1 0

0 (sI − AQ )
−1

 

 
 
 

 

 
 
 

B
0
 

 
 
 

 
 

= C(sI − A)−1B = P(s)

 

is minimum phase and the result is proved # 
From this Lemma, there exists  such that 

 is Strictly Positive Real (SPR) 
when  is ASPR. Consequently, as is well known 
from the Kalman-Yacubovic Theorem: 

  

€ 

∃ P ,Q > 0 ∍
A C

T P + P A C = −Q 

P B = C T
 
 
 

  
 (20) 

We now modify the adaptive control law with RMF: 

€ 

up ≡Ge ˜ e y + GDφD

˜ e y ≡ yp − ˆ y Q
ˆ ˙ x Q = AQ ˆ x Q + BQup

ˆ y Q = CQ ˆ x Q

 

 

 
 

 

 
 

  (21) 

with modified adaptive gains: 

 

€ 

˙ G e = − ˜ e y ˜ e y
T he; he > 0

˙ G D = − ˜ e yφD
T hD; hD > 0

 
 
 

  
 (22) 

Finally, we have the following stability result: 
Theorem: In (11), let  ASPR,  stable,  
bounded. Then the Modified Adaptive Controller with RMF 
in (21)-(22) produces  and  ultimately bounded 

into a ball of radius 

€ 

R* ≡ε
1+ pmax( )
a pmin

Mν  with 

exponential rate and bounded adaptive gains . 
Proof: From (21), 

 

€ 

Δu ≡ up − u*

= [Ge ˜ e y + GDφD ]−[S2
*L]φD

= Ge
* ˜ e y +ΔGη

 

where 

€ 

ΔGe ≡Ge −Ge
*

ΔGD ≡GD − (S2
*L)

ΔG ≡G −G* = ΔGe ΔGD[ ]

η ≡
˜ e y
φD

 

 
 

 

 
 

 

 

 
 
 

 

 
 
 

 

Then  

€ 

˙ ζ = A ζ + B Δu = A Cζ + B w +εΓ QuD

˜ e y = C ζ

 
 
 

  
 (23)  

with 
  

€ 

ζ ≡
Δx
eQ

 

 
 

 

 
  ,  w ≡ ΔGη, A C ≡ A + B Ge

*C  

From (22), we can see that 

 

€ 

˙ G = Δ ˙ G = − ˜ e yη
T h; h ≡

he 0
0 hD

 

 
 

 

 
 > 0  (24) 

Since 

€ 

(A,B,C)  is ASPR, and by the lemma, so is 

€ 

(A ,B ,C ) , we can we can use the following result from [8] 
where 

 
is bounded because the disturbance 

 is bounded: 
Result: Consider the nonlinear, coupled system of 
differential equations, 



  

 (24) 

where G* is any constant matrix and h is any positive 
definite constant matrix, each of appropriate dimension. 
Assume the following: 
i) the triple  is SPR, 

ii) ∃ MK > 0 ∍ , using the trace norm, 

iii) ∃ Mν > 0 ∍ , 

iv) ∃ a  > 0  ∍ , and 

v)  satisfies 

€ 

h−1
2
≤

εMν

aMK

 

 
 

 

 
 

2

, where pmin, pmax are the 

minimum and maximum eigenvalues of  and qmin is the 

minimum eigenvalue of 

€ 

Q  in 

€ 

A C
T P + P A C = −Q 

P B = C T
 
 
 

  
 

Then the matrix G(t) is bounded and the state  
exponentially approaches the ball of radius  

€ 

R* ≡ε
1+ pmax( )
a pmin

Mν  with . 

From this result, we have  is ultimately bounded into 
the ball of radius , which leads to both 

€ 

ey ≡ yp = yp − y* =CΔx = C 0[ ]ς and ultimately 

bounded as well. Therefore  is bounded, as 
desired. #

 Consequently, the radius of the error ball 

 is determined by the size of ε, 

which is related to the amount of disturbance leakage into 
the Q modes. It can be seen that, when there is no leakage of 
the disturbance into the Q modes ( ), the convergence 
is asymptotic to zero. 

IV. SIMULATION RESULTS WITH RMF 
In this section we will apply the above theoretical results 

to a simple flexible structure example to illustrate the 
behavior with and without the residual mode filter. The 
structure has a rigid body mode and two flexible modes: 

€ 

P(s) =
1+ s
s2

−
3

s2 + s+1
+

1
s2 + s+2

=
s5 + s4 + 3s3 +0s2 + 3s+1
s6 +2s5 + 4s4 + 3s3 +2s2

 

This plant has non-minimum phase zeros at 0.422±0.9543i, 

and thus does not meet the ASPR condition. 

 However, when the middle mode 

€ 

PQ (s) = −
s

s2 + s+1
 

is removed, the plant becomes: 

€ 

P(s) =
1+ s
s2

+
1

s2 + s+2
=
s3 + 3s2 + 3s+2
s4 + s3 +2s2

 

which is minimum phase and has a state space realization: 

€ 

A =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 −2 −1

 

 

 
 
 
 

 

 

 
 
 
 

,B=

0
0
0
1

 

 

 
 
 
 

 

 

 
 
 
 

,C = 2 3 3 1[ ]  

with CB=1>0. Therefore, 

€ 

(A,B,C) is ASPR. 

 The RMF generated by 

€ 

PQ (s) = −
3

s2 + s+1
 is 

€ 

AQ =
0 1
−1 −1
 

 
 

 

 
 ,BQ =

0
1
 

 
 
 

 
 ,CQ = −3 0[ ]  and so 

€ 

CQBQ = 0 . 

 The adaptive controller (21)-(22) is implemented with  

€ 

he ≡10,hD ≡100,a ≡ 50 . The disturbance is a step of size 
10. Setting 

€ 

ε =1, we obtain Figures 1 and 2 from a 
MatLab/Simulink simulation. The output trace is shown to 
converge in fig. 1 with a bias of 4. The adaptive gains also 
converge in fig. 2. This illustrates the behavior of the 
adaptive controller plus the second order RMF. Without the 
RMF, the plant and adaptive controller are unstable in 
closed-loop. 

V. CONCLUSION 
We have proposed a modified adaptive controller with a 

residual mode filter. The RMF is used to accommodate 
troublesome modes in the system that might otherwise 
inhibit the adaptive controller, in particular the ASPR 
condition. This new theory accounts for leakage of the 
disturbance term into the Q modes. A simple three-mode 
example shows that the RMF can restore stability to an 
otherwise unstable adaptively controlled system. This is 
done without modifying the adaptive controller design.  

REFERENCES 
[1] Wen, JT, Balas, MJ. Robust adaptive control in Hilbert space. Journal 

of Mathematical Analysis and Application 1989; 143(1): 1-26. 
[2] Balas, MJ. Finite-dimensional direct adaptive control for discrete-time 

infinite-dimensional linear systems. Journal of Mathematical Analysis 
and Applications 1995; 196(1): 153-171. 

[3] Fuentes, RJ, Balas, MJ. Direct adaptive rejection of persistent 
disturbances. Journal of Mathematical Analysis and Applications 
2000; 251(1): 28-39. 

[4] Frost, SA, Balas, MJ, and Wright, AD. Direct adaptive control of a 
utility-scale wind turbine for speed regulation, International Journal 
of Robust and Nonlinear Control, 2009, 19(1): 59-71, DOI: 
10.1002/rnc.1329. 

[5] Johnson, C.D. Theory of disturbance-accommodating controllers. 
Control & Dynamic Systems, Advances in Theory and Applications, 
Leondes, CT. ed. Academic Press: New York, 1976; 12: 387-489. 

[6] Balas, MJ, Finite-dimensional controllers for linear distributed 
parameter systems: Exponential stability using Residual Mode 



  

Filters," J. Mathematical Analysis & Applications, Vol. 133, pp. 283-
296, 1988.  

[7] Frost, S. A., Balas, M. J., and Wright, A. D. ”Modified adaptive 
control for region 3 operation in the presence of wind turbine 
structural modes”, Proceedings 49th AIAA Aerospace Sciences 
Meeting, Orlando, 2010. 

[8] Fuentes, R J and Balas, M J, “Robust Model Reference Adaptive 
Control with Disturbance Rejection”, Proceedings of the American 
Control Conference, 2002. 

[9] Balas, M., "Trends in Large Space Structure Control Theory: Fondest 
Hopes; Wildest Dreams," IEEE Trans. Automatic Control, AC-27, 
522-535, 1982. 
 

 
Fig. 1. Non-dimensional output response with adaptive controller 
augmented with RMF. 
 

 
Fig. 2. Adaptive gains, Ge=error gain, Gd=disturbance gain. 


